Skip to main content

Beneficial Microbes as Novel Microbial Cell Factories in Nanobiotechnology: Potentials in Nanomedicine

  • Chapter
  • First Online:
Microbial Nanobiotechnology

Part of the book series: Materials Horizons: From Nature to Nanomaterials ((MHFNN))

Abstract

Nanotechnology, as an emerging field of the century that seeks to create, manipulate and apply materials at nanoscale level, has impacted several fields including the life sciences. The involvement of biological materials in the field of nanotechnology is also expanding, leading to the emergency of the sub-discipline of nanobiotechnology that harnesses the immense potentials of biomolecules in the creation, manipulation and application of nanomaterials. Therefore, plants, animals and microbes have been subjects of several studies in this area in recent times. Amongst the microbes, the beneficial microbes are also not excluded from the revolutionary impact of biological entities in nanotechnology, with some reports on their abilities to synthesize nanoparticles. Largely, species of Bacillus, Lactobacillus, Enterococcus and Rhodobacter have been reported for the synthesis of nanoparticles. In this review, an account of involvement of potentially beneficial bacteria in nanobiotechnology is surveyed, with the view of establishing their roles which can further direct the line of research in this area. A treatise is presented on how nano-platform could be achieved to fight the scourge of disorders such as Alzheimer’s disease, Parkinson’s disease and cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adelere IA, Lateef A (2016) A novel approach to the green synthesis of metallic nanoparticles: the use of agro-wastes, enzymes and pigments. Nanotechnol Rev 5:567–587. https://doi.org/10.1515/ntrev-2016-0024

    Article  CAS  Google Scholar 

  • Adelere IA, Lateef A, Aboyeji DO, Abdulsalam R, Adabara NU, Bala JD (2017) Biosynthesis of silver nanoparticles using aqueous extract of Buchholzia coriacea (wonderful kola) seeds and their antimicrobial activities. Ann Food Sci Technol 18:671–679

    Google Scholar 

  • Ahiwale SS, Bankar AV, Tagunde S, Kapadnis BP (2017) A bacteriophage mediated gold nanoparticles synthesis and their anti-biofilm activity. Indian J Microbiol 57:188–194. https://doi.org/10.1007/s12088-017-0640-x

    Article  CAS  Google Scholar 

  • Ahmad S, Senapati MI, Khan KR, Sastry M (2003) Extracellular biosynthesis of monodisperse gold nanoparticles by a novel extremophilic actinomycete, Thermomonospora sp. Langmuir 19:3550–3553. https://doi.org/10.1021/la026

    Article  CAS  Google Scholar 

  • Ahmad T, Wani IA, Lone IH, Ganguly A, Manzoor N, Ahmad A, Ahmed J, Al-Shihri AS (2013) Antifungal activity of gold nanoparticles prepared by solvothermal method. Mater Res Bull 48:12–20. https://doi.org/10.1016/j.materresbull.2012.09.069

    Article  CAS  Google Scholar 

  • Akhtar N, Pathak K (2017) Probiotics as a tool to biosynthesize metallic nanoparticles: research reports and patents survey. Recent Pat Drug Delivery Formulation 11:5–18. https://doi.org/10.2174/1872211311666170313124335

    Article  CAS  Google Scholar 

  • Aldujaili NH, Abdullah NY, Khaqani RL, Al-tfaly SA, Al-Shammary AH (2015) Biosynthesis and antibacterial activity of titanium nanoparticles using Lactobacillus. Int J Recent Sci Res 6:7741–7751

    Google Scholar 

  • Alzheimer’s, Association (2015) 2015 Alzheimer’s disease facts and figures. Alzheimer’s Dementia: J Alzheimer’s Assoc 11:332–384. https://doi.org/10.1016/j.jalz.2015.02.003

    Google Scholar 

  • Amar J, Chabo C, Waget A, Klopp P, Vachoux C, Bermúdez-Humarán LG, Smirnova N, Bergé M, Sulpice T, Lahtinen T, Ouwehand A, Langella P, Rautonen N, Sansonetti PJ, Burcelin J (2011) Intestinal mucosal adherence and translocation of commensal bacteria at the early onset of type 2 diabetes: molecular mechanisms and probiotic treatment. EMBO Mol Med 3:559–572. https://doi.org/10.1002/emmm.201100159

    Article  CAS  Google Scholar 

  • Anand K, Gengan RM, Phulukdaree A, Chuturgoon A (2015) Agroforestry waste Moringa oleifera petals mediated green synthesis of gold nanoparticles and their anti-cancer and catalytic activity. J Ind Eng Chem 21:1105–1111. https://doi.org/10.1016/j.jiec.2014.05.021

    Article  CAS  Google Scholar 

  • Anandan S, Grieser F, Ashokkumar M (2008) Sonochemical synthesis of Au-Ag core-shell bimetallic nanoparticles. J Phys Chem C 112:15102–15109. https://doi.org/10.1021/jp806960r

    Article  CAS  Google Scholar 

  • Aoyagi Y, Park S, Matsubara S, Honda Y, Amamoto R, Kushiro A, Miyazaki K, Shephard RJ (2017) Habitual intake of fermented milk products containing Lactobacillus casei strain Shirota and a reduced risk of hypertension in older people. Benef Microb 8:23–29. https://doi.org/10.3920/BM2016.0135

    Article  CAS  Google Scholar 

  • Azeez MA, Lateef A, Asafa TB, Yekeen TA, Akinboro A, Oladipo IC, Gueguim-Kana EB, Beukes LS (2017) Biomedical applications of cocoa bean extract-mediated silver nanoparticles as antimicrobial, larvicidal and anticoagulant agents. J Clust Sci 28:149–164. https://doi.org/10.1007/s10876-016-1055-2

    Article  CAS  Google Scholar 

  • Azeez L, Lateef A, Adebisi SA, Oyedeji AO (2018) Novel biosynthesized silver nanoparticles from cobweb as adsorbent for Rhodamine B: equilibrium isotherm, kinetic and thermodynamic studies. Appl Water Sci 8:32. https://doi.org/10.1007/s13201-018-0676-z

