Skip to main content

Different Forms of Decellularized Tissues and Their Characteristics, Applications in Tissue Repair as Well as Performance Optimization

  • Chapter
  • First Online:
Decellularized Materials
  • 649 Accesses

Abstract

Decellularized tissues, which could maintain cell phenotype or promote stem cell differentiation into specific tissue cells, play a central role in promoting the reconstruction of functional tissue/organ. Tissue ECM in diverse formats has been developed for tissue repair and regeneration, which can generally be divided into five categories: (1) Scaffolds that preserve the morphological structure of original tissues. (2) Powders obtained by cryogenic grinding. (3) Hydrogels. (4) Coatings. (5) 3D-printing. This chapter will elaborate the preparation methods for creating decellularized tissue scaffolds with the above formats. What is more, the characteristics of these materials will be studied, and the respective applications and the efforts in performance optimization in tissue repair will also be introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Taylor DA, Sampaio LC, Ferdous Z, Gobin AS, Taite LJ. Decellularized matrices in regenerative medicine. Acta Biomater. 2018;74:74–89.

    Article  CAS  PubMed  Google Scholar 

  2. Atala A. Tissue engineering of reproductive tissues and organs. Fertil Steril. 2012;98(1):21–9.

    Article  CAS  PubMed  Google Scholar 

  3. Shakouri-Motlagh A, O'Connor AJ, Brennecke SP, Kalionis B, Heath DE. Native and solubilized decellularized extracellular matrix: a critical assessment of their potential for improving the expansion of mesenchymal stem cells. Acta Biomater. 2017;55:1–12.

    Article  CAS  PubMed  Google Scholar 

  4. Keane TJ, Badylak SF. Biomaterials for tissue engineering applications. Semin Pediatr Surg. 2014;23(3):112–8.

    Article  PubMed  Google Scholar 

  5. Wu I, Nahas Z, Kimmerling KA, Rosson GD, Elisseeff JH. An injectable adipose matrix for soft-tissue reconstruction. Plast Reconstr Surg. 2012;129(6):1247–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ingram JH, Korossis S, Howling G, Fisher J, Ingham E. The use of ultrasonication to aid recellularization of acellular natural tissue scaffolds for use in anterior cruciate ligament reconstruction. Tissue Eng. 2007;13(7):1561–72.

    Article  CAS  PubMed  Google Scholar 

  7. Crapo PM, Tottey S, Slivka PF, Badylak SF. Effects of biologic scaffolds on human stem cells and implications for CNS tissue engineering. Tissue Eng Part A. 2014;20(1-2):313–23.

    Article  CAS  PubMed  Google Scholar 

  8. Baiguera S, Del Gaudio C, Lucatelli E, Kuevda E, Boieri M, Mazzanti B, Bianco A, Macchiarini P. Electrospun gelatin scaffolds incorporating rat decellularized brain extracellular matrix for neural tissue engineering. Biomaterials. 2014;35(4):1205–14.

    Article  CAS  PubMed  Google Scholar 

  9. Lu H, Hoshiba T, Kawazoe N, Chen G. Autologous extracellular matrix scaffolds for tissue engineering. Biomaterials. 2011;32(10):2489–99.

    Article  CAS  PubMed  Google Scholar 

  10. Guilak F, Butler DL, Goldstein SA, Baaijens FP. Biomechanics and mechanobiology in functional tissue engineering. J Biomech. 2014;47(9):1933–40.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Sellaro TL, Ravindra AK, Stolz DB, Badylak SF. Maintenance of hepatic sinusoidal endothelial cell phenotype in vitro using organ-specific extracellular matrix scaffolds. Tissue Eng. 2007;13(9):2301–10.

    Article  CAS  PubMed  Google Scholar 

  12. Kimura T, Kondo M, Hashimoto Y, Fujisato T, Nakamura N, Kishida A. Surface topography of PDMS replica transferred from various decellularized aortic lumens affects cellular orientation. ACS Biomater Sci Eng. 2019;5(11):5721–6.

    Article  CAS  PubMed  Google Scholar 

  13. Lamers E, Walboomers XF, Domanski M, te Riet J, van Delft FC, Luttge R, Winnubst LA, Gardeniers HJ, Jansen JA. The influence of nanoscale grooved substrates on osteoblast behavior and extracellular matrix deposition. Biomaterials. 2010;31(12):3307–16.

    Article  CAS  PubMed  Google Scholar 

  14. Culenova M, Bakos D, Ziaran S, Bodnarova S, Varga I, Danisovic L. Bioengineered scaffolds as substitutes for grafts for urethra reconstruction. Materials. 2019;12(20):3449.

    Article  CAS  PubMed Central  Google Scholar 

  15. Kajbafzadeh AM, Abbasioun R, Sabetkish S, Sabetkish N, Rahmani P, Tavakkolitabassi K, Arshadi H. Future prospects for human tissue engineered urethra transplantation: decellularization and recellularization-based urethra regeneration. Ann Biomed Eng. 2017;45(7):1795–806.

    Article  PubMed  Google Scholar 

  16. Arnalich-Montiel F, Moratilla A, Fuentes-Julian S, Aparicio V, Cadenas Martin M, Peh G, Mehta JS, Adnan K, Porrua L, Perez-Sarriegui A, De Miguel MP. Treatment of corneal endothelial damage in a rabbit model with a bioengineered graft using human decellularized corneal lamina and cultured human corneal endothelium. PLoS One. 2019;14(11):e0225480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Milan PB, Lotfibakhshaiesh N, Joghataie MT, Ai J, Pazouki A, Kaplan DL, Kargozar S, Amini N, Hamblin MR, Mozafari M, Samadikuchaksaraei A. Accelerated wound healing in a diabetic rat model using decellularized dermal matrix and human umbilical cord perivascular cells. Acta Biomater. 2016;45:234–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lu CC, Zhang T, Amadio PC, An KN, Moran SL, Gingery A, Zhao C. Lateral slit delivery of bone marrow stromal cells enhances regeneration in the decellularized allograft flexor tendon. J Orthop Transl. 2019;19:58–67.

    Google Scholar 

  19. Zhou L, Xia J, Wang P, Jia R, Zheng J, Yao X, Chen Y, Dai Y, Yang B. Autologous smooth muscle progenitor cells enhance regeneration of tissue-engineered bladder. Tissue Eng Part A. 2018;24(13-14):1066–81.

    Article  CAS  PubMed  Google Scholar 

  20. Li T, Sui Z, Matsuno A, Ten H, Oyama K, Ito A, Jiang H, Ren X, Javed R, Zhang L, Ao Q. Fabrication and evaluation of a xenogeneic decellularized nerve-derived material: preclinical studies of a new strategy for nerve repair. Neurotherapeutics. 2019;89:115–25.

    Google Scholar 

  21. Cai Z, Gu Y, Cheng J, Li J, Xu Z, Xing Y, Wang C, Wang Z. Decellularization, cross-linking and heparin immobilization of porcine carotid arteries for tissue engineering vascular grafts. Cell Tissue Bank. 2019;20(4):569–78.

    Article  CAS  PubMed  Google Scholar 

  22. Chen K, Lin X, Zhang Q, Ni J, Li J, Xiao J, Wang Y, Ye Y, Chen L, Jin K, Chen L. Decellularized periosteum as a potential biologic scaffold for bone tissue engineering. Acta Biomater. 2015;19:46–55.

    Article  CAS  PubMed  Google Scholar 

  23. Londono R, Badylak SF. Regenerative medicine strategies for esophageal repair. Tissue Eng Part B Rev. 2015;21(4):393–410.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Sorkin M, Qi J, Kim HM, Hamill JB, Kozlow JH, Pusic AL, Wilkins EG. Acellular dermal matrix in immediate expander/implant breast reconstruction: a multicenter assessment of risks and benefits. Plast Reconstr Surg. 2017;140(6):1091–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Basonbul RA, Cohen MS. Use of porcine small intestinal submucosa for pediatric endoscopic tympanic membrane repair. World J Otorhinolaryngol. 2017;3(3):142–7.

    Google Scholar 

  26. Zhang Y, Iwata T, Nam K, Kimura T, Wu P, Nakamura N, Hashimoto Y, Kishida A. Water absorption by decellularized dermis. Heliyon. 2018;4(4):e00600.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Askari M, Cohen MJ, Grossman PH, Kulber DA. The use of acellular dermal matrix in release of burn contracture scars in the hand. Plast Reconstr Surg. 2011;127(4):1593–9.

    Article  CAS  PubMed  Google Scholar 

  28. Patel NP, Lawrence Cervino A. Keloid treatment: is there a role for acellular human dermis (Alloderm)? J Plast Reconstr Aesthet Surg. 2010;63(8):1344–8.

    Article  PubMed  Google Scholar 

  29. Vandegrift MT, Szpalski C, Knobel D, Weinstein A, Ham M, Ezeamuzie O, Warren SM, Saadeh PB. Acellular dermal matrix-based gene therapy augments graft incorporation. J Surg Res. 2015;195(1):360–7.

    Article  CAS  PubMed  Google Scholar 

  30. Stapleton PA, McBride CR, Yi J, Nurkiewicz TR. Uterine microvascular sensitivity to nanomaterial inhalation: an in vivo assessment. Toxicol Appl Pharmacol. 2015;288(3):420–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Callcut RA, Schurr MJ, Sloan M, Faucher LD. Clinical experience with alloderm: a one-staged composite dermal/epidermal replacement utilizing processed cadaver dermis and thin autografts. Burns. 2006;32(5):583–8.

    Article  CAS  PubMed  Google Scholar 

  32. Gore DC. Utility of acellular allograft dermis in the care of elderly burn patients. J Surg Res. 2005;125(1):37–41.

    Article  PubMed  Google Scholar 

  33. Wainwright DJ, Bury SB. Acellular dermal matrix in the management of the burn patient. Aesthet Surg J. 2011;31(7 Suppl):13S–23S.

    Article  PubMed  Google Scholar 

  34. Maisel Lotan A, Ben Yehuda D, Allweis TM, Scheflan M. Comparative study of meshed and nonmeshed acellular dermal matrix in immediate breast reconstruction. Plast Reconstr Surg. 2019;144(5):1045–53.

    Article  CAS  PubMed  Google Scholar 

  35. Ma P, Wang Y, Li B, Hou H. Cross-linking effects of carbodiimide, oxidized chitosan oligosaccharide and glutaraldehyde on acellular dermal matrix of basa fish (Pangasius bocourti). Int J Biol Macromol. 2020;164:677–86.

    Article  CAS  PubMed  Google Scholar 

  36. Dhasmana A, Singh L, Roy P, Mishra NC. Silk fibroin protein modified acellular dermal matrix for tissue repairing and regeneration. Mater Sci Eng C Mater Biol Appl. 2019;97:313–24.

    Article  CAS  PubMed  Google Scholar 

  37. Mirzaei-Parsa MJ, Ghanbari H, Alipoor B, Tavakoli A, Najafabadi MRH, Faridi-Majidi R. Nanofiber-acellular dermal matrix as a bilayer scaffold containing mesenchymal stem cell for healing of full-thickness skin wounds. Cell Tissue Res. 2019;375(3):709–21.

    Article  CAS  PubMed  Google Scholar 

  38. Du M, Zhu T, Duan X, Ge S, Li N, Sun Q, Yang P. Acellular dermal matrix loading with bFGF achieves similar acceleration of bone regeneration to BMP-2 via differential effects on recruitment, proliferation and sustained osteodifferentiation of mesenchymal stem cells. Mater Sci Eng C Mater Biol Appl. 2017;70(Pt 1):62–70.

    Article  CAS  PubMed  Google Scholar 

  39. Wilshaw S-P, et al. Production of an acellular amniotic membrane matrix for use in tissue engineering. Tissue Eng. 2006;12(8):2117–29.

    Article  CAS  PubMed  Google Scholar 

  40. Huddleston HP, Cohn MR, Haunschild ED, Wong SE, Farr J, Yanke AB. Amniotic product treatments: clinical and basic science evidence. Curr Rev Musculoskelet Med. 2020;13(2):148–54.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Niknejad H, et al. Properties of the amniotic membrane for potential use in tissue engineering. Eur Cell Mater. 2008;15:88–99.

    Article  CAS  PubMed  Google Scholar 

  42. He H, Li W, Tseng DY, Zhang S, Chen SY, Day AJ, Tseng SC. Biochemical characterization and function of complexes formed by hyaluronan and the heavy chains of inter-alpha-inhibitor (HC*HA) purified from extracts of human amniotic membrane. J Biol Chem. 2009;284(30):20136–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Soluble factors of amnion-derived cells in treatment of inflammatory and fibrotic pathologies.pdf.

    Google Scholar 

  44. Su YN, Zhao DY, Li YH, Yu TQ, Sun H, Wu XY, Zhou XQ, Li J. Human amniotic membrane allograft, a novel treatment for chronic diabetic foot ulcers: a systematic review and meta-analysis of randomised controlled trials. Int Wound J. 2020;17(3):753–64.