    Article  CAS  Google Scholar 

  • Azeez L, Adejumo AL, Lateef A, Adebisi SA, Adetoro RO, Adewuyi S, Tijani KO, Olaoye S (2019a) Zero-valent silver nanoparticles attenuate Cd and Pb toxicities on Moringa oleifera via immobilization and induction of phytochemicals. Plant Physiol Biochem 139:283–292. https://doi.org/10.1016/j.plaphy.2019.03.030

    Article  CAS  Google Scholar 

  • Azeez L, Lateef A, Wahab AA, Rufai MA, Salau AK, Ajayi IO, Ajayi EM, Maryam AK, Adebisi B (2019b) Phytomodulatory effects of silver nanoparticles on Corchorus olitorius: its antiphytopathogenic and hepatoprotective potentials. Plant Physiol Biochem 136:109–117. https://doi.org/10.1016/j.plaphy.2018.12.006

    Article  CAS  Google Scholar 

  • Azhar AM, Ladan SB, Ebrahimi MT, Heydari M (2011) Lactobacillus-mediated biosynthesis of titanium nanoparticles in MRS-broth medium. Brno Czech Rep EU 9:21–23

    Google Scholar 

  • Aziz N, Faraz M, Pandey R, Shakir M, Fatma T, Varma A, Barman I, Prasad R (2015) Facile algae-derived route to biogenic silver nanoparticles: synthesis, antibacterial, and photocatalytic properties. Langmuir 31:11605–11612. https://doi.org/10.1021/acs.langmuir.5b03081

    Article  CAS  Google Scholar 

  • Bai HJ, Yang BS, Chai CJ, Yang GE, Jia WL, Yi ZB (2011) Green synthesis of silver nanoparticles using Rhodobacter sphaeroides. World J Microbiol Biotechnol 27:2723. https://doi.org/10.1007/s11274-011-0747-x

    Article  CAS  Google Scholar 

  • Basavaraju B, Jamil K (2014) Identification and characterization of probiotics from new sources. Int J Sci Res 3:837–841

    Google Scholar 

  • Bhaskar S, Tian F, Stoeger T (2010) Multifunctional nanocarriers for diagnostics, drug delivery and targeted treatment across blood-brain barrier: perspectives on tracking and neuroimaging. Part Fibre Toxicol 7:3. https://doi.org/10.1186/1743-8977-7-3

    Article  CAS  Google Scholar 

  • Bhattacharya R, Mukherjee P (2008) Biological properties of “naked” metal nanoparticles. Adv Drug Deliv Rev 60:1289–1306. https://doi.org/10.1016/j.addr.2008.03.013

    Article  CAS  Google Scholar 

  • Bogireddy NKR, Anand KKH, Mandal BK (2015) Gold nanoparticles-synthesis by Sterculia acuminata extract and its catalytic efficiency in alleviating different organic dyes. J Mol Liq 211:868–875. https://doi.org/10.1016/j.molliq.2015.07.027

    Article  CAS  Google Scholar 

  • Bolla PA, Sanz A, Huggias S, Ruggera JF, Serradell MA, Casella ML (2020) Regular arrangement of Pt nanoparticles on S-layer proteins isolated from Lactobacillus kefiri: synthesis and catalytic application. Mol Catal 481:110262. https://doi.org/10.1016/j.mcat.2018.12.011

    Article  CAS  Google Scholar 

  • Canani RB, Cirillo P, Terrin G, Cesarano L, Spagnuolo MI, De Vincenzo A, Albano F, Passariello A, De Marco G, Manguso F, Guarino A (2007) Probiotics for treatment of acute diarrhea in children: randomised clinical trial of five different preparations. BMJ 335:340. https://doi.org/10.1136/bmj.39272.581736.55

  • Carradori D, Balducci C, Re F, Brambilla D, Le Droumaguet B, Flores O, Gaudin A, Mura S, Forloni G, Ordoñez-Gutierrez L, Wandosell F, Masserini M, Couvreur P, Nicolas J, Andrieux K (2018) Antibody-functionalized polymer nanoparticle leading to memory recovery in Alzheimer’s disease-like transgenic mouse model. Nanomed Nanotechnol Biol Med 14:609–618. https://doi.org/10.1016/j.nano.2017.12.006

    Article  CAS  Google Scholar 

  • Chang RS, Kim J, Lee HY, Han SE, Na J, Kim K (2010) Reduced dose-limiting toxicity of intraperitoneal mitoxantrone chemotherapy using cardiolipin-based anionic liposomes. Nanomed Nanotechnol Biol Med 6:769–776. https://doi.org/10.1016/j.nano.2010.05.003

    Article  CAS  Google Scholar 

  • Chaudhari PR, Masurkar SA, Shidore VB, Kamble SP (2012) Antimicrobial activity of extracellularly synthesized silver nanoparticles using Lactobacillus species obtained from VIZYLAC capsule. J Appl Pharmaceut Sci 2:25–29

    Google Scholar 

  • Chen YH, Yeh CS (2001) New approach for the formation of alloy nanoparticles: laser synthesis of gold-silver alloy from gold-silver. colloidal mixtures. Chem Comm 4:371–372. https://doi.org/10.1039/B009854J

  • Cheow WS, Hadinoto K (2013) Biofilm-like Lactobacillus rhamnosus probiotics encapsulated in alginate and carrageenan microcapsules exhibiting enhanced thermotolerance and freeze-drying resistance. Biomacromolecules 14:3214–3222. https://doi.org/10.1021/bm400853d

    Article  CAS  Google Scholar 

  • Chondrou P, Karapetsas A, Kiousi DE, Tsela D, Tiptiri-Kourpeti A, Anestopoulos I, Kotsianidis I, Bezirtzoglou E, Pappa A, Galanis A (2018) Lactobacillus paracasei K5 displays adhesion, anti-proliferative activity and apoptotic effects in human colon cancer cells. Benef Microb 9:975–983. https://doi.org/10.3920/BM2017.0183

    Article  CAS  Google Scholar 

  • Cotte E, Passot G, Mohamed F, Vaudoyer D, Gilly FN, Glehen O (2009) Management of peritoneal carcinomatosis from colorectal cancer: current state of practice. Cancer J 15:243–248. https://doi.org/10.1097/PPO.0b013e3181a58d67

    Article  Google Scholar 

  • Csáki A, Kaplanek P, Möller R, Fritzsche W (2003) The optical detection of individual DNA-conjugated gold nanoparticle labels after metal enhancement. Nanotechnology 14:1262. https://doi.org/10.1088/0957-4484/14/12/006

    Article  Google Scholar 

  • da Silva Ferreira V, ConzFerreira ME, Lima LMT, Frasés S, de Souza W, Sant’Anna C (2017) Green production of microalgae-based silver chloride nanoparticles with antimicrobial activity against pathogenic bacteria. Enzyme Microb Technol 97:114–121. https://doi.org/10.1016/j.enzmictec.2016.10.018

    Google Scholar 

  • Dakhil AS (2017) Biosynthesis of silver nanoparticle (AgNPs) using Lactobacillus and their effects on oxidative stress biomarkers in rats. J King Saud Univ Sci 29:462–467. https://doi.org/10.1016/j.jksus.2017.05.013

  • de Lourdes Reyes-Escogido M, Meneses-Rodríguez D, Guardado-Mendoza R (2017) Carbohydrate source affects the synthesis of silver nanoparticles by Lactobacillus plantarum 1449 and Lactobacillus ruminis 1313. IET Nanobiotechnol 11:1035–1039. https://doi.org/10.1049/iet-nbt.2017.0107

    Article  Google Scholar 

  • Dhanasekar NN, Rahul GR, Narayanan KB, Raman G, Sakthivel N (2015) Green chemistry approach for the synthesis of gold nanoparticles using the fungus Alternaria sp. J Microbiol Biotechnol 25:1129–1135. https://doi.org/10.4014/jmb.1410.10036

    Article  CAS  Google Scholar 

  • Dhoondia ZH, Chakraborty H (2012) Lactobacillus mediated synthesis of silver oxide nanoparticles. Nanomater Nanotechnol 2:2–15. https://doi.org/10.5772/55741

    Article  CAS  Google Scholar 

  • Durán N, Marcato PD, De Souza D, Alves OL, Esposito E (2007) Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment. J Biomed Nanotechnol 3:203–208. https://doi.org/10.1166/jbn.2007.022

    Article  CAS  Google Scholar 

  • Ebrahimnejad P, Khavarpour M, Khalili S (2017) Survival of Lactobacillus acidophilus as probiotic bacteria using chitosan nanoparticles. Int J Eng Transact A: Basics 30:456–463

    Google Scholar 

  • Elbeshehy EK, Elazzazy AM, Aggelis G (2015) Silver nanoparticles synthesis mediated by new isolates of Bacillus spp., nanoparticle characterization and their activity against Bean Yellow Mosaic Virus and human pathogens. Front Microbiol 6: 453. https://doi.org/10.3389/fmicb.2015.00453

  • El-Desouky TA, Ammar HA (2016) Honey mediated silver nanoparticles and their inhibitory effect on aflatoxins and ochratoxin A. J Appl Pharmaceut Sci 6:083–090. https://doi.org/10.7324/JAPS.2016.60615

    Article  CAS  Google Scholar 

  • Elegbede JA, Lateef A, Azeez MA, Asafa TB, Yekeen TA, Oladipo IC, Adebayo EA, Beukes LS, Gueguim-Kana EB (2018) Fungal xylanases-mediated synthesis of silver nanoparticles for catalytic and biomedical applications. IET Nanobiotechnol 12:857–863. https://doi.org/10.1049/iet-nbt.2017.0299

    Article  Google Scholar 

  • Elegbede JA, Lateef A, Azeez MA, Asafa TB, Yekeen TA, Oladipo IC, Abbas SH, Beukes LS, Gueguim-Kana EB (2019) Silver-gold alloy nanoparticles biofabricated by fungal xylanases exhibited potent biomedical and catalytic activities. Biotechnol Progr 35:e2829. https://doi.org/10.1002/btpr.2829

    Article  CAS  Google Scholar 

  • Elegbede JA, Lateef A, Azeez MA, Asafa TB, Yekeen TA, Oladipo IC, Aina DA, Beukes LS, Gueguim-Kana EB (2020) Biofabrication of gold nanoparticles using xylanases through valorization of corncob by Aspergillus niger and Trichoderma longibrachiatum: antimicrobial, antioxidant, anticoagulant and thrombolytic activities. Waste Biomass Valor 11(3):781–791. https://doi.org/10.1007/s12649-018-0540-2

    Article  CAS  Google Scholar 

  • Esposito E, Rigante D, Principi N (2014) Do children’s upper respiratory tract infections benefit from probiotics? BMC Infect Dis 14:194. https://doi.org/10.1186/1471-2334-14-194

  • Eszenyi P, Sztrik A, Babka B, Prokisch J (2011) Elemental, nano-sized (100–500 nm) selenium production by probiotic lactic acid bacteria. Int J Biosci Biochem Bioinformat 1:148–152

    Google Scholar 

  • Eugenio M, Müller N, Frasés S, Almeida-Paes R, Lima LMT, Lemgruber L, Farina M, de Souza W, Sant’Anna C (2016) Yeast-derived biosynthesis of silver/silver chloride nanoparticles and their antiproliferative activity against bacteria. RSC Adv 6:9893–9904. https://doi.org/10.1039/C5RA22727E

    Article  CAS  Google Scholar 

  • Ewaschuk J, Endersby R, Thiel D, Diaz H, Backer J, Ma M, Churchill T, Madsen K (2007) Probiotic bacteria prevent hepatic damage and maintain colonic barrier function in a mouse model of sepsis. Hepatology 46:841–850. https://doi.org/10.1002/hep.21750