    Article  PubMed  Google Scholar 

  45. Song M, Wang W, Ye Q, Bu S, Shen Z, Zhu Y. The repairing of full-thickness skin deficiency and its biological mechanism using decellularized human amniotic membrane as the wound dressing. Mater Sci Eng C Mater Biol Appl. 2017;77:739–47.

    Article  CAS  PubMed  Google Scholar 

  46. E. T, B. B, N. A. Amniotic membrane seeded fetal fibroblasts as skin substitute for wound regeneration. Methods Mol Biol. 2019;1879:211–9.

    Google Scholar 

  47. Wu Z, et al. Human acellular amniotic membrane is adopted to treat venous ulcers. Exp Ther Med. 2018;16(2):1285–9.

    PubMed  PubMed Central  Google Scholar 

  48. Shah AP. Using amniotic membrane allografts in the treatment of neuropathic foot ulcers. J Am Podiatr Med Assoc. 2014;104(2):198–202.

    Article  PubMed  Google Scholar 

  49. Abdo RJ. Treatment of diabetic foot ulcers with dehydrated amniotic membrane allograft: a prospective case series. J Wound Care. 2016;25(Suppl 7):S4–9.

    Article  CAS  PubMed  Google Scholar 

  50. DiDomenico LA, Orgill DP, Galiano RD, Serena TE, Carter MJ, Kaufman JP, Young NJ, Jacobs AM, Zelen CM. Use of an aseptically processed, dehydrated human amnion and chorion membrane improves likelihood and rate of healing in chronic diabetic foot ulcers: a prospective, randomised, multi-centre clinical trial in 80 patients. Int Wound J. 2018;15(6):950–7.

    Article  PubMed  Google Scholar 

  51. DiDomenico LA, Orgill DP, Galiano RD, Serena TE, Carter MJ, Kaufman JP, Young NJ, Zelen CM. Aseptically processed placental membrane improves healing of diabetic foot ulcerations: prospective, randomized clinical trial. Plast Reconstr Surg Glob Open. 2016;4(10):e1095.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Lo V, Lara-Corrales I, Stuparich A, Pope E. Amniotic membrane grafting in patients with epidermolysis bullosa with chronic wounds. J Am Acad Dermatol. 2010;62(6):1038–44.

    Article  PubMed  Google Scholar 

  53. Hasegawa T, Mizoguchi M, Haruna K, Mizuno Y, Muramatsu S, Suga Y, Ogawa H, Ikeda S. Amnia for intractable skin ulcers with recessive dystrophic epidermolysis bullosa: report of three cases. J Dermatol. 2007;34(5):328–32.

    Article  PubMed  Google Scholar 

  54. Parveen S, Singh SP, Panicker MM, Gupta PK. Amniotic membrane as novel scaffold for human iPSC-derived cardiomyogenesis, in vitro cellular & developmental biology. Animal. 2019;55(4):272–84.

    CAS  Google Scholar 

  55. Rizzo S. A human amniotic membrane plug to promote retinal breaks repair and recurrent macular hole closure. Retina. 2019;39(Suppl 1):S95–S103.

    Article  PubMed  Google Scholar 

  56. Caporossi T, Angelis L, Pacini B, Tartaro R, Finocchio L, Barca F, Rizzo S. A human amniotic membrane plug to manage high myopic macular hole associated with retinal detachment. Acta Ophthalmol. 2019;98(2):e252–6.

    PubMed  Google Scholar 

  57. Wee SW, Choi SU, Kim JC. Deep anterior lamellar keratoplasty using irradiated acellular cornea with amniotic membrane transplantation for intractable ocular surface diseases. Korean J Ophthalmol. 2015;29(2):79–85.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Francisco JC, Correa Cunha R, Cardoso MA, Baggio Simeoni R, Mogharbel BF, Picharski GL, Dziedzic DSM, Guarita-Souza LC, Carvalho KA. Decellularized amniotic membrane scaffold as a pericardial substitute: an in vivo study. Transplant Proc. 2016;48(8):2845–9.

    Article  CAS  PubMed  Google Scholar 

  59. Ramuta TŽ, Kreft ME. Human amniotic membrane and amniotic membrane–derived cells: how far are we from their use in regenerative and reconstructive urology? Cell Transplant. 2017;27(1):77–92.

    Article  Google Scholar 

  60. Tang K, et al. Human acellular amniotic membrane: a potential osteoinductive biomaterial for bone regeneration. J Biomater Appl. 2018;32(6):754–64.

    Article  CAS  PubMed  Google Scholar 

  61. Li W, et al. Investigating the potential of amnion-based scaffolds as a barrier membrane for guided bone regeneration. Langmuir. 2015;31(31):8642–53.

    Article  CAS  PubMed  Google Scholar 

  62. Liu H, Zhou Z, Lin H, Wu J, Ginn B, Choi JS, Jiang X, Chung L, Elisseeff JH, Yiu S, Mao HQ. Synthetic nanofiber-reinforced amniotic membrane via interfacial bonding. ACS Appl Mater Interfaces. 2018;10(17):14559–69.

    Article  CAS  PubMed  Google Scholar 

  63. Zhou Z, Long D, Hsu CC, Liu H, Chen L, Slavin B, Lin H, Li X, Tang J, Yiu S, Tuffaha S, Mao HQ. Nanofiber-reinforced decellularized amniotic membrane improves limbal stem cell transplantation in a rabbit model of corneal epithelial defect. Acta Biomater. 2019;97:310–20.

    Article  CAS  PubMed  Google Scholar 

  64. Fu RH, Wang YC, Liu SP, Shih TR, Lin HL, Chen YM, Sung JH, Lu CH, Wei JR, Wang ZW, Huang SJ, Tsai CH, Shyu WC, Lin SZ. Decellularization and recellularization technologies in tissue engineering. Cell Transplant. 2014;23(4-5):621–30.

    Article  PubMed  Google Scholar 

  65. Paulo Zambon J, Atala A, Yoo JJ. Methods to generate tissue-derived constructs for regenerative medicine applications. Methods. 2019;171:3–10.

    Article  PubMed  Google Scholar 

  66. Font Tellado S, Balmayor ER, Van Griensven M. Strategies to engineer tendon/ligament-to-bone interface: biomaterials, cells and growth factors. Adv Drug Deliv Rev. 2015;94:126–40.

    Article  CAS  PubMed  Google Scholar 

  67. Steffens D, Braghirolli DI, Maurmann N, Pranke P. Update on the main use of biomaterials and techniques associated with tissue engineering. Drug Discov Today. 2018;23(8):1474–88.

    Article  CAS  PubMed  Google Scholar 

  68. Al Haddad E, LaPar DJ, Dayton J, Stephens EH, Bacha E. Complete atrioventricular canal repair with a decellularized porcine small intestinal submucosa patch. Congenit Heart Dis. 2018;13(6):997–1004.

    Article  PubMed  Google Scholar 

  69. Zhou H, et al. Feasibility of repairing full-thickness skin defects by iPSC-derived epithelial stem cells seeded on a human acellular amniotic membrane. Stem Cell Res Ther. 2019;10(1):155.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Zhang Z, et al. Amniotic membrane-derived stem cells help repair osteochondral defect in a weight-bearing area in rabbits. Exp Ther Med. 2017;14(1):187–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. A. D, C. D, C. G, Mesenchymal stem cells seeded on a human amniotic membrane improve liver regeneration and mouse survival after extended hepatectomy.

    Google Scholar 

  72. Andree B, Bar A, Haverich A, Hilfiker A. Small intestinal submucosa segments as matrix for tissue engineering: review. Tissue Eng. 2013;19(4):279–91.

    Article  CAS  Google Scholar 

  73. Wang W, Zhang X, Chao NN, Qin TW, Ding W, Zhang Y, Sang JW, Luo JC. Preparation and characterization of pro-angiogenic gel derived from small intestinal submucosa. Acta Biomater. 2016;29:135–48.

    Article  CAS  PubMed  Google Scholar 

  74. Shi L, et al. Biochemical and biomechanical characterization of porcine small intestinal submucosa (SIS): a mini review. Int J Burn Trauma. 2013;3(4):173–9.

    Google Scholar 

  75. Zhang X, Fang Z, Cho E, Huang K, Zhao J, Jiang J, Huangfu X. Use of a novel, reinforced, low immunogenic, porcine small intestine submucosa patch to repair a supraspinatus tendon defect in a rabbit model. Biomed Res Int. 2019;2019:9346567.

    PubMed  PubMed Central  Google Scholar 

  76. Tottey S, Johnson SA, Crapo PM, Reing JE, Zhang L, Jiang H, Medberry CJ, Reines B, Badylak SF. The effect of source animal age upon extracellular matrix scaffold properties. Biomaterials. 2011;32(1):128–36.

    Article  CAS  PubMed  Google Scholar 

  77. Gilbert TW, Stewart-Akers AM, Badylak SF. A quantitative method for evaluating the degradation of biologic scaffold materials. Biomaterials. 2007;28(2):147–50.

    Article  CAS  PubMed  Google Scholar 

  78. Carey LE, Dearth CL, Johnson SA, Londono R, Medberry CJ, Daly KA, Badylak SF. In vivo degradation of 14C-labeled porcine dermis biologic scaffold. Biomaterials. 2014;35(29):8297–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Gilbert TW, Stewart-Akers AM, Simmons-Byrd A, Badylak SF. Degradation and remodeling of small intestinal submucosa in canine Achilles tendon repair. J Bone Joint Surg Am. 2007;89(3):621–30.

    Article  PubMed  Google Scholar 

  80. Liang X, Zhang L, Lv Y. Treatment of total pelvic organ prolapse using a whole biological patch: a pilot study of 17 patients. J Obstet Gynaecol Res. 2017;43(1):164–72.

    Article  PubMed  Google Scholar 

  81. Xia D, Yang Q, Fung KM, Towner RA, Smith N, Saunders D, Greenwood-Van Meerveld B, Kropp BP, Madihally SV, Lin HK. Immunomodulatory response of layered small intestinal submucosa in a rat bladder regeneration model. J Biomed Mater Res B Appl Biomater. 2018;107(6):1960–9.

    Article  PubMed  Google Scholar 

  82. Xu Q, Chen C, Xu Z, Chen F, Yu Y, Hong X, Xu S, Chen J, Ding Q, Chen H. Ureteral reconstruction with decellularized small intestinal submucosa matrix for ureteral stricture: a preliminary report of two cases. Asian J Urol. 2020;7(1):51–5.

    Article  PubMed  Google Scholar 

  83. Tan B, Wang M, Chen X, Hou J, Chen X, Wang Y, Li-Ling J, Xie H. Tissue engineered esophagus by copper—small intestinal submucosa graft for esophageal repair in a canine model. Sci China Life Sci. 2014;57(2):248–55.

    Article  CAS  PubMed  Google Scholar 

  84. Rosen M, Roselli EE, Faber C, Ratliff NB, Ponsky JL, Nicholas M, Smedira G. Small intestinal submucosa intracardiac patch: an experimental study. Surg Innov. 2005;12:227–31.

    Article  PubMed  Google Scholar 

  85. Woo JS, Fishbein MC, Reemtsen B. Histologic examination of decellularized porcine intestinal submucosa extracellular matrix (CorMatrix) in pediatric congenital heart surgery. Cardiovasc Pathol. 2016;25(1):12–7.

    Article  CAS  PubMed  Google Scholar 

  86. Barachetti L, Zanni M, Stefanello D, Rampazzo A. Use of four- layer porcine small intestinal submucosa alone as a scaffold for the treatment of deep corneal defects in dogs and cats: preliminary results. Vet Rec. 2019;186(19):e28.

    Google Scholar 

  87. Wang S, Wu W, Liu Y, Wang X, Tang L, You P, Han J, Li B, Zhang Y, Wang M. Bone augmentation of peri-implant dehiscence defects using multilaminated small intestinal submucosa as a barrier membrane: an experimental study in dogs. Biomed Res Int. 2019;2019:8962730.

    PubMed  PubMed Central  Google Scholar 

  88. Wang Z-L, Wu S-Z, Li Z-F, Guo J-H, Zhang Y, Pi J-K, Hu J-G, Yang X-J, Huang F-G, Xie H-Q. Comparison of small intestinal submucosa and polypropylene mesh for abdominal wall defect repair. J Biomater Sci Polym Ed. 2018;29(6):663–82.

    Article  CAS  PubMed  Google Scholar 

  89. Franklin M, Russek K. Use of porcine small intestine submucosa as a prosthetic material for laparoscopic hernia repair in infected and potentially contaminated fields: long-term follow-up assessment. Surg Endosc. 2010;25(5):1693–4.

    Article  Google Scholar 

  90. Weber SS, Annenberg AJ, Wright CB, Braverman TS, Mesh CL. Early pseudoaneurysm degeneration in biologic extracellular matrix patch for carotid repair. J Vasc Surg. 2014;59(4):1116–8.

    Article  PubMed  Google Scholar 

  91. Ayyildiz A, Akgul KT, Huri E, Nuhoglu B, Kilicoglu B, Ustun H, Gurdal M, Germiyanoglu C. Use of porcine small intestinal submucosa in bladder augmentation in rabbit: long-term histological outcome. ANZ J Surg. 2008;78(1-2):82–6.