  • FAO/WHO (2006) Probiotics in food, health and nutritional properties and guidelines for evaluation. In: FAO food and nutritional paper. no. 85. WHO/FAO, Rome

    Google Scholar 

  • Fariq A, Khan T, Yasmin A (2017) Microbial synthesis of nanoparticles and their potential applications in biomedicine. J Appl Biomed 15:241–248. https://doi.org/10.1016/j.jab.2017.03.004

    Article  Google Scholar 

  • Ferrando V, Quiberoni A, Reinhemer J, Suárez V (2015) Resistance of functional Lactobacillus plantarum strains against food stress conditions. Food Microbiol 48:63–71. https://doi.org/10.1016/j.fm.2014.12.005

  • Fink D, Nebel S, Aebi S, Zheng H, Cenni B, Nehme A, Christen RD, Howell SB (1996) The role of DNA mismatch repair in platinum drug resistance. Cancer Res 56:4881–4886

    CAS  Google Scholar 

  • Ford AC, Quigley EM, Lacy BE, Lembo AJ, Saito YA, Schiller LR, Soffer EE, Spiegel BM, Moayyedi P (2014) Efficacy of prebiotics, probiotics, and synbiotics in irritable bowel syndrome and chronic idiopathic constipation: systematic review and meta-analysis. Am J Gastroenterol 109:1547. https://doi.org/10.1038/ajg.2014.202

    Article  Google Scholar 

  • Gardiner GE, Bouchier P, O’Sullivan E, Kelly J, Collins JK, Fitzgerald G, Ross RP, Stanton C (2002) A spray-dried culture for probiotic Cheddar cheese manufacture. Int Dairy J 12:749–756. https://doi.org/10.1016/S0958-6946(02)00072-9

    Article  CAS  Google Scholar 

  • Garmasheva I, Kovalenko N, Voychuk S, Ostapchuk A, Livins’ka O, Oleschenko L (2016) Lactobacillus species mediated synthesis of silver nanoparticles and their antibacterial activity against opportunistic pathogens in vitro. BioImpacts: BI 6:219–223. https://doi.org/10.15171/bi.2016.29

  • Ghandehari F, Fani M, Rezaee M (2018) Biosynthesis of iron oxide nanoparticles by cytoplasmic extract of bacteria Lactobacillus fermentum. J Med Chem Sci 1:28–30. https://doi.org/10.26655/JMCHEMSCI.2018.9.2

  • Gopinath K, Karthika V, Sundaravadivelan C, Gowri S, Arumugam 2015. Mycogenesis of cerium oxide nanoparticles using Aspergillus niger culture filtrate and their applications for antibacterial and larvicidal activities. J Nanostruct Chem 5:295–303. https://doi.org/10.1007/s40097-015-0161-2

    Google Scholar 

  • Govindasamy T, Vidya S, Vinola JS, Jayasudha B, Selvasundhari L, Sivakami R, Anthoni SA (2013) Antimicrobial activity of silver nanoparticles synthesized by marine Lactobacillus sp against multiple drug resistance pathogens. Sci Technol Arts Res J 2:05–09

    Google Scholar 

  • Gradishar WJ (2006) Albumin-bound paclitaxel: a next-generation taxane. Expert Opin Pharmacother 7:1041–1053. https://doi.org/10.1517/14656566.7.8.1041

    Article  CAS  Google Scholar 

  • Granato D, Branco GF, Cruz AG, Faria JDAF, Shah NP (2010) Probiotic dairy products as functional foods. Compr Rev Food Sci Food Saf 9:455–470. https://doi.org/10.1111/j.1541-4337.2010.00120.x

    Article  CAS  Google Scholar 

  • Greish K (2010) Enhanced Permeability and Retention (EPR) effect for anticancer nanomedicine drug targeting. In: Grobmyer S, Moudgil B (eds) Cancer nanotechnology. Methods in molecular biology (Methods and Protocols), vol 624, pp 25–37. Humana Press. https://doi.org/10.1007/978-1-60761-609-2_3

  • Gu RX, Zhen-Quan Yang ZQ, Li ZH, Chen SL, Luo ZL (2008) Probiotic properties of lactic acid bacteria isolated from stool samples of longevous people in regions of Hotan, Xinjiang and Bama, Guangxi, China. Anaerobe 14:313–317. https://doi.org/10.1016/j.anaerobe.2008.06.001

    Article  CAS  Google Scholar 

  • Gungor OE, Kirzioglu Z, Kivanc M (2015) Probiotics: can they be used to improve oral health? Benef Microb 6:647–656. https://doi.org/10.3920/BM2014.0167

    Article  CAS  Google Scholar 

  • Hamedi S, Shojaosadati SA, Shokrollahzadeh S, Hashemi-Najaf Abadi S (2018) Controlled green synthesis of silver nanoparticles using culture supernatant of filamentous fungus. Iranian J Chem Chem Eng (IJCCE) 36:33–42

    Google Scholar 

  • Han Q, Kong B, Chen O, Sun F, Zhang H (2017) In vitro comparison of probiotic properties of lactic acid bacteria isolated from Harbin dry sausages and selected probiotics. J Funct Foods 32:391–400. https://doi.org/10.1016/j.jff.2017.03.020

    Article  CAS  Google Scholar 

  • Haverkamp RG, Marshall AT, van Agterveld D (2007) Pick your carats: nanoparticles of gold-silver-copper alloy produced in vivo. J Nanopart Res 9:697–700. https://doi.org/10.1007/s11051-006-9198-y

    Article  CAS  Google Scholar 

  • Herlem G, Picaud F, Girardet C, Micheau O (2019) Carbon nanotubes: synthesis, characterization, and applications in drug-delivery systems. In: Nanocarriers for drug delivery, pp 469–529. Elsevier. https://doi.org/10.1016/B978-0-12-814033-8.00016-3

  • Heunis TDJ, Botes M, Dicks LMT (2010) Encapsulation of Lactobacillus plantarum 423 and its bacteriocin in nanofibers. Probiotics Antimicrob Proteins 2:46–51. https://doi.org/10.1007/s12602-009-9024-9

    Article  CAS  Google Scholar 

  • HkeemIbrahem K, Salman JAS, Ali FA (2014) Biosynthesis of titanium nanoparticles using locally Lactobacillus spp. isolated from different sources. Am J Pharm Tech Res 4:397–407

    CAS  Google Scholar 

  • Huang CC, Yang Z, Lee KH, Chang HT (2007) Synthesis of highly fluorescent gold nanoparticles for sensing mercury (II). Angew Chemie 119:6948–6952. https://doi.org/10.1002/ange.200700803

  • Husseiny M, El-Aziz M, Badr Y, Mahmoud MA (2007) Biosynthesis of gold nanoparticles using Pseudomonas aeruginosa. Spectrochim Acta A: Mol Biomol Spectr 67:1003–1006. https://doi.org/10.1016/j.saa.2006.09.028

    Article  CAS  Google Scholar 

  • Hwang P, Lin X-Z, Kuo KL, Hsu FY (2017) Fabrication and cytotoxicity of fucoidan-cisplatin nanoparticles for macrophage and tumor cells. Materials 10:291. https://doi.org/10.3390/ma10030291

    Article  CAS  Google Scholar 

  • Inoue T, Kobayashi Y, Mori N, Sakagawa M, Xiao JZ, Moritani T, Sakane N, Nagai N (2018) Effect of combined bifidobacteria supplementation and resistance training on cognitive function, body composition and bowel habits of healthy elderly subjects. Benef Microb 9:843–853. https://doi.org/10.3920/BM2017.0193

    Article  CAS  Google Scholar 

  • Jacobsen CN, Nielsen VR, Hayford AE, Møller PL, Michaelsen KF, Pærregaard A, Sandstrom B, Tvede M, Jakobsen M (1999) Screening of probiotic activities of forty-seven strains of Lactobacillus spp. by in vitro techniques and evaluation of the colonization ability of five selected strains in humans. Appl Environ Microbiol 65:4949–4956

    Google Scholar 

  • Jha AK, Prasad K (2010) Biosynthesis of metal and oxide nanoparticles using Lactobacilli from yoghurt and probiotic spore tablets. Biotechnol J 5:285–291

    Article  CAS  Google Scholar 

  • Ji K, Jang NY, Kim YT (2015) Isolation of lactic acid bacteria showing antioxidative and probiotic activities from kimchi and infant feces. J Microbiol Biotechnol 25:1568–1577. https://doi.org/10.1128/AEM.65.11.4949-4956

  • Johnston BC, Stephanie SY, Joshua ZG, Kristian T, Per OV, Mark L, Gordon HG (2012) Probiotics for the prevention of Clostridium difficile–associated diarrhea-a systematic review and meta-analysis. Ann Intern Med 157:878–888. https://doi.org/10.7326/0003-4819-157-12-201212180-00563

  • Kaprellyanz L, Zykova N, Petrosyants A, Zykov A (2018) Development of biotechnology of getting selenium nanostructures with Lactobacillus acidophilus culture. EUREKA: Life Sci 1:54–60

    Google Scholar 

  • Kato Y, Kikuchi F, Imura Y, Yoshimura E, Suzuki M (2018) Various shapes of gold nanoparticles synthesized by glycolipids extracted from Lactobacillus casei. In: Biomineralization, pp 259–265. Springer, Singapore. https://doi.org/10.1007/978-981-13-1002-7_27

  • Kaur R, Kaudal T, Sharma A (2018) Probiotic mediated synthesis of selenium nanoparticles: characterization and biofilm scavenging analysis. Res J Life Sci Bioinform Pharmaceut Chem Sci 4:291–304. https://doi.org/10.26479/2018.0403.26

  • Keating CD (2005) Nanoscience enables ultrasensitive detection of Alzheimer’s biomarker. Proc Natl Acad Sci (USA) 102:2263–2264. https://doi.org/10.1073/pnas.0500024102

    Article  CAS  Google Scholar 

  • Khan S, Rizvi SMD, Avaish M, Arshad M, Bagga P, Khan MS (2015) A novel process for size controlled biosynthesis of gold nanoparticles using bromelain. Mater Lett 159:373–376. https://doi.org/10.1016/j.matlet.2015.06.118

    Article  CAS  Google Scholar 

  • Khan I, Nagarjuna R, Dutta JR, Ganesan R (2019) Towards single crystalline, highly monodisperse and catalytically active gold nanoparticles capped with probiotic Lactobacillus plantarum derived lipase. Appl Nanosci 9:1101–1109. https://doi.org/10.1007/s13204-018-0735-7

    Article  CAS  Google Scholar 

  • Khatami M, Pourseyedi S, Khatami M, Hamidi H, Zaeifi M, Soltani L (2015) Synthesis of silver nanoparticles using seed exudates of Sinapis arvensis as a novel bioresource, and evaluation of their antifungal activity. Bioresour Bioprocess 2:19. https://doi.org/10.1186/s40643-015-0043-y

    Article  Google Scholar 

  • Kheradmand E, Rafii F, Yazdi MH, Sepahi AA, Shahverdi AS, Oveisi MR (2014) The antimicrobial effects of selenium nanoparticle-enriched probiotics and their fermented broth against Candida albicans. DARU J Pharmaceut Sci 22:48. https://doi.org/10.1186/2008-2231-22-48

    Article  CAS  Google Scholar 

  • Kim HK, Choi MJ, Cha SH, Koo YK, Jun SH, Cho S, Park Y (2013) Earthworm extracts utilized in the green synthesis of gold nanoparticles capable of reinforcing the anticoagulant activities of heparin. Nanoscale Res Lett 8:542. https://doi.org/10.1186/1556-276X-8-542

    Article  CAS  Google Scholar 

  • Klaus T, Joerger R, Olsson E, Granqvist CG (1999) Silver-based crystalline nanoparticles, microbially fabricated. Proc Natl Acad Sci (USA) 96:13611–13614. https://doi.org/10.1073/pnas.96.24.13611