    Article  PubMed  Google Scholar 

  92. Korwar V, Adjepong S, Pattar J, Sigurdsson A. Biological mesh repair of paraesophageal hernia: an analysis of our outcomes. J Laparoendosc Adv Surg Tech A. 2019;29(11):1446–50.

    Article  PubMed  Google Scholar 

  93. Chang CG, Thackeray L. Laparoscopic hiatal hernia repair in 221 patients: outcomes and experience. JSLS. 2016;20(1):e2015.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Tan MY, Zhi W, Wei RQ, Huang YC, Zhou KP, Tan B, Deng L, Luo JC, Li XQ, Xie HQ, Yang ZM. Repair of infarcted myocardium using mesenchymal stem cell seeded small intestinal submucosa in rabbits. Biomaterials. 2009;30(19):3234–40.

    Article  CAS  PubMed  Google Scholar 

  95. Wang B, Zhang W, Shan CX, Liu S, Jiang ZG, Qiu M. Long-term outcomes of cruroplasty reinforcement with composite versus biologic mesh for gastroesophageal reflux disease. Surg Endosc. 2016;30(7):2865–72.

    Article  PubMed  Google Scholar 

  96. Wang M, Li Y-Q, Cao J, Gong M, Zhang Y, Chen X, Tian M-X, Xie H-Q. Accelerating effects of genipin-crosslinked small intestinal submucosa for defected gastric mucosa repair. J Mater Chem B. 2017;5(34):7059–71.

    Article  CAS  PubMed  Google Scholar 

  97. Dai X, Xu Q. Nanostructured substrate fabricated by sectioning tendon using a microtome for tissue engineering. Nanotechnology. 2011;22(49):494008.

    Article  PubMed  Google Scholar 

  98. Dai X, Schalek R, Xu Q. Staining and etching: a simple method to fabricate inorganic nanostructures from tissue slices. Adv Mater. 2012;24(3):370–4.

    Article  CAS  PubMed  Google Scholar 

  99. Burk J, Erbe I, Berner D, Kacza J, Kasper C, Pfeiffer B, Winter K, Brehm W. Freeze-thaw cycles enhance decellularization of large tendons. Tissue Eng. 2014;20(4):276–84.

    Article  CAS  Google Scholar 

  100. Ning LJ, Zhang Y, Chen XH, Luo JC, Li XQ, Yang ZM, Qin TW. Preparation and characterization of decellularized tendon slices for tendon tissue engineering. J Biomed Mater Res A. 2012;100(6):1448–56.

    Article  PubMed  Google Scholar 

  101. Deeken CR, White AK, Bachman SL, Ramshaw BJ, Cleveland DS, Loy TS, Grant SA. Method of preparing a decellularized porcine tendon using tributyl phosphate. J Biomed Mater Res B Appl Biomater. 2011;96(2):199–206.

    Article  CAS  PubMed  Google Scholar 

  102. Tong WY, Shen W, Yeung CW, Zhao Y, Cheng SH, Chu PK, Chan D, Chan GC, Cheung KM, Yeung KW, Lam YW. Functional replication of the tendon tissue microenvironment by a bioimprinted substrate and the support of tenocytic differentiation of mesenchymal stem cells. Biomaterials. 2012;33(31):7686–98.

    Article  CAS  PubMed  Google Scholar 

  103. Alberti KA, Xu Q. Slicing, stacking and rolling: fabrication of nanostructured collagen constructs from tendon sections. Adv Healthc Mater. 2013;2(6):817–21.

    Article  CAS  PubMed  Google Scholar 

  104. Qin TW, Chen Q, Sun YL, Steinmann SP, Amadio PC, An KN, Zhao C. Mechanical characteristics of native tendon slices for tissue engineering scaffold. J Biomed Mater Res B Appl Biomater. 2012;100(3):752–8.

    Article  PubMed  PubMed Central  Google Scholar 

  105. The utilization of decellularized tendon slices to provide an inductive microenvironment for the proliferation and tenogenic differentiation of stem cells.

    Google Scholar 

  106. Qin TW, Sun YL, Thoreson AR, Steinmann SP, Amadio PC, An KN, Zhao C. Effect of mechanical stimulation on bone marrow stromal cell-seeded tendon slice constructs: a potential engineered tendon patch for rotator cuff repair. Biomaterials. 2015;51:43–50.

    Article  CAS  PubMed  Google Scholar 

  107. Omae H, Zhao C, Sun YL, An KN, Amadio PC. Multilayer tendon slices seeded with bone marrow stromal cells: a novel composite for tendon engineering. J Orthop Res. 2009;27(7):937–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Alberti KA, Sun JY, Illeperuma WR, Suo Z, Xu Q. Laminar tendon composites with enhanced mechanical properties. J Mater Sci. 2015;50(6):2616–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Wang F, Maeda Y, Zachar V, Ansari T, Emmersen J. Regeneration of the oesophageal muscle layer from oesophagus acellular matrix scaffold using adipose-derived stem cells. Biochem Biophys Res Commun. 2018;503(1):271–7.

    Article  CAS  PubMed  Google Scholar 

  110. Rothrauff BB, Tuan RS. Decellularized bone extracellular matrix in skeletal tissue engineering. Biochem Soc Trans. 2020;48(3):755–64.

    Article  CAS  PubMed  Google Scholar 

  111. Carriel V, Alaminos M, Garzon I, Campos A, Cornelissen M. Tissue engineering of the peripheral nervous system. Expert Rev Neurother. 2014;14(3):301–18.

    Article  CAS  PubMed  Google Scholar 

  112. Kubiak CA, Kung TA, Brown DL, Cederna PS, Kemp SWP. State-of-the-art techniques in treating peripheral nerve injury. Plast Reconstr Surg. 2018;141(3):702–10.

    Article  CAS  PubMed  Google Scholar 

  113. Lin T, Liu S, Chen S, Qiu S, Rao Z, Liu J, Zhu S, Yan L, Mao H, Zhu Q, Quan D, Liu X. Hydrogel derived from porcine decellularized nerve tissue as a promising biomaterial for repairing peripheral nerve defects. Acta Biomater. 2018;73:326–38.

    Article  CAS  PubMed  Google Scholar 

  114. Kasper M, Deister C, Beck F, Schmidt CE. Bench-to-bedside lessons learned: commercialization of an acellular nerve graft. Adv Healthc Mater. 2020;9(16):e2000174.

    Article  PubMed  Google Scholar 

  115. Shin YH, Park SY, Kim JK. Comparison of systematically combined detergent and nuclease-based decellularization methods for acellular nerve graft: an ex vivo characterization and in vivo evaluation. J Tissue Eng Regen Med. 2019;13(7):1241–52.

    CAS  PubMed  Google Scholar 

  116. Neubauer D, Graham JB, Muir D. Chondroitinase treatment increases the effective length of acellular nerve grafts. Exp Neurol. 2007;207(1):163–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Buckenmeyer MJ, Meder TJ, Prest TA, Brown BN. Decellularization techniques and their applications for the repair and regeneration of the nervous system. Methods. 2020;171:41–61.

    Article  CAS  PubMed  Google Scholar 

  118. Wieringa PA, Goncalves de Pinho AR, Micera S, van Wezel RJA, Moroni L. Biomimetic architectures for peripheral nerve repair: a review of biofabrication strategies. Adv Healthc Mater. 2018;7(8):e1701164.

    Article  PubMed  Google Scholar 

  119. Sun M, Wang X, Zhao B. Quality estimation and influence factors of the larger chemically acellular nerve allografts in vitro. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2006;20(8):779–82.

    PubMed  Google Scholar 

  120. Philips C, Cornelissen M, Carriel V. Evaluation methods as quality control in the generation of decellularized peripheral nerve allografts. J Neural Eng. 2018;15(2):021003.

    Article  PubMed  Google Scholar 

  121. Cornelison RC, Wellman SM, Park JH, Porvasnik SL, Song YH, Wachs RA, Schmidt CE. Development of an apoptosis-assisted decellularization method for maximal preservation of nerve tissue structure. Acta Biomater. 2018;77:116–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Kubek T, Ghalib N, Dubovy P. Endoneurial extracellular matrix influences regeneration and maturation of motor nerve axons--a model of acellular nerve graft. Neurosci Lett. 2011;496(2):75–9.

    Article  CAS  PubMed  Google Scholar 

  123. He B, Zhu Q, Chai Y, Ding X, Tang J, Gu L, Xiang J, Yang Y, Zhu J, Liu X. Safety and efficacy evaluation of a human acellular nerve graft as a digital nerve scaffold: a prospective, multicentre controlled clinical trial. J Tissue Eng Regen Med. 2015;9(3):286–95.

    Article  CAS  PubMed  Google Scholar 

  124. Wang D, Liu XL, Zhu JK, Hu J, Jiang L, Zhang Y, Yang LM, Wang HG, Zhu QT, Yi JH, Xi TF. Repairing large radial nerve defects by acellular nerve allografts seeded with autologous bone marrow stromal cells in a monkey model. J Neurotrauma. 2010;27(10):1935–43.

    Article  PubMed  Google Scholar 

  125. Wang D, Liu XL, Zhu JK, Jiang L, Hu J, Zhang Y, Yang LM, Wang HG, Yi JH. Bridging small-gap peripheral nerve defects using acellular nerve allograft implanted with autologous bone marrow stromal cells in primates. Brain Res. 2008;1188:44–53.

    Article  CAS  PubMed  Google Scholar 

  126. Borschel GH, Kia KF, Kuzon WM, Dennis RG. Mechanical properties of acellular peripheral nerve. J Surg Res. 2003;114(2):133–9.

    Article  PubMed  Google Scholar 

  127. Bulstra LF, Hundepool CA, Friedrich PF, Bishop AT, Hovius SER, Shin AY. Functional outcome after reconstruction of a long nerve gap in rabbits using optimized decellularized nerve allografts. Plast Reconstr Surg. 2020;145(6):1442–50.

    Article  CAS  PubMed  Google Scholar 

  128. Farber SJ, Hoben GM, Hunter DA, Yan Y, Johnson PJ, Mackinnon SE, Wood MD. Vascularization is delayed in long nerve constructs compared with nerve grafts. Muscle Nerve. 2016;54(2):319–21.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Brooks DN, Weber RV, Chao JD, Rinker BD, Zoldos J, Robichaux MR, Ruggeri SB, Anderson KA, Bonatz EE, Wisotsky SM, Cho MS, Wilson C, Cooper EO, Ingari JV, Safa B, Parrett BM, Buncke GM. Processed nerve allografts for peripheral nerve reconstruction: a multicenter study of utilization and outcomes in sensory, mixed, and motor nerve reconstructions. Microsurgery. 2012;32(1):1–14.

    Article  PubMed  Google Scholar 

  130. Moore AM, MacEwan M, Santosa KB, Chenard KE, Ray WZ, Hunter DA, Mackinnon SE, Johnson PJ. Acellular nerve allografts in peripheral nerve regeneration: a comparative study. Muscle Nerve. 2011;44(2):221–34.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Pan D, Hunter DA, Schellhardt L, Jo S, Santosa KB, Larson EL, Fuchs AG, Snyder-Warwick AK, Mackinnon SE, Wood MD. The accumulation of T cells within acellular nerve allografts is length-dependent and critical for nerve regeneration. Exp Neurol. 2019;318:216–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Hoben GM, Ee X, Schellhardt L, Yan Y, Hunter DA, Moore AM, Snyder-Warwick AK, Stewart S, Mackinnon SE, Wood MD. Increasing nerve autograft length increases senescence and reduces regeneration. Plast Reconstr Surg. 2018;142(4):952–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Wang ZZ, Sakiyama-Elbert SE. Matrices, scaffolds & carriers for cell delivery in nerve regeneration. Exp Neurol. 2019;319:112837.

    Article  CAS  PubMed  Google Scholar 

  134. Joung D, Lavoie NS, Guo SZ, Park SH, Parr AM, McAlpine MC. 3D printed neural regeneration devices. Adv Funct Mater. 2020;30(1):1906237.

    Article  CAS  Google Scholar 

  135. Yu T, Wen L, He J, Xu Y, Li T, Wang W, Ma Y, Ahmad MA, Tian X, Fan J, Wang X, Hagiwara H, Ao Q. Fabrication and evaluation of an optimized acellular nerve allograft with multiple axial channels. Acta Biomater. 2020;115:235–49.

    Article  CAS  PubMed  Google Scholar 

  136. Zang M, Zhang Q, Chang EI, Mathur AB, Yu P. Decellularized tracheal matrix scaffold for tissue engineering. Plast Reconstr Surg. 2012;130(3):532–40.

    Article  CAS  PubMed  Google Scholar 

  137. Zang M, Zhang Q, Chang EI, Mathur AB, Yu P. Decellularized tracheal matrix scaffold for tracheal tissue engineering: in vivo host response. Plast Reconstr Surg. 2013;132(4):549e–59e.

    Article  CAS  PubMed  Google Scholar 

  138. Dodson A, Bellini S, Parnigotto PP, Dickinson SC, Hollander AP, Mantero S, Conconi MT, Birchall MA. Clinical transplantation of a tissue-engineered airway. Lancet. 2008;372(9655):2023–30.