    Article  CAS  Google Scholar 

  • Korbekandi H, Iravani S, Abbasi S (2012) Optimization of biological synthesis of silver nanoparticles using Lactobacillus casei subsp. casei. J Chem Technol Biotechnol 87:932–937. https://doi.org/10.1002/jctb.3702

    Article  CAS  Google Scholar 

  • Kouhkan M, Ahangar P, Babaganjeh LA, Allahyari-Devin M (2020) Biosynthesis of copper oxide nanoparticles using Lactobacillus casei subsp. casei and its anticancer and antibacterial activities. Current Nanosci 6(1):101–111. https://doi.org/10.2174/1573413715666190318155801

  • Kowshik M, Ashtaputre S, Kharrazi S, Vogel W, Urban J, Kulkarni SK, Paknikar KM (2002) Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3. Nanotechnology 14:95. https://doi.org/10.1088/0957-4484/14/1/321

    Article  Google Scholar 

  • Kumar M, Kumar A, Nagpal R, Mohania D, Behare P, Verma V, Kumar P, Poddar D, Aggarwal PK, Henry CJK, Jain S (2010) Cancer-preventing attributes of probiotics: an update. Int J Food Sci Nutr 61:473–496. https://doi.org/10.3109/09637480903455971

    Article  CAS  Google Scholar 

  • Kumari MM, Jacob J, Philip D (2015) Green synthesis and applications of Au-Ag bimetallic nanoparticles. Spectrochim Acta A: Mol Biomol Spectr. 137:185–192. https://doi.org/10.1016/j.saa.2014.08.079

  • Kumpu M, Kekkonen RA, Kautiainen H, Järvenpää S, Kristo A, Huovinen P, Pitkäranta A, Korpela R, Hatakka K (2012) Milk containing probiotic Lactobacillus rhamnosus GG and respiratory illness in children: a randomized, double-blind, placebo-controlled trial. Eur J Clin Nutr 66:1020–1023. https://doi.org/10.1038/ejcn.2012.62

    Article  CAS  Google Scholar 

  • Kushwaha A, Singh VK, Bhartariya J, Singh P, Yasmeen K (2015) Isolation and identification of E. coli bacteria for the synthesis of silver nanoparticles: characterization of the particles and study of antibacterial activity. Eur J Exp Biol 5:65–70

    Google Scholar 

  • Lahteinen T, Malinen E, Koort JMK Mertaniemi-Hannus U, Hankimo T, Karikoski N, Pakkanen S, Laine H, Sillanpaa H, Soderholm H, Palva A (2010) Probiotic properties of Lactobacillus isolates originating from porcine intestine and feces. Anaerobe 16:293–300. https://doi.org/10.1016/j.anaerobe.2009.08.002

  • Lateef A, Adeeyo AO (2015) Green synthesis and antibacterial activities of silver nanoparticles using extracellular laccase of Lentinus edodes Not. Sci Biol 7:405–411. https://doi.org/10.15835/nsb.7.4.9643

  • Lateef A, Adelere IA, Gueguim-Kana EB (2015a) The biology and potential biotechnological applications of Bacillus safensis. Biology 70:411–419. https://doi.org/10.1515/biolog-2015-0062

    Article  Google Scholar 

  • Lateef A, Adelere IA, Gueguim-Kana EB, Asafa TB, Beukes LS (2015b) Green synthesis of silver nanoparticles using keratinase obtained from a strain of Bacillus safensis LAU 13. Int Nano Lett 5:29–35. https://doi.org/10.1007/s40089-014-0133-4

    Article  CAS  Google Scholar 

  • Lateef A, Azeez MA, Asafa TB, Yekeen TA, Akinboro A, Oladipo IC, Ajetomobi FE, Gueguim-Kana EB, Beukes LS (2015c) Cola nitida-mediated biogenic synthesis of silver nanoparticles using seed and seed shell extracts and evaluation of antibacterial activities. BioNanoSci 5:196–205. https://doi.org/10.1007/s12668-015-0181-x

  • Lateef A, Ojo SA, Akinwale AS, Azeez L, Gueguim-Kana EB, Beukes LS (2015d) Biogenic synthesis of silver nanoparticles using cell-free extract of Bacillus safensis LAU 13: antimicrobial, free radical scavenging and larvicidal activities. Biology 70:1295–1306. https://doi.org/10.1515/biolog-2015-0164

  • Lateef A, Akande MA, Azeez MA, Ojo SA, Folarin BI, Gueguim-Kana EB, Beukes LS (2016a) Phytosynthesis of silver nanoparticles (AgNPs) using miracle fruit plant (Synsepalum dulcificum) for antimicrobial, catalytic, anti-coagulant and thrombolytic applications. Nanotechnol Rev 5:507–520. https://doi.org/10.1515/ntrev-2016-0039

    Article  CAS  Google Scholar 

  • Lateef A, Azeez MA, Asafa TB, Yekeen TA, Akinboro A, Oladipo IC, Azeez L, Ajibade SE, Ojo SA, Gueguim-Kana EB, Beukes LS (2016b) Biogenic synthesis of silver nanoparticles using a pod extract of Cola nitida: Antibacterial, antioxidant activities and application as a paint additive. J Taibah Univ Sci 10:551–562. https://doi.org/10.1016/j.jtusci.2015.10.010

  • Lateef A, Azeez MA, Asafa TB, Yekeen TA, Akinboro A, Oladipo IC, Azeez L, Ojo SA, Gueguim-Kana EB, Beukes LS (2016c) Cocoa pod extract-mediated biosynthesis of silver nanoparticles: its antimicrobial, antioxidant and larvicidal activities. J Nanostruct Chem 6:159–169. https://doi.org/10.1007/s40097-016-0191-4

    Article  CAS  Google Scholar 

  • Lateef A, Ojo SA, Elegbede JA (2016d) The emerging roles of arthropods and their metabolites in the green synthesis of metallic nanoparticles. Nanotechnol Rev 5:601–622. https://doi.org/10.1515/ntrev-2016-0049

    Article  CAS  Google Scholar 

  • Lateef A, Ojo SA, Azeez MA, Asafa TB, Yekeen TA, Akinboro A, Oladipo IC, Gueguim-Kana EB, Beukes LS (2016e) Cobweb as novel biomaterial for the green and eco-friendly synthesis of silver nanoparticles. Appl Nanosci 6:863–874. https://doi.org/10.1007/s13204-015-0492-9

  • Lateef A, Ojo SA, Folarin BI, Gueguim-Kana EB, Beukes LS (2016f) Kolanut (Cola nitida) mediated synthesis of silver-gold alloy nanoparticles: antifungal, catalytic, larvicidal and thrombolytic applications. J Clust Sci 27:1561–1577. https://doi.org/10.1007/s10876-016-1019-6

    Article  CAS  Google Scholar 

  • Lateef A, Akande MA, Ojo SA, Folarin BI, Gueguim-Kana EB, Beukes LS (2016g) Paper wasp nest-mediated biosynthesis of silver nanoparticles for antimicrobial, catalytic, anti-coagulant and thrombolytic applications. 3Biotech 6:140. https://doi.org/10.1007/s13205-016-0459-x

  • Lateef A, Ojo SA, Oladejo SM (2016h) Anti-candida, anti-coagulant and thrombolytic activities of biosynthesized silver nanoparticles using cell-free extract of Bacillus safensis LAU 13. Process Biochem 51:1406–1412. https://doi.org/10.1016/j.procbio.2016.06.027

    Article  CAS  Google Scholar 

  • Lateef A, Ojo SA, Elegbede JA, Azeez MA, Yekeen TA, Akinboro A (2017) Evaluation of some biosynthesized silver nanoparticles for biomedical applications: hydrogen peroxide scavenging, anticoagulant and thrombolytic activities. J Clust Sci 28:1379–1392. https://doi.org/10.1007/s10876-016-1146-0

    Article  CAS  Google Scholar 

  • Lateef A, Folarin BI, Oladejo SM, Akinola PO, Beukes LS and Gueguim-Kana EB (2018a) Characterization, antimicrobial, antioxidant and anticoagulant activities of silver nanoparticles synthesized from Petiveria alliacea L. leaf extract. Prep Biochem Biotechnol 48(7):646–652. https://doi.org/10.1080/10826068.2018.1479864

  • Lateef A, Ojo SA, Elegbede JA, Akinola PO, and Akanni EO (2018b) Nanomedical applications of nanoparticles for blood coagulation disorders. In: Dasgupta N, Ranjan S. Lichtfouse E (eds) Environmental nanotechnology, vol 1. Springer International Publishing AG, Cham, Switzerland. https://doi.org/10.1007/978-3-319-76090-2_8. ISBN 978-3-319-76089-6. Pp. 243-277

  • Lateef A, Elegbede JA, Akinola PO, Ajayi VA (2019) Biomedical applications of green synthesized-metallic nanoparticles: a review. Pan Afr J Life Sci 3: 157–182. https://doi.org/10.36108/pajols/9102/30(0170)

  • Lateef A, Oladejo SM, Akinola PO, Aina DA, Beukes LS, Folarin BI, Gueguim-Kana EB (2020) Facile synthesis of silver nanoparticles using leaf extract of Hyptis suaveolens (L.) Poit for environmental and biomedical applications. IOP Conf Ser.: Mater Sci Eng 805:012042. https://doi.org/10.1088/1757-899X/805/1/012042

  • Li PC, Wei CW, Liao CK, Chen CD, Pao KC, Wang CRC, Wu YN, Shieh DB (2007) Photoacoustic imaging of multiple targets using gold nanorods. IEEE Trans Ultrason Ferroelectr Freq Control 54:1642–1647

    Article  Google Scholar 

  • Li X, Xu H, Chen ZS, Chen G (2011) Biosynthesis of nanoparticles by microorganisms and their applications. J Nanomater. Article ID 270974. https://doi.org/10.1155/2011/270974

    Google Scholar 

  • Lin HC, Su BH, Chen AC, Lin TW, Tsai CH, Yeh TF, Oh W (2005) Oral probiotics reduce the incidence and severity of necrotizing enterocolitis in very low birth weight infants. Pediatrics 115:1–4. https://doi.org/10.1542/peds.2004-1463

    Article  Google Scholar 

  • Liz-Marzan LM, Philipse AP (1995) Stable hydrosols of metallic and bimetallic nanoparticles immobilized on imogolite fibres. J Phys Chem 99:15120–15128. https://doi.org/10.1021/j100041a031

    Article  CAS  Google Scholar 

  • Lockman PR, Mumper RJ, Khan MA, Allen DD (2002) Nanoparticle technology for drug delivery across the blood-brain barrier. Drug Dev Ind Pharm 28:1–13. https://doi.org/10.1081/DDC-120001481

    Article  CAS  Google Scholar 

  • Markus J, Mathiyalagan R, Kim YJ, Abbai R, Singh P, Ahn S, Perez ZEJ, Hurh J, Yang DC (2016) Intracellular synthesis of gold nanoparticles with antioxidant activity by probiotic Lactobacillus kimchicus DCY51T isolated from Korean kimchi. Enzyme Microb Technol 95:85–93. https://doi.org/10.1016/j.enzmictec.2016.08.018

    Article  CAS  Google Scholar 

  • Martinez RCR, Franceschini SA, Patta MC, Quintana SM, Candido RC, Ferreira JC, De Martinis ECP, Reid G (2009). Improved treatment of vulvovaginal candidiasis with fluconazole plus probiotic Lactobacillus rhamnosus GR-1 and Lactobacillus reuteri RC-14. Lett Appl Microbiol 48:269–274. https://doi.org/10.1111/j.1472-765X.2008.02477.x

  • Mergeay M, Monchy S, Vallaeys T, Auquier V, Benotmane A, Bertin P, Taghavi S, Dunn J, Van Der Lelie D, Wattiez R (2003) Ralstonia metallidurans, a bacterium specifically adapted to toxic metals: towards a catalogue of metal-responsive genes. FEMS Microbiol Rev 27:385–410. https://doi.org/10.1016/S0168-6445(03)00045-7