    Article  PubMed  Google Scholar 

  139. Otti AG, Jaus MO, Barale SBD, Comin C, Lavorini F, Fontana G, Sibila O, Rombola G, Jungebluth P, Macchiarini P. The first tissueengineered airway transplantation: 5-year follow-up results. Lancet. 2014;383(9913):238–44.

    Article  Google Scholar 

  140. Elliott MJ, Coppi PD, Speggiorin S, Roebuck D, et al. Stem-cell-based, tissue engineered tracheal replacement in a child: a 2-year follow-up study. Lancet. 2012;380(9846):994–1000.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Hamilton NJ, Kanani M, Roebuck DJ, Hewitt RJ, Cetto R, Culme-Seymour EJ, Toll E, Bates AJ, Comerford AP, McLaren CA, Butler CR, Crowley C, McIntyre D, Sebire NJ, Janes SM, O'Callaghan C, Mason C, De Coppi P, Lowdell MW, Elliott MJ, Birchall MA. Tissue-engineered tracheal replacement in a child: a 4-year follow-up study. Am J Transplant. 2015;15(10):2750–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Lee M, Chang PC, Dunn JC. Evaluation of small intestinal submucosa as scaffolds for intestinal tissue engineering. J Surg Res. 2008;147(2):168–71.

    Article  CAS  PubMed  Google Scholar 

  143. Pavcnik D, Obermiller J, Uchida BT, Van Alstine W, Edwards JM, Landry GJ, Kaufman JA, Keller FS, Rosch J. Angiographic evaluation of carotid artery grafting with prefabricated small-diameter, small-intestinal submucosa grafts in sheep. Cardiovasc Intervent Radiol. 2009;32(1):106–13.

    Article  PubMed  Google Scholar 

  144. Zafar F, Hinton RB, Moore RA, Baker RS, Bryant R, Narmoneva DA, Taylor MD, Morales DL. Physiological growth, remodeling potential, and preserved function of a novel bioprosthetic tricuspid valve: tubular bioprosthesis made of small intestinal submucosa-derived extracellular matrix. J Am Coll Cardiol. 2015;66(8):877–88.

    Article  PubMed  Google Scholar 

  145. Syed O, Walters NJ, Day RM, Kim HW, Knowles JC. Evaluation of decellularization protocols for production of tubular small intestine submucosa scaffolds for use in oesophageal tissue engineering. Acta Biomater. 2014;10(12):5043–54.

    Article  CAS  PubMed  Google Scholar 

  146. Liu Y, Ma W, Liu B, Wang Y, Chu J, Xiong G, Shen L, Long C, Lin T, He D, Butnaru D, Alexey L, Zhang Y, Zhang D, Wei G. Urethral reconstruction with autologous urine-derived stem cells seeded in three-dimensional porous small intestinal submucosa in a rabbit model. Stem Cell Res Ther. 2017;8(1):63.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Fan MR, Gong M, Da LC, Bai L, Li XQ, Chen KF, Li-Ling J, Yang ZM, Xie HQ. Tissue engineered esophagus scaffold constructed with porcine small intestinal submucosa and synthetic polymers. Biomed Mater. 2014;9(1):015012.

    Article  PubMed  Google Scholar 

  148. Brunello G, Sivolella S, Meneghello R, Ferroni L, Gardin C, Piattelli A, Zavan B, Bressan E. Powder-based 3D printing for bone tissue engineering. Biotechnol Adv. 2016;34:740–53.

    Article  CAS  PubMed  Google Scholar 

  149. Ahmed M, Ffrench-Constant C. Extracellular matrix regulation of stem cell behavior. Curr Stem Cell Rep. 2016;2(3):197–206.

    Article  PubMed  PubMed Central  Google Scholar 

  150. Bloom JP, Ott HC. Regenerative medicine applications in organ transplantation. Ann Surg. 2015;262(6):1166.

    Article  Google Scholar 

  151. Londono R, Badylak SF. Biologic scaffolds for regenerative medicine: mechanisms of in vivo remodeling. Ann Biomed Eng. 2015;43(3):577–92.

    Article  PubMed  Google Scholar 

  152. Visscher DO, Bos EJ, Peeters M, Kuzmin NV, Groot ML, Helder MN, van Zuijlen PPM. Cartilage tissue engineering: preventing tissue scaffold contraction using a 3D-printed polymeric cage. Tissue Eng Part C Methods. 2016;22(6):573–84.

    Article  CAS  PubMed  Google Scholar 

  153. Reing JE, Brown BN, Daly KA, Freund JM, Gilbert TW, Hsiong SX, Huber A, Kullas KE, Tottey S, Wolf MT, Badylak SF. The effects of processing methods upon mechanical and biologic properties of porcine dermal extracellular matrix scaffolds. Biomaterials. 2010;31(33):8626–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Badylak SF, Freytes DO, Gilbert TW. Reprint of: Extracellular matrix as a biological scaffold material: Structure and function. Acta Biomater. 2015;23(Suppl):S17–26.

    Article  PubMed  Google Scholar 

  155. Edgar L, Altamimi A, Garcia Sanchez M, Tamburrinia R, Asthana A, Gazia C, Orlando G. Utility of extracellular matrix powders in tissue engineering. Organogenesis. 2018;14(4):172–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Gilbert TW, Stolz DB, Biancaniello F, Simmons-Byrd A, Badylak SF. Production and characterization of ECM powder: implications for tissue engineering applications. Biomaterials. 2005;26(12):1431–5.

    Article  CAS  PubMed  Google Scholar 

  157. Valentin JE, Badylak JS, McCabe GP, Badylak SF. Extracellular matrix bioscaffolds for orthopaedic applications - a comparative histologic study. J Bone Joint Surg. 2006;88A(12):2673–86.

    Article  Google Scholar 

  158. Badylak SF, Valentin JE, Ravindra AK, McCabe GP, Stewart-Akers AM. Macrophage phenotype as a determinant of biologic scaffold remodeling. Tissue Eng A. 2008;14(11):1835–42.

    Article  CAS  Google Scholar 

  159. Jakus AE, Laronda MM, Rashedi AS, Robinson CM, Lee C, Jordan SW, Orwig KE, Woodruff TK, Shah RN. “Tissue papers” from organ-specific decellularized extracellular matrices. Adv Funct Mater. 2017;27(34):1700992.

    Article  PubMed  PubMed Central  Google Scholar 

  160. Yoon H, Kim G. Micro/nanofibrous scaffolds electrospun from PCL and small intestinal submucosa. J Biomater Sci Polym Ed. 2010;21(5):553–62.

    Article  CAS  PubMed  Google Scholar 

  161. Da L, Gong M, Chen A, Zhang Y, Huang Y, Guo Z, Li S, Li-Ling J, Zhang L, Xie H. Composite elastomeric polyurethane scaffolds incorporating small intestinal submucosa for soft tissue engineering. Acta Biomater. 2017;59:45–57.

    Article  CAS  PubMed  Google Scholar 

  162. Barber D, Keuter J, Kravig K. A logical stepwise approach to laser diffraction particle size distribution analysis methods development and validation. Pharm Dev Technol. 1998;3(2):153.

    Article  CAS  PubMed  Google Scholar 

  163. Kleinebudde P, Jumaa M, Saleh FE. Influence of degree of polymerization on behavior of cellulose during homogenization and extrusion/spheronization. AAPS PharmSci. 2000;2(3):18–27.

    Article  PubMed Central  Google Scholar 

  164. Chang CH, Chen CC, Liao CH, Lin FH, Hsu YM, Fang HW. Human acellular cartilage matrix powders as a biological scaffold for cartilage tissue engineering with synovium-derived mesenchymal stem cells. J Biomed Mater Res A. 2014;102(7):2248–57.

    Article  PubMed  Google Scholar 

  165. Almeida HV, Cunniffe GM, Vinardell T, Buckley CT, O’Brien FJ, Kelly DJ. Coupling freshly isolated CD44(+) infrapatellar fat pad-derived stromal cells with a TGF-β3 eluting cartilage ECM-derived scaffold as a single-stage strategy for promoting chondrogenesis. Adv Healthc Mater. 2015;4:1043–53.

    Article  CAS  PubMed  Google Scholar 

  166. Wolf MT, Daly KA, Brennan-Pierce EP, Johnson SA, Carruthers CA, D’Amore A, Nagarkar SP, Velankar SS, Badylak SF. A hydrogel derived from decellularized dermal extracellular matrix. Biomaterials. 2012;33(29):7028–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Thitiset T, Damrongsakkul S, Bunaprasert T, Leeanansaksiri W, Honsawek S. Development of collagen/demineralized bone powder scaffolds and periosteum-derived cells for bone tissue engineering application. Int J Mol Sci. 2013;14(1):2056–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Almeida HV, Eswaramoorthy R, Cunniffe GM, Buckley CT, O'Brien FJ, Kelly D. Fibrin hydrogels functionalized with cartilage extracellular matrix and incorporating freshly isolated stromal cells as an injectable for cartilage regeneration. Acta Biomater. 2016;36:55–62.

    Article  CAS  PubMed  Google Scholar 

  169. Haibin Z, Daizhi P, Bixiang Z, Xiaoling L, Yong W, Lihua W, Xin Z, Jing L. Regeneration of mature dermis by transplanted particulate acellular dermal matrix in a rat model of skin defect wound. J Mater Sci Mater Med. 2012;23(12):2933–44.

    Article  Google Scholar 

  170. Seif-Naraghi S, Singelyn J, Dequach J, Schup-Magoffin P, Christman K. Fabrication of biologically derived injectable materials for myocardial tissue engineering. J Vis Exp. 2010;46:2109.

    Google Scholar 

  171. Cha PF, Gao JH, Chen Y, Lu F. Construction of scaffold with human extracellular matrix from adipose tissue. Chin J Plast Surg. 2012;28(1):55.

    Google Scholar 

  172. Electrospun micro/nanofibrous conduits composed of poly(e-caprolactone) and small intestine submucosa powder for nerve tissue regeneration.

    Google Scholar 

  173. Ghuman H, Gerwig M, Nicholls FJ, Liu JR, Donnelly J, Badylak SF, Modo M. Long-term retention of ECM hydrogel after implantation into a sub-acute stroke cavity reduces lesion volume. Acta Biomater. 2017;63:50–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Edgar L, Pu T, Porter B, Aziz JM, La Pointe C, Asthana A, Orlando G. Regenerative medicine, organ bioengineering and transplantation. Br J Surg. 2020;107(7):793–800.

    Article  CAS  PubMed  Google Scholar 

  175. Minae A, Kihwan K, Junbeom P, Dong-Ryeol R, Jung AS, Jihee Lee K, Ji Ha C, Eun-Mi P, Kyung Eun L, Minna W, Minsuk K. Extracellular matrix-derived extracellular vesicles promote cardiomyocyte growth and electrical activity in engineered cardiac atria. Biomaterials. 2017;146:49–59.

    Article  Google Scholar 

  176. Dearth CL, Keane TJ, Carruthers CA, Reing JE, Huleihel L, Ranallo CA, Kollar EW, Badylak SF. The effect of terminal sterilization on the material properties and in vivo remodeling of a porcine dermal biologic scaffold. Acta Biomater. 2016;33:78–87.

    Article  CAS  PubMed  Google Scholar 

  177. Benedikt LP, Gabriel SP, Braden CF, Jakob TS, Joshua K, Michael LH, Martha MM. Effect of low-temperature ethylene oxide and electron beam sterilization on the in vitro and in vivo function of reconstituted extracellular matrix-derived scaffolds. J Biomater Appl. 2015;30:435–49.

    Article  Google Scholar 

  178. Andrea MM, Peter SM. The effect of terminal sterilization on structural and biophysical properties of a decellularized collagen-based scaffold; implications for stem cell adhesion. J Biomed Mater Res B Appl Biomater. 2014;103(2):397–406.

    Google Scholar 

  179. Lauren E, Kyle MN, Theresa W, Riccardo T, Ravi K, Giuseppe O. Heterogeneity of scaffold biomaterials in tissue engineering. Materials. 2016;9(5):332.

    Article  Google Scholar 

  180. Beck EC, Barragan M, Tadros MH, Gehrke SH, Detamore MS. Approaching the compressive modulus of articular cartilage with a decellularized cartilage-based hydrogel. Acta Biomater. 2016;38:94–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Parenteau-Bareil R, Gauvin R, Berthod F. Collagen-based biomaterials for tissue engineering applications. Materials. 2010;3(3):1863–87.

    Article  CAS  PubMed Central  Google Scholar 

  182. Choi JS, Yang H-J, Kim BS, Kim JD, Kim JY, Yoo B, Park K, Lee HY, Cho YW. Human extracellular matrix (ECM) powders for injectable cell delivery and adipose tissue engineering. J Control Release. 2009;139(1):2–7.

    Article  CAS  PubMed  Google Scholar 

  183. Fong AH, Romero-Lopez M, Heylman CM, Keating M, Tran D, Sobrino A, Tran AQ, Pham HH, Fimbres C, Gershon PD, Botvinick EL, George SC, Hughes CCW. Three-dimensional adult cardiac extracellular matrix promotes maturation of human induced pluripotent stem cell-derived cardiomyocytes. Tissue Eng A. 2016;22(15-16):1016–25.

    Article  CAS  Google Scholar 

  184. Zhang Y, He Y, Bharadwaj S, Hammam N, Carnagey K, Myers R, Atala A, Van Dyke M. Tissue-specific extracellular matrix coatings for the promotion of cell proliferation and maintenance of cell phenotype. Biomaterials. 2009;30(23-24):4021–8.

    Article  CAS  PubMed  Google Scholar 

  185. Yin H, Wang Y, Sun Z, Sun X, Xu Y, Li P, Meng H, Yu X, Xiao B, Fan T. Induction of mesenchymal stem cell chondrogenic differentiation and functional cartilage microtissue formation for in vivo cartilage regeneration by cartilage extracellular matrix-derived particles. Acta Biomater. 2016;33:96–109.

    Article  CAS  PubMed  Google Scholar 

  186. Garg T, Singh O, Arora S, Murthy RSR. Scaffold: a novel carrier for cell and drug delivery. Crit Rev Ther Drug Carrier Syst. 2012;29(1):1–63.

    Article  CAS  PubMed  Google Scholar 

  187. Kwon JS, Yoon SM, Shim SW, Park JH, Min KJ, Oh HJ, Kim JH, Kim YJ, Yoon JJ, Choi BH. Injectable extracellular matrix hydrogel developed using porcine articular cartilage. Int J Pharm. 2013;454(1):183–91.

    Article  CAS  PubMed  Google Scholar 

  188. Kim HJ, Lee S, Yun H-W, Yin XY, Kim SH, Choi BH, Kim YJ, Kim MS, Min B-H. In vivo degradation profile of porcine cartilage-derived extracellular matrix powder scaffolds using a non-invasive fluorescence imaging method. J Biomater Sci. 2016;27(2):177–90.

    Article  CAS  Google Scholar 

  189. Madler S, Bich C, Touboul D, Zenobi R. Chemical cross-linking with NHS esters: a systematic study on amino acid reactivities. J Mass Spectrom. 2009;44(5):694–706.

    Article  CAS  PubMed  Google Scholar 

  190. Wolf MT, Carruthers CA, Dearth CL, Crapo PM, Huber A, Burnsed OA, Londono R, Johnson SA, Daly KA, Stahl EC, Freund JM, Medberry CJ, Carey LE, Nieponice A, Amoroso NJ, Badylak SF. Polypropylene surgical mesh coated with extracellular matrix mitigates the host foreign body response. J Biomed Mater Res A. 2014;102(1):234–46.

    Article  PubMed  Google Scholar 

  191. Faulk DM, Londono R, Wolf MT, Ranallo CA, Carruthers CA, Wildemann JD, Dearth CL, Badylak SF. ECM hydrogel coating mitigates the chronic inflammatory response to polypropylene mesh. Biomaterials. 2014;35(30):8585–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Debels H, Gerrand YW, Poon CJ, Abberton KM, Morrison WA, Mitchell GM. An adipogenic gel for surgical reconstruction of the subcutaneous fat layer in a rat model. J Tissue Eng Regen Med. 2017;11(4):1230–41.

    Article  CAS  PubMed  Google Scholar 

  193. Lee SJ, Lee IW, Lee YM, Lee HB, Khang G. Macroporous biodegradable natural/synthetic hybrid scaffolds as small intestine submucosa impregnated poly(D,L-lactide-co-glycolide) for tissue-engineered bone. J Biomater Sci Polym Ed. 2004;15(8):1003–17.

    Article  CAS  PubMed  Google Scholar 

  194. Wang B, Lv X, Li Z, Zhang M, Yao J, Sheng N, Lu M, Wang H, Chen S. Urethra-inspired biomimetic scaffold: a therapeutic strategy to promote angiogenesis for urethral regeneration in a rabbit model. Acta Biomater. 2020;102:247–58.

    Article  CAS  PubMed  Google Scholar 

  195. Kim SH, Song JE, Lee D, Khang G. Development of poly(lactide-co-glycolide) scaffold-impregnated small intestinal submucosa with pores that stimulate extracellular matrix production in disc regeneration. J Tissue Eng Regen Med. 2014;8(4):279–90.

    Article  CAS  PubMed  Google Scholar 

  196. Kang X, Zhao Z, Wu X, Shen Q, Wang Z, Kang Y, Xing Z, Zhang T. Experimental study on chitosan/allogeneic bone powder composite porous scaffold to repair bone defects in rats. Chin J Reparat Reconstruct Surg. 2016;30(3):298–302.

    CAS  Google Scholar 

  197. Lei X, Gao J, Xing F, Zhang Y, Ma Y, Zhang G. Comparative evaluation of the physicochemical properties of nano-hydroxyapatite/collagen and natural bone ceramic/collagen scaffolds and their osteogenesis-promoting effect on MC3T3-E1 cells. Regenerat Biomater. 2019;6(6):361–71.

    Article  CAS  Google Scholar 

  198. Gao G, Cui X. Three-dimensional bioprinting in tissue engineering and regenerative medicine. Biotechnol Lett. 2016;38(2):203–11.

    Article  CAS  PubMed  Google Scholar 

  199. Alhnan MA, Okwuosa TC, Sadia M, Wan K-W, Ahmed W, Arafat B. Emergence of 3D printed dosage forms: opportunities and challenges. Pharm Res. 2016;33(8):1817–32.

    Article  CAS  PubMed  Google Scholar 

  200. Pati F, Jang J, Ha D-H, Kim SW, Rhie J-W, Shim J-H, Kim D-H, Cho D-W. Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat Commun. 2014;5:3935.

    Article  CAS  PubMed  Google Scholar 

  201. Chaudhary C, Garg T. Scaffolds: a novel carrier and potential wound healer. Crit Rev Ther Drug Carrier Syst. 2015;32(4):277–321.

    Article  PubMed  Google Scholar 

  202. Turner NJ, Yates AJ Jr, Weber DJ, Qureshi IR, Stolz DB, Gilbert TW, Badylak SF. Xenogeneic extracellular matrix as an inductive scaffold for regeneration of a functioning musculotendinous junction. Tissue Eng A. 2010;16(11):3309–17.

    Article  CAS  Google Scholar 

  203. Shooter GK, Van Lonkhuyzen DR, Croll TI, Cao Y, Xie Y, Broadbent JA, Stupar D, Lynam EC, Upton Z. A pre-clinical functional assessment of an acellular scaffold intended for the treatment of hard-to-heal wounds. Int Wound J. 2015;12(2):160–8.

    Article  PubMed  Google Scholar 

  204. Shin YS, Choi JW, Park J-K, Kim YS, Yang SS, Min B-H, Kim C-H. Tissue-engineered tracheal reconstruction using mesenchymal stem cells seeded on a porcine cartilage powder scaffold. Ann Biomed Eng. 2015;43(4):1003–13.

    Article  PubMed  Google Scholar 

  205. Han N, Yabroudi MA, Stearns-Reider K, Helkowski W, Sicari BM, Rubin JP, Badylak SF, Boninger ML, Ambrosio F. Electrodiagnostic evaluation of individuals implanted with extracellular matrix for the treatment of volumetric muscle injury: case series. Phys Ther. 2016;96(4):540–9.

    Article  PubMed  Google Scholar 

  206. Liu Y-CC, Chhabra N, Houser SM. Novel treatment of a septal ulceration using an extracellular matrix scaffold (septal ulceration treatment using ECM). Am J Otolaryngol. 2016;37(3):195–8.

    Article  CAS  PubMed  Google Scholar 

  207. Lev-Tov H, Li C-S, Dahle S, Isseroff RR. Cellular versus acellular matrix devices in treatment of diabetic foot ulcers: study protocol for a comparative efficacy randomized controlled trial. Trials. 2013;14:8.

    Article  PubMed  PubMed Central  Google Scholar 

  208. Rommer EA, Peric M, Wong A. Urinary bladder matrix for the treatment of recalcitrant nonhealing radiation wounds. Adv Skin Wound Care. 2013;26(10):450–5.

    Article  PubMed  Google Scholar 

  209. LeCheminant J, Field C. Porcine urinary bladder matrix: a retrospective study and establishment of protocol. J Wound Care. 2012;21(10):476–82.

    Article  CAS  PubMed  Google Scholar 

  210. Jia S, Zhang T, Xiong Z, Pan W, Liu J, Sun W. In vivo evaluation of a novel oriented scaffold-BMSC construct for enhancing full-thickness articular cartilage repair in a rabbit model. PLoS One. 2015;10(12):e0145667.

    Article  PubMed  PubMed Central  Google Scholar 

  211. Afaneh C, Abelson J, Schattner M, Janjigian YY, Ilson D, Yoon SS, Strong VE. Esophageal reinforcement with an extracellular scaffold during total gastrectomy for gastric cancer. Ann Surg Oncol. 2015;22(4):1252–7.

    Article  PubMed  Google Scholar 

  212. Martin Riganti J, Ciotola F, Amenabar A, Craiem D, Graf S, Badaloni A, Gilbert TW, Nieponice A. Urinary bladder matrix scaffolds strengthen esophageal hiatus repair. J Surg Res. 2016;204(2):344–50.

    Article  Google Scholar 

  213. Abu Saleh WK, Al Jabbari O, Bruckner BA, Reardon MJ. Case report: A rare case of left atrial hemangioma: surgical resection and reconstruction. Methodist Debakey Cardiovasc J. 2016;12(1):51–4.

    Article  PubMed  PubMed Central  Google Scholar 

  214. Abu Saleh WK, Al Jabbari O, Ramlawi B, Bruckner BA, Loebe M, Reardon MJ. Case report: Cardiac tumor resection and repair with porcine xenograft. Methodist Debakey Cardiovasc J. 2016;12(2):116–8.

    Article  PubMed  PubMed Central  Google Scholar 

  215. Abu Saleh WK, Al Jabbari O, Ramlawi B, Bruckner BA, Loebe M, Reardon MJ. Right atrial tumor resection and reconstruction with use of an acellular porcine bladder membrane. Tex Heart Inst J. 2016;43(2):175–7.

    Article  PubMed  PubMed Central  Google Scholar 

  216. Kruper GJ, Vandegriend ZP, Lin H-S, Zuliani GF. Salvage of failed local and regional flaps with porcine urinary bladder extracellular matrix aided tissue regeneration. Case Rep Otolaryngol. 2013;2013:917183.

    PubMed  PubMed Central  Google Scholar 

  217. Iorio T, Blumberg D. Short-term results of treating primary and recurrent anal fistulas with a novel extracellular matrix derived from porcine urinary bladder. Am Surg. 2015;81(5):498–502.

    Article  PubMed  Google Scholar 

  218. Dorman RM, Bass KD. Novel use of porcine urinary bladder matrix for pediatric pilonidal wound care: preliminary experience. Pediatr Surg Int. 2016;32(10):997–1002.

    Article  PubMed  Google Scholar 

  219. Frykberg RG, Cazzell SM, Arroyo-Rivera J, Tallis A, Reyzelman AM, Saba F, Warren L, Stouch BC, Gilbert TW. Evaluation of tissue engineering products for the management of neuropathic diabetic foot ulcers: an interim analysis. J Wound Care. 2016;25(7):S18–25.

    Article  CAS  PubMed  Google Scholar 

  220. Abaci A, Guvendiren M. Designing decellularized extracellular matrix-based bioinks for 3D bioprinting. Adv Healthc Mater. 2020;9:e2000734.

    Article  PubMed  Google Scholar 

  221. Ghorbani F, Li D, Ni S, Zhou Y, Yu B. 3D printing of acellular scaffolds for bone defect regeneration: a review. Mater Today Commun. 2020;22:100979.

    Article  CAS  Google Scholar 

  222. Farnebo S, Woon CYL, Schmitt T, Joubert L-M, Kim M, Hung P, Chang J. Design and characterization of an injectable tendon hydrogel: a novel scaffold for guided tissue regeneration in the musculoskeletal system. Tissue Eng A. 2014;20(9-10):1550–61.

    Article  CAS  Google Scholar 

  223. Wu J, Ding Q, Dutta A, Wang Y, Huang Y-H, Weng H, Tang L, Hong Y. An injectable extracellular matrix derived hydrogel for meniscus repair and regeneration. Acta Biomater. 2015;16:49–59.

    Article  CAS  PubMed  Google Scholar 

  224. Fu Y, Fan X, Tian C, Luo J, Zhang Y, Deng L, Qin T, Lv Q. Decellularization of porcine skeletal muscle extracellular matrix for the formulation of a matrix hydrogel: a preliminary study. J Cell Mol Med. 2016;20(4):740–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Response of endothelial cells to decellularized extracellular matrix deposited by bone marrow mesenchymal stem cells.

    Google Scholar 

  226. Lundy DS, Casiano RR, McClinton ME, Xue JW. Early results of transcutaneous injection laryngoplasty with micronized acellular dermis versus type-I thyroplasty for glottic incompetence dysphonia due to unilateral vocal fold paralysis. J Voice. 2003;17(4):589–95.

    Article  PubMed  Google Scholar 

  227. Soucy KG, Smith EF, Monreal G, Rokosh G, Keller BB, Yuan F, Matheny RG, Fallon AM, Lewis BC, Sherwood LC, Sobieski MA, Giridharan GA, Koenig SC, Slaughter MS. Feasibility study of particulate extracellular matrix (P-ECM) and left ventricular assist device (HVAD) therapy in chronic ischemic heart failure bovine model. ASAIO J. 2015;61(2):161–9.

    Article  CAS  PubMed  Google Scholar 

  228. Slaughter MS, Soucy KG, Matheny RG, Lewis BC, Hennick MF, Choi Y, Monreal G, Sobieski MA, Giridharan GA, Koenig SC. Development of an extracellular matrix delivery system for effective intramyocardial injection in ischemic tissue. ASAIO J. 2014;60(6):730–6.

    Article  CAS  PubMed  Google Scholar 

  229. Massensini AR, Ghuman H, Saldin LT, Medberry CJ, Keane TJ, Nicholls FJ, Velankar SS, Badylak SF, Modo M. Concentration-dependent rheological properties of ECM hydrogel for intracerebral delivery to a stroke cavity. Acta Biomater. 2015;27:116–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Ullah F, Othman MB, Javed F, Ahmad Z, Md Akil H. Classification, processing and application of hydrogels: a review. Mater Sci Eng C Mater Biol Appl. 2015;57:414–33.

    Article  CAS  PubMed  Google Scholar 

  231. Ruel-Gariepy E, Leroux JC. In situ-forming hydrogels--review of temperature-sensitive systems. Eur J Pharm Biopharm. 2004;58(2):409–26.

    Article  CAS  PubMed  Google Scholar 

  232. Wichterle O, Lím D. Hydrophilic gels for biological use. Nature. 1960;185(4706):117–8.

    Article  Google Scholar 

  233. Pacifici A, Laino L, Gargari M, Guzzo F, Velandia Luz A, Polimeni A, Pacifici L. Decellularized hydrogels in bone tissue engineering: a topical review. Int J Med Sci. 2018;15(5):492–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Ciuffreda MC, Malpasso G, Chokoza C, Bezuidenhout D, Goetsch KP, Mura M, Pisano F, Davies NH, Gnecchi M. Synthetic extracellular matrix mimic hydrogel improves efficacy of mesenchymal stromal cell therapy for ischemic cardiomyopathy. Acta Biomater. 2018;70:71–83.

    Article  CAS  PubMed  Google Scholar 

  235. Bi H, Ming L, Cheng R, Luo H, Zhang Y, Jin Y. Liver extracellular matrix promotes BM-MSCs hepatic differentiation and reversal of liver fibrosis through activation of integrin pathway. J Tissue Eng Regen Med. 2017;11(10):2685–98.

    Article  CAS  PubMed  Google Scholar 

  236. Adam Young D, Bajaj V, Christman KL. Award winner for outstanding research in the PhD category, 2014 Society for Biomaterials annual meeting and exposition, Denver, Colorado, April 16-19, 2014: decellularized adipose matrix hydrogels stimulate in vivo neovascularization and adipose formation. J Biomed Mater Res A. 2014;102(6):1641–51.

    Article  CAS  PubMed  Google Scholar 

  237. Freytes DO, Martin J, Velankar SS, Lee AS, Badylak SF. Preparation and rheological characterization of a gel form of the porcine urinary bladder matrix. Biomaterials. 2008;29(11):1630–7.

    Article  CAS  PubMed  Google Scholar 

  238. Saheli M, Sepantafar M, Pournasr B, Farzaneh Z, Vosough M, Piryaei A, Baharvand H. Three-dimensional liver-derived extracellular matrix hydrogel promotes liver organoids function. J Cell Biochem. 2018;119(6):4320–33.

    Article  CAS  PubMed  Google Scholar 

  239. Jiang D, Huang J, Shao H, Hu X, Song L, Zhang Y. Characterization of bladder acellular matrix hydrogel with inherent bioactive factors. Mater Sci Eng C Mater Biol Appl. 2017;77:184–9.

    Article  CAS  PubMed  Google Scholar 

  240. Bai R, Tian L, Li Y, Zhang J, Wei Y, Jin Z, Liu Z, Liu H. Combining ECM hydrogels of cardiac bioactivity with stem cells of high cardiomyogenic potential for myocardial repair. Stem Cells Int. 2019;2019:6708435.

    Article  PubMed  PubMed Central  Google Scholar 

  241. Agarwal T, Narayan R, Maji S, Ghosh SK, Maiti TK. Decellularized caprine liver extracellular matrix as a 2D substrate coating and 3D hydrogel platform for vascularized liver tissue engineering. J Tissue Eng Regen Med. 2018;12(3):e1678–90.

    Article  CAS  PubMed  Google Scholar 

  242. Su J, Satchell SC, Shah RN, Wertheim JA. Kidney decellularized extracellular matrix hydrogels: Rheological characterization and human glomerular endothelial cell response to encapsulation. J Biomed Mater Res A. 2018;106(9):2448–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Yuan X, Wei Y, Villasante A, Ng JJD, Arkonac DE, Chao PG, Vunjak-Novakovic G. Stem cell delivery in tissue-specific hydrogel enabled meniscal repair in an orthotopic rat model. Biomaterials. 2017;132:59–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Sackett SD, Tremmel DM, Ma F, Feeney AK, Maguire RM, Brown ME, Zhou Y, Li X, O'Brien C, Li L, Burlingham WJ, Odorico JS. Extracellular matrix scaffold and hydrogel derived from decellularized and delipidized human pancreas. Sci Rep. 2018;8(1):10452.

    Article  PubMed  PubMed Central  Google Scholar 

  245. Jiang K, Chaimov D, Patel SN, Liang JP, Wiggins SC, Samojlik MM, Rubiano A, Simmons CS, Stabler CL. 3-D physiomimetic extracellular matrix hydrogels provide a supportive microenvironment for rodent and human islet culture. Biomaterials. 2019;198:37–48.

    Article  CAS  PubMed  Google Scholar 

  246. Gaetani R, Aouad S, Demaddalena LL, Straessle H, Dzieciatkowska M, Wortham M, Bender HR, Nguyen-Ngoc KV, Schmid-Schoenbein GW, George SC, Hughes CCW, Sander M, Hansen KC, Christman KL. Evaluation of different decellularization protocols on the generation of pancreas-derived hydrogels. Tissue Eng. 2018;24(12):697–708.

    Article  CAS  Google Scholar 

  247. C. H, C. I, P. A. Bioengineering strategies of the uterus towards improving current investigative models and female reproductive health. Facts Views Vis Obgyn. 2019;11:1.

    Google Scholar 

  248. Cornelison RC, Gonzalez-Rothi EJ, Porvasnik SL, Wellman SM, Park JH, Fuller DD, Schmidt CE. Injectable hydrogels of optimized acellular nerve for injection in the injured spinal cord. Biomed Mater. 2018;13(3):034110.

    Article  PubMed  PubMed Central  Google Scholar 

  249. Poon CJ, Cotta MVPE, Sinha S, Palmer JA, Woods AA, Morrison WA, Abberton KM. Preparation of an adipogenic hydrogel from subcutaneous adipose tissue. Acta Biomater. 2013;9(3):5609–20.

    Article  CAS  PubMed  Google Scholar 

  250. Kang KN, Kim Y, Yoon SM, Kwon JS, Seo HW, Kim ES, Lee B, Kim JH, Min BH, Lee HB, Kim MS. In vivo release of bovine serum albumin from an injectable small intestinal submucosa gel. Int J Pharm. 2011;420(2):266–73.

    Article  CAS  PubMed  Google Scholar 

  251. Ungerleider JL, Johnson TD, Rao N, Christman KL. Fabrication and characterization of injectable hydrogels derived from decellularized skeletal and cardiac muscle. Methods. 2015;84:53–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Sharma S, Tiwari S. A review on biomacromolecular hydrogel classification and its applications. Int J Biol Macromol. 2020;162:737–47.

    Article  CAS  PubMed  Google Scholar 

  253. Asadi N, Alizadeh E, Salehi R, Khalandi B, Davaran S, Akbarzadeh A. Nanocomposite hydrogels for cartilage tissue engineering: a review. Artif Cells Nanomed Biotechnol. 2018;46(3):465–71.

    Article  CAS  PubMed  Google Scholar 

  254. Singh NK, Lee DS. In situ gelling pH- and temperature-sensitive biodegradable block copolymer hydrogels for drug delivery. J Control Release. 2014;193:214–27.

    Article  CAS  PubMed  Google Scholar 

  255. Gao S, Yuan Z, Guo W, Chen M, Liu S, Xi T, Guo Q. Comparison of glutaraldehyde and carbodiimides to crosslink tissue engineering scaffolds fabricated by decellularized porcine menisci. Mater Sci Eng C Mater Biol Appl. 2017;71:891–900.

    Article  CAS  PubMed  Google Scholar 

  256. Ventura RD, Padalhin AR, Kim B, Park M, Lee BT. Evaluation of bone regeneration potential of injectable extracellular matrix (ECM) from porcine dermis loaded with biphasic calcium phosphate (BCP) powder. Mater Sci Eng C Mater Biol Appl. 2020;110:110663.

    Article  CAS  PubMed  Google Scholar 

  257. Bible E, Chau DY, Alexander MR, Price J, Shakesheff KM, Modo M. Attachment of stem cells to scaffold particles for intra-cerebral transplantation. Nat Protoc. 2009;4(10):1440–53.

    Article  CAS  PubMed  Google Scholar 

  258. Seif-Naraghi SB, Horn D, Schup-Magoffin PJ, Christman KL. Injectable extracellular matrix derived hydrogel provides a platform for enhanced retention and delivery of a heparin-binding growth factor. Acta Biomater. 2012;8(10):3695–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Chiou GJ, Crowe C, McGoldrick R, Hui K, Pham H, Chang J. Optimization of an injectable tendon hydrogel: the effects of platelet-rich plasma and adipose-derived stem cells on tendon healing in vivo. Tissue Eng Part A. 2015;21(9-10):1579–86.

    Article  CAS  PubMed  Google Scholar 

  260. Choi JW, Park JK, Chang JW, Kim DY, Kim MS, Shin YS, Kim C-H. Small intestine submucosa and mesenchymal stem cells composite gel for scarless vocal fold regeneration. Biomaterials. 2014;35(18):4911–8.

    Article  CAS  PubMed  Google Scholar 

  261. Mercuri JJ, Patnaik S, Dion G, Gill SS, Liao J, Simionescu DT. Regenerative potential of decellularized porcine nucleus pulposus hydrogel scaffolds: stem cell differentiation, matrix remodeling, and biocompatibility studies. Tissue Eng Part A. 2013;19(7-8):952–66.

    Article  CAS  PubMed  Google Scholar 

  262. Rajabi-Zeleti S, Jalili-Firoozinezhad S, Azarnia M, Khayyatan F, Vahdat S, Nikeghbalian S, Khademhosseini A, Baharvand H, Aghdami N. The behavior of cardiac progenitor cells on macroporous pericardium-derived scaffolds. Biomaterials. 2014;35(3):970–82.

    Article  CAS  PubMed  Google Scholar 

  263. Roshanbinfar K, Hilborn J, Varghese OP, Oommen OP. Injectable and thermoresponsive pericardial matrix derived conductive scaffold for cardiac tissue engineering. RSC Adv. 2017;7(51):31980–8.

    Article  CAS  Google Scholar 

  264. Mechanical properties and in vivo behavior of a biodegradable synthetic polymer microfiber - extracellular matrix hydrogel biohybrid scaffold.

    Google Scholar 

  265. Brown CF, Yan J, Han TT, Marecak DM, Amsden BG, Flynn LE. Effect of decellularized adipose tissue particle size and cell density on adipose-derived stem cell proliferation and adipogenic differentiation in composite methacrylated chondroitin sulphate hydrogels. Biomed Mater. 2015;10(4):045010.

    Article  PubMed  Google Scholar 

  266. Cheung HK, Han TT, Marecak DM, Watkins JF, Amsden BG, Flynn LE. Composite hydrogel scaffolds incorporating decellularized adipose tissue for soft tissue engineering with adipose-derived stem cells. Biomaterials. 2014;35(6):1914–23.

    Article  CAS  PubMed  Google Scholar 

  267. Duan Y, Liu Z, O’Neill J, Wan LQ, Freytes DO, Vunjak-Novakovic G. Hybrid gel composed of native heart matrix and collagen induces cardiac differentiation of human embryonic stem cells without supplemental growth factors. J Cardiovasc Transl Res. 2011;4(5):605–15.

    Article  PubMed  PubMed Central  Google Scholar 

  268. Kayabolen A, Keskin D, Aykan A, Karslioglu Y, Zor F, Tezcaner A. Native extracellular matrix/fibroin hydrogels for adipose tissue engineering with enhanced vascularization. Biomed Mater. 2017;12(3):035007.

    Article  PubMed  Google Scholar 

  269. Tobin EJ. Recent coating developments for combination devices in orthopedic and dental applications: a literature review. Adv Drug Deliv Rev. 2017;112:88–100.

    Article  CAS  PubMed  Google Scholar 

  270. Xing H, Lee H, Luo L, Kyriakides TR. Extracellular matrix-derived biomaterials in engineering cell function. Biotechnol Adv. 2019;42:107421.

    Article  PubMed  Google Scholar 

  271. Wang B, Li W, Dean D, Mishra MK, Wekesa KS. Enhanced hepatogenic differentiation of bone marrow derived mesenchymal stem cells on liver ECM hydrogel. J Biomed Mater Res A. 2018;106(3):829–38.

    Article  CAS  PubMed  Google Scholar 

  272. Chowdhury F, Na S, Li D, Poh YC, Tanaka TS, Wang F, Wang N. Material properties of the cell dictate stress-induced spreading and differentiation in embryonic stem cells. Nat Mater. 2010;9(1):82–8.

    Article  CAS  PubMed  Google Scholar 

  273. Kollmer M, Keskar V, Hauk TG, Collins JM, Russell B, Gemeinhart RA. Stem cell-derived extracellular matrix enables survival and multilineage differentiation within superporous hydrogels. Biomacromolecules. 2012;13(4):963–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Zia S, Mozafari M, Natasha G, Tan A, Cui Z, Seifalian AM. Hearts beating through decellularized scaffolds: whole-organ engineering for cardiac regeneration and transplantation. Crit Rev Biotechnol. 2016;36(4):705–15.

    Article  CAS  PubMed  Google Scholar 

  275. Landry MJ, Rollet FG, Kennedy TE, Barrett CJ. Layers and multilayers of self-assembled polymers: tunable engineered extracellular matrix coatings for neural cell growth. Langmuir. 2018;34(30):8709–30.

    Article  CAS  PubMed  Google Scholar 

  276. Shridhar A, Lam AYL, Sun Y, Simmons CA, Gillies ER, Flynn LE. Culture on tissue-specific coatings derived from alpha-amylase-digested decellularized adipose tissue enhances the proliferation and adipogenic differentiation of human adipose-derived stromal cells. Biotechnol J. 2019;15:e1900118.

    Article  PubMed  Google Scholar 

  277. Lee JS, Shin J, Park HM, Kim YG, Kim BG, Oh JW, Cho SW. Liver extracellular matrix providing dual functions of two-dimensional substrate coating and three-dimensional injectable hydrogel platform for liver tissue engineering. Biomacromolecules. 2014;15(1):206–18.

    Article  CAS  PubMed  Google Scholar 

  278. Koo S, Muhammad R, Peh GS, Mehta JS, Yim EK. Micro- and nanotopography with extracellular matrix coating modulate human corneal endothelial cell behavior. Acta Biomater. 2014;10(5):1975–84.

    Article  CAS  PubMed  Google Scholar 

  279. Frank LA, Onzi GR, Morawski AS, Pohlmann AR, Guterres SS, Contri RV. Chitosan as a coating material for nanoparticles intended for biomedical applications. React Funct Polym. 2020;147:104459.

    Article  CAS  Google Scholar 

  280. Baker NA, Muir LA, Washabaugh AR, Neeley CK, Chen SY, Flesher CG, Vorwald J, Finks JF, Ghaferi AA, Mulholland MW, Varban OA, Lumeng CN, O'Rourke RW. Diabetes-specific regulation of adipocyte metabolism by the adipose tissue extracellular matrix. J Clin Endocrinol Metab. 2017;102(3):1032–43.

    PubMed  PubMed Central  Google Scholar 

  281. DeQuach JA, Mezzano V, Miglani A, Lange S, Keller GM, Sheikh F, Christman KL. Simple and high yielding method for preparing tissue specific extracellular matrix coatings for cell culture. PLoS One. 2010;5(9):e13039.

    Article  PubMed  PubMed Central  Google Scholar 

  282. Zhang H, Tasnim F, Ying JY, Zink D. The impact of extracellular matrix coatings on the performance of human renal cells applied in bioartificial kidneys. Biomaterials. 2009;30(15):2899–911.

    Article  CAS  PubMed  Google Scholar 

  283. French KM, Boopathy AV, DeQuach JA, Chingozha L, Lu H, Christman KL, Davis ME. A naturally derived cardiac extracellular matrix enhances cardiac progenitor cell behavior in vitro. Acta Biomater. 2012;8(12):4357–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  284. Dan P, Velot E, Francius G, Menu P, Decot V. Human-derived extracellular matrix from Wharton’s jelly: an untapped substrate to build up a standardized and homogeneous coating for vascular engineering. Acta Biomater. 2017;48:227–37.

    Article  CAS  PubMed  Google Scholar 

  285. Jeon O, Bin Lee Y, Hinton TJ, Feinberg AW, Alsberg E. Cryopreserved cell-laden alginate microgel bioink for 3D bioprinting of living tissues. Mater Today Chem. 2019;12:61–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Park J, Lee SJ, Chung S, Lee JH, Kim WD, Lee JY, Park SA. Cell-laden 3D bioprinting hydrogel matrix depending on different compositions for soft tissue engineering: Characterization and evaluation. Mater Sci Eng C Mater Biol Appl. 2017;71:678–84.

    Article  CAS  PubMed  Google Scholar 

  287. Gao G, Schilling AF, Yonezawa T, Wang J, Dai G, Cui X. Bioactive nanoparticles stimulate bone tissue formation in bioprinted three-dimensional scaffold and human mesenchymal stem cells. Biotechnol J. 2014;9(10):1304–11.

    Article  CAS  PubMed  Google Scholar 

  288. Jia W, Gungor-Ozkerim PS, Zhang YS, Yue K, Zhu K, Liu W, Pi Q, Byambaa B, Dokmeci MR, Shin SR, Khademhosseini A. Direct 3D bioprinting of perfusable vascular constructs using a blend bioink. Biomaterials. 2016;106:58–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  289. Pati F, Song TH, Rijal G, Jang J, Kim SW, Cho DW. Ornamenting 3D printed scaffolds with cell-laid extracellular matrix for bone tissue regeneration. Biomaterials. 2015;37:230–41.

    Article  CAS  PubMed  Google Scholar 

  290. Levato R, Webb WR, Otto IA, Mensinga A, Zhang Y, van Rijen M, van Weeren R, Khan IM, Malda J. The bio in the ink: cartilage regeneration with bioprintable hydrogels and articular cartilage-derived progenitor cells. Acta Biomater. 2017;61:41–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  291. Heinrich MA, Liu W, Jimenez A, Yang J, Akpek A, Liu X, Pi Q, Mu X, Hu N, Schiffelers RM, Prakash J, Xie J, Zhang YS. 3D Bioprinting: from benches to translational applications. Small. 2019;15(23):e1805510.

    Article  PubMed  PubMed Central  Google Scholar 

  292. Ramos T, Moroni L. Tissue engineering and regenerative medicine 2019: the role of biofabrication-a year in review. Tissue Eng. 2020;26(2):91–106.

    Article  Google Scholar 

  293. Hospodiuk M, Dey M, Sosnoski D, Ozbolat IT. The bioink: a comprehensive review on bioprintable materials. Biotechnol Adv. 2017;35(2):217–39.

    Article  CAS  PubMed  Google Scholar 

  294. Gungor-Ozkerim PS, Inci I, Zhang YS, Khademhosseini A, Dokmeci MR. Bioinks for 3D bioprinting: an overview. Biomater Sci. 2018;6(5):915–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  295. Touri M, Kabirian F, Saadati M, Ramakrishna S, Mozafari M. Additive manufacturing of biomaterials − the evolution of rapid prototyping. Adv Eng Mater. 2019;21(2):1800511.

    Article  Google Scholar 

  296. Cui H, Nowicki M, Fisher JP, Zhang LG. 3D bioprinting for organ regeneration. Adv Healthc Mater. 2017;6(1):201601118.

    Article  Google Scholar 

  297. Pati F, Ha DH, Jang J, Han HH, Rhie JW, Cho DW. Biomimetic 3D tissue printing for soft tissue regeneration. Biomaterials. 2015;62:164–75.

    Article  CAS  PubMed  Google Scholar 

  298. Jiang L, Wang Y, Liu Z, Ma C, Yan H, Xu N, Gang F, Wang X, Zhao L, Sun X. Three-dimensional printing and injectable conductive hydrogels for tissue engineering application. Tissue Eng. 2019;25(5):398–411.

    Article  CAS  Google Scholar 

  299. Fedorovich NE, Alblas J, de Wijn JR, Hennink WE, Verbout AJ, Dhert WJA. Hydrogels as extracellular matrices for skeletal tissue engineering: state-of-the-art and novel application in organ printing. Tissue Eng. 2007;13(8):1905–25.

    Article  CAS  PubMed  Google Scholar 

  300. Kim BS, Kwon YW, Kong JS, Park GT, Gao G, Han W, Kim MB, Lee H, Kim JH, Cho DW. 3D cell printing of in vitro stabilized skin model and in vivo pre-vascularized skin patch using tissue-specific extracellular matrix bioink: a step towards advanced skin tissue engineering. Biomaterials. 2018;168:38–53.

    Article  CAS  PubMed  Google Scholar 

  301. Pati F, Jang J, Ha DH, Won Kim S, Rhie JW, Shim JH, Kim DH, Cho DW. Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat Commun. 2014;5:3935.

    Article  CAS  PubMed  Google Scholar 

  302. Toprakhisar B, Nadernezhad A, Bakirci E, Khani N, Skvortsov GA, Koc B. Development of bioink from decellularized tendon extracellular matrix for 3D bioprinting. Macromol Biosci. 2018;18(10):e1800024.

    Article  PubMed  Google Scholar 

  303. Kim H, Park MN, Kim J, Jang J, Kim HK, Cho DW. Characterization of cornea-specific bioink: high transparency, improved in vivo safety. J Tissue Eng. 2019;10:2041731418823382.

    Article  PubMed  PubMed Central  Google Scholar 

  304. Jung CS, Kim BK, Lee J, Min BH, Park SH. Development of printable natural cartilage matrix bioink for 3D printing of irregular tissue shape. Tissue Eng Regen Med. 2018;15(2):155–62.

    Article  CAS  PubMed  Google Scholar 

  305. Lee H, Han W, Kim H, Ha DH, Jang J, Kim BS, Cho DW. Development of liver decellularized extracellular matrix bioink for three-dimensional cell printing-based liver tissue engineering. Biomacromolecules. 2017;18(4):1229–37.

    Article  CAS  PubMed  Google Scholar 

  306. Jang J, Park HJ, Kim SW, Kim H, Park JY, Na SJ, Kim HJ, Park MN, Choi SH, Park SH, Kim SW, Kwon SM, Kim PJ, Cho DW. 3D printed complex tissue construct using stem cell-laden decellularized extracellular matrix bioinks for cardiac repair. Biomaterials. 2017;112:264–74.

    Article  CAS  PubMed  Google Scholar 

  307. Dzobo K, Motaung K, Adesida A. Recent trends in decellularized extracellular matrix bioinks for 3D printing: an updated review. Int J Mol Sci. 2019;20(18):4628.

    Article  CAS  PubMed Central  Google Scholar 

  308. Choi YJ, Kim TG, Jeong J, Yi HG, Park JW, Hwang W, Cho DW. 3D cell printing of functional skeletal muscle constructs using skeletal muscle-derived bioink. Adv Healthc Mater. 2016;5(20):2636–45.

    Article  CAS  PubMed  Google Scholar 

  309. Choudhury D, Tun HW, Wang T, Naing MW. Organ-derived decellularized extracellular matrix: a game changer for bioink manufacturing? Trends Biotechnol. 2018;36(8):787–805.

    Article  CAS  PubMed  Google Scholar 

  310. van der Laan LJ, Lockey CG, Frasier FS, Wilson CA, Onions DE, Hering BJ, Long Z, Otto E, Torbett BE, Salomon DR. Infection by porcine endogenous retrovirus after islet xenotransplantation in SCID mice. Nature. 2000;7:4076800.

    Google Scholar 

  311. Vijayavenkataraman S, Yan WC, Lu WF, Wang CH, Fuh JYH. 3D bioprinting of tissues and organs for regenerative medicine. Adv Drug Deliv Rev. 2018;132:296–332.

    Article  CAS  PubMed  Google Scholar 

  312. Alonzo M, AnilKumar S, Roman B, Tasnim N, Joddar B. 3D Bioprinting of cardiac tissue and cardiac stem cell therapy. Transl Res. 2019;211:64–83.

    Article  PubMed  PubMed Central  Google Scholar 

  313. Lee W, Hong Y, Dai G. 3D bioprinting of vascular conduits for pediatric congenital heart repairs. Transl Res. 2019;211:35–45.

    Article  PubMed  PubMed Central  Google Scholar 

  314. Jessop ZM, Al-Sabah A, Gardiner MD, Combellack E, Hawkins K, Whitaker IS. 3D bioprinting for reconstructive surgery: principles, applications and challenges. J Plast Reconstr Aesthet Surg. 2017;70(9):1155–70.

    Article  PubMed  Google Scholar 

  315. Hann SY, Cui H, Esworthy T, Miao S, Zhou X, Lee SJ, Fisher JP, Zhang LG. Recent advances in 3D printing: vascular network for tissue and organ regeneration. Transl Res. 2019;211:46–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  316. Ning L, Chen X. A brief review of extrusion-based tissue scaffold bio-printing. Biotechnol J. 2017;12(8):91–7.

    Article  Google Scholar 

  317. Ostrovidov S, Salehi S, Costantini M, Suthiwanich K, Ebrahimi M, Sadeghian RB, Fujie T, Shi X, Cannata S, Gargioli C, Tamayol A, Dokmeci MR, Orive G, Swieszkowski W, Khademhosseini A. 3D bioprinting in skeletal muscle tissue engineering. Small. 2019;15(24):e1805530.

    Article  PubMed  PubMed Central  Google Scholar 

  318. Leberfinger AN, Dinda S, Wu Y, Koduru SV, Ozbolat V, Ravnic DJ, Ozbolat IT. Bioprinting functional tissues. Acta Biomater. 2019;95:32–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  319. Ozbolat IT, Hospodiuk M. Current advances and future perspectives in extrusion-based bioprinting. Biomaterials. 2016;76:321–43.

    Article  CAS  PubMed  Google Scholar 

  320. Shafiee A, Atala A. Printing technologies for medical applications. Trends Mol Med. 2016;22(3):254–65.

    Article  PubMed  Google Scholar 

  321. Zein I, et al. Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials. 2002;23:1169–85.

    Article  CAS  PubMed  Google Scholar 

  322. Wiggenhauser PS, Schwarz S, Koerber L, Hoffmann TK, Rotter N. Addition of decellularized extracellular matrix of porcine nasal cartilage improves cartilage regenerative capacities of PCL-based scaffolds in vitro. J Mater Sci Mater Med. 2019;30(11):121.

    Article  CAS  PubMed  Google Scholar 

  323. Matai I, Kaur G, Seyedsalehi A, McClinton A, Laurencin CT. Progress in 3D bioprinting technology for tissue/organ regenerative engineering. Biomaterials. 2020;226:119536.

    Article  CAS  PubMed  Google Scholar 

  324. Liu W, Zhong Z, Hu N, Zhou Y, Maggio L, Miri AK, Fragasso A, Jin X, Khademhosseini A, Zhang YS. Coaxial extrusion bioprinting of 3D microfibrous constructs with cell-favorable gelatin methacryloyl microenvironments. Biofabrication. 2018;10(2):024102.

    Article  PubMed  PubMed Central  Google Scholar 

  325. Hiller T, Berg J, Elomaa L, Rohrs V, Ullah I, Schaar K, Dietrich AC, Al-Zeer MA, Kurtz A, Hocke AC, Hippenstiel S, Fechner H, Weinhart M, Kurreck J. Generation of a 3D liver model comprising human extracellular matrix in an alginate/gelatin-based bioink by extrusion bioprinting for infection and transduction studies. Int J Mol Sci. 2018;19(10):3129.

    Article  PubMed Central  Google Scholar 

  326. Visser J, et al. Biofabrication of multi-material anatomically shaped tissue constructs. Biofabrication. 2013;5(3):035007.

    Article  CAS  PubMed  Google Scholar 

  327. Yilmaz B, Tahmasebifar A, Baran ET. Bioprinting technologies in tissue engineering. Adv Biochem Eng Biotechnol. 2020;171:279–319.

    CAS  PubMed  Google Scholar 

  328. Xu T, Binder KW, Albanna MZ, Dice D, Zhao W, Yoo JJ, Atala A. Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications. Biofabrication. 2013;5(1):015001.

    Article  CAS  PubMed  Google Scholar 

  329. Faulkner-Jones A, Greenhough S, King JA, Gardner J, Courtney A, Shu W. Development of a valve-based cell printer for the formation of human embryonic stem cell spheroid aggregates. Biofabrication. 2013;5(1):015013.

    Article  CAS  PubMed  Google Scholar 

  330. Eagles PA, et al. Electrohydrodynamic jetting of mouse neuronal cells. Biochem J. 2006;394(Pt 2):375–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  331. Gudapati H, Dey M, Ozbolat I. A comprehensive review on droplet-based bioprinting: past, present and future. Biomaterials. 2016;102:20–42.

    Article  CAS  PubMed  Google Scholar 

  332. Demirci U, Montesano G. Single cell epitaxy by acoustic picolitre droplets. Lab Chip. 2007;7(9):1139–45.

    Article  CAS  PubMed  Google Scholar 

  333. Ferris CJ, Gilmore KJ, Beirne S, McCallum D, Wallace GG, Panhuis M. Bio-ink for on-demand printing of living cells. Biomater Sci. 2013;1(2):224–30.

    Article  CAS  PubMed  Google Scholar 

  334. Ng WL, Lee JM, Yeong WY, Win Naing M. Microvalve-based bioprinting - process, bio-inks and applications. Biomater Sci. 2017;5(4):632–47.

    Article  CAS  PubMed  Google Scholar 

  335. Kim BS, Kim H, Gao G, Jang J, Cho DW. Decellularized extracellular matrix: a step towards the next generation source for bioink manufacturing. Biofabrication. 2017;9(3):034104.

    Article  PubMed  Google Scholar 

  336. Holzl K, Lin S, Tytgat L, Van Vlierberghe S, Gu L, Ovsianikov A. Bioink properties before, during and after 3D bioprinting. Biofabrication. 2016;8(3):032002.

    Article  PubMed  Google Scholar 

  337. Williams D, Thayer P, Martinez H, Gatenholm E, Khademhosseini A. A perspective on the physical, mechanical and biological specifications of bioinks and the development of functional tissues in 3D bioprinting. Bioprinting. 2018;9:19–36.

    Article  Google Scholar 

  338. Kim MH, Lee YW, Jung WK, Oh J, Nam SY. Enhanced rheological behaviors of alginate hydrogels with carrageenan for extrusion-based bioprinting. J Mech Behav Biomed Mater. 2019;98:187–94.

    Article  CAS  PubMed  Google Scholar 

  339. Wang X, Rijff BL, Khang G. A building-block approach to 3D printing a multichannel, organ-regenerative scaffold. J Tissue Eng Regen Med. 2017;11(5):1403–11.

    Article  CAS  PubMed  Google Scholar 

  340. Ma X, Yu C, Wang P, Xu W, Wan X, Lai CSE, Liu J, Koroleva-Maharajh A, Chen S. Rapid 3D bioprinting of decellularized extracellular matrix with regionally varied mechanical properties and biomimetic microarchitecture. Biomaterials. 2018;185:310–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  341. Kabirian F, Mozafari M. Decellularized ECM-derived bioinks: prospects for the future. Methods. 2020;171:108–18.

    Article  CAS  PubMed  Google Scholar 

  342. Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol. 2014;32(8):773–85.

    Article  CAS  PubMed  Google Scholar 

  343. Gu Q, Tomaskovic-Crook E, Lozano R, Chen Y, Kapsa RM, Zhou Q, Wallace GG, Crook JM. Functional 3D neural mini-tissues from printed gel-based bioink and human neural stem cells. Adv Healthc Mater. 2016;5(12):1429–38.

    Article  CAS  PubMed  Google Scholar 

  344. Matsusaki M, Sakaue K, Kadowaki K, Akashi M. Three-dimensional human tissue chips fabricated by rapid and automatic inkjet cell printing. Adv Healthc Mater. 2013;2(4):534–9.

    Article  CAS  PubMed  Google Scholar 

  345. Peng W, Unutmaz D, Ozbolat IT. Bioprinting towards physiologically relevant tissue models for pharmaceutics. Trends Biotechnol. 2016;34(9):722–32.

    Article  CAS  PubMed  Google Scholar 

  346. Xia Z, Jin S, Ye K. Tissue and organ 3D bioprinting. SLAS Technol. 2018;23(4):301–14.

    Article  CAS  PubMed  Google Scholar 

  347. Barrs RW, Jia J, Silver SE, Yost M, Mei Y. Biomaterials for bioprinting microvasculature. Chem Rev. 2020;19:10887–949.

    Article  Google Scholar 

  348. Park JY, Ryu H, Lee B, Ha DH, Ahn M, Kim S, Kim JY, Jeon NL, Cho DW. Development of a functional airway-on-a-chip by 3D cell printing. Biofabrication. 2018;11(1):015002.

    Article  PubMed  Google Scholar 

  349. Singh S, Choudhury D, Yu F, Mironov V, Naing MW. In situ bioprinting - bioprinting from benchside to bedside? Acta Biomater. 2020;101:14–25.

    Article  CAS  PubMed  Google Scholar 

  350. Liu J, Miller K, Ma X, Dewan S, Lawrence N, Whang G, Chung P, McCulloch AD, Chen S. Direct 3D bioprinting of cardiac micro-tissues mimicking native myocardium. Biomaterials. 2020;256:120204.

    Article  CAS  PubMed  Google Scholar 

  351. Yu F, Choudhury D. Microfluidic bioprinting for organ-on-a-chip models. Drug Discov Today. 2019;24(6):1248–57.

    Article  CAS  PubMed  Google Scholar 

  352. Kim J, Shim IK, Hwang DG, Lee YN, Kim M, Kim H, Kim SW, Lee S, Kim SC, Cho DW, Jang J. 3D cell printing of islet-laden pancreatic tissue-derived extracellular matrix bioink constructs for enhancing pancreatic functions. J Mater Chem B. 2019;7(10):1773–81.

    Article  CAS  PubMed  Google Scholar 

  353. Mollica PA, Booth-Creech EN, Reid JA, Zamponi M, Sullivan SM, Palmer XL, Sachs PC, Bruno RD. 3D bioprinted mammary organoids and tumoroids in human mammary derived ECM hydrogels. Acta Biomater. 2019;95:201–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  354. Das S, Kim SW, Choi YJ, Lee S, Lee SH, Kong JS, Park HJ, Cho DW, Jang J. Decellularized extracellular matrix bioinks and the external stimuli to enhance cardiac tissue development in vitro. Acta Biomater. 2019;95:188–200.

    Article  CAS  PubMed  Google Scholar 

  355. Bejleri D, Streeter BW, Nachlas ALY, Brown ME, Gaetani R, Christman KL, Davis ME. A bioprinted cardiac patch composed of cardiac-specific extracellular matrix and progenitor cells for heart repair. Adv Healthc Mater. 2018;7(23):e1800672.

    Article  PubMed  PubMed Central  Google Scholar 

  356. Gao G, Lee JH, Jang J, Lee DH, Kong J-S, Kim BS, Choi Y-J, Jang WB, Hong YJ, Kwon S-M, Cho D-W. Tissue engineered bio-blood-vessels constructed using a tissue-specific bioink and 3D coaxial cell printing technique: a novel therapy for ischemic disease. Adv Funct Mater. 2017;27(33):1700798.

    Article  Google Scholar 

  357. Nam H, Jeong HJ, Jo Y, Lee JY, Ha DH, Kim JH, Chung JH, Cho YS, Cho DW, Lee SJ, Jang J. Multi-layered free-form 3D cell-printed tubular construct with decellularized inner and outer esophageal tissue-derived bioinks. Sci Rep. 2020;10(1):7255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  358. Croce S, Peloso A, Zoro T, Avanzini MA, Cobianchi L. A hepatic scaffold from decellularized liver tissue: food for thought. Biomolecules. 2019;9(12):813.

    Article  CAS  PubMed Central  Google Scholar 

  359. Serna JA, et al. Formulation and characterization of a SIS-based photocrosslinkable bioink. Polymers. 2019;11:569.

    Article  CAS  PubMed Central  Google Scholar 

  360. Skardal A, Devarasetty M, Kang HW, Mead I, Bishop C, Shupe T, Lee SJ, Jackson J, Yoo J, Soker S, Atala A. A hydrogel bioink toolkit for mimicking native tissue biochemical and mechanical properties in bioprinted tissue constructs. Acta Biomater. 2015;25:24–34.

    Article  CAS  PubMed  Google Scholar 

  361. Ali M, Pr AK, Yoo JJ, Zahran F, Atala A, Lee SJ. A photo-crosslinkable kidney ECM-derived bioink accelerates renal tissue formation. Adv Healthc Mater. 2019;8(7):e1800992.

    Article  PubMed  PubMed Central  Google Scholar 

  362. Yu C, Ma X, Zhu W, Wang P, Miller KL, Stupin J, Koroleva-Maharajh A, Hairabedian A, Chen S. Scanningless and continuous 3D bioprinting of human tissues with decellularized extracellular matrix. Biomaterials. 2019;194:1–13.

    Article  CAS  PubMed  Google Scholar 

  363. Jang J, Kim TG, Kim BS, Kim SW, Kwon SM, Cho DW. Tailoring mechanical properties of decellularized extracellular matrix bioink by vitamin B2-induced photo-crosslinking. Acta Biomater. 2016;33:88–95.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huiqi Xie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Da, L., Lei, X., Song, Y., Huang, Y., Xie, H. (2021). Different Forms of Decellularized Tissues and Their Characteristics, Applications in Tissue Repair as Well as Performance Optimization. In: Li, X., Xie, H. (eds) Decellularized Materials. Springer, Singapore. https://doi.org/10.1007/978-981-33-6962-7_3

Download citation

Publish with us

Policies and ethics