  • Meurman JH (2005) Probiotics: do they have a role in oral medicine and dentistry? Eur J Oral Sci 113:188–196. https://doi.org/10.1111/j.1600-0722.2005.00191.x

    Article  Google Scholar 

  • Miele E, Pascarella F, Giannetti E, Quaglietta L, Baldassano RN, Staiano A (2009) Effect of a probiotic preparation (VSL#3) on induction and maintenance of remission in children with ulcerative colitis. Am J Gastroenterol 104:437–443. https://doi.org/10.1038/ajg.2008.118

  • Miller H, Ferris R, Phelps BR (2016) The effect of probiotics on CD4 counts among people living with HIV: a systematic review. Benef Microb 7:345–351. https://doi.org/10.3920/BM2015.0163

    Article  CAS  Google Scholar 

  • Mirjani R, Mohammad AF, Mohammad S, Neda S, Mohammad RK, Ahmad RS (2015) Biosynthesis of tellurium nanoparticles by Lactobacillus plantarum and the effect of nanoparticle-enriched probiotics on the lipid profiles of mice. IET Nanobiotechnol 9:300–305. https://doi.org/10.1049/iet-nbt.2014.0057

    Article  Google Scholar 

  • Mishra M, Paliwal JS, Singh SK, Selvarajan E, Subathradevi C, Mohanasrinivasan V (2013) Studies on the inhibitory activity of biologically synthesized and characterized zinc oxide nanoparticles using Lactobacillus sporogens against Staphylococcus aureus. J Pure Appl Microbiol 7:1263–1268

    Google Scholar 

  • Mishra A, Kumari M, Pandey S, Chaudhry V, Gupta KC, Nautiyal CS (2014) Biocatalytic and antimicrobial activities of gold nanoparticles synthesized by Trichoderma sp. Bioresour Technol 166:235–242. https://doi.org/10.1016/j.biortech.2014.04.085

  • Mohanasrinivasan V, Devi CS, Mehra A, Prakash S, Agarwal A, Selvarajan E, Naine SJ (2018) Biosynthesis of MgO nanoparticles using Lactobacillus sp. and its activity against human leukemia cell lines HL-60. BioNanoScience 8:249–253. https://doi.org/10.1007/s12668-017-0480-5

    Article  Google Scholar 

  • Mokkala K, Röytiö H, Ekblad U, Laitinen K (2017) Opportunities for probiotics and polyunsaturated fatty acids to improve metabolic health of overweight pregnant women. Benef Microb 8:3–15. https://doi.org/10.3920/BM2016.0068

    Article  CAS  Google Scholar 

  • Moreno-Martin G, Pescuma M, Pérez-Corona T, Mozzi F, Madrid Y (2017) Determination of size and mass-and number-based concentration of biogenic SeNPs synthesized by lactic acid bacteria by using a multimethod approach. Analy Chim Acta 992:34–41. https://doi.org/10.1016/j.aca.2017.09.033

    Article  CAS  Google Scholar 

  • Muggia FM (2006) New and emerging intraperitoneal (IP) drugs for ovarian cancer treatment. Sem Oncol 33:S18–S24. https://doi.org/10.1053/j.seminoncol.2006.11.006

    Article  CAS  Google Scholar 

  • Nagpal R, Kaur A (2011) Synbiotic effect of various prebiotics on in-vitro activities of probiotic lactobacilli. Ecol Food Nutr 50:63–68. https://doi.org/10.1080/03670244.2011.539161

    Article  Google Scholar 

  • Nagpal R, Kumar A, Arora S (2010) In-vitro probiotic potential of lactobacilli from indigenous fermented milk products. Int J Probiotics Prebiotics 5:105–112

    Google Scholar 

  • Nagpal R, Kumar A, Kumar M, Behare PV, Jain S, Yadav H (2012) Probiotics, their health benefits and applications for developing healthier foods: a review. FEMS Microbiol Lett 334:1–15. https://doi.org/10.1111/j.1574-6968.2012.02593.x

    Article  CAS  Google Scholar 

  • Nair B, Pradeep T (2002) Coalescence of nanoclusters and formation of submicron crystallites assisted by Lactobacillus strains. Cryst Growth Design 2:293–298. https://doi.org/10.1021/cg0255164

    Article  CAS  Google Scholar 

  • Nath D, Banerjee P (2013) Green nanotechnology-a new hope for medical biology. Environ Toxicol Pharmacol 36:997–1014. https://doi.org/10.1016/j.etap.2013.09.002

    Article  CAS  Google Scholar 

  • Nithya R, Ragunathan R (2012) Synthesis of silver nanoparticles using a probiotic microbe and its antibacterial effect against multidrug resistant bacteria. Afr J Biotechnol 11:11013–11021. https://doi.org/10.5897/AJB12.439

    Article  CAS  Google Scholar 

  • O’Connor A, Molina-Infante J, Gisbert JP, O’Morain C (2013) Treatment of Helicobacter pylori Infection 2013. Helicobacter 18(Suppl. 1):58–65. https://doi.org/10.1111/hel.12075

    Article  Google Scholar 

  • Ojo SA, Lateef A, Azeez MA, Oladejo SM, Akinwale AS, Asafa TB, Yekeen TA, Akinboro A, Oladipo IC, Gueguim-Kana EB, Beukes LS (2016) Biomedical and catalytic applications of gold and silver-gold alloy nanoparticles biosynthesized using cell-free extract of Bacillus Safensis LAU 13: antifungal, dye degradation, anti-coagulant and thrombolytic activities. IEEE Trans Nanobiosci 15:1536–1541. https://doi.org/10.1109/TNB.2016.2559161

    Article  Google Scholar 

  • Ojoawo SO, Lateef A, Oyeniran FA, Kupoluyi OT, Opatola OS, Daramola JO (2017) Bioaccumulation of heavy metals in steel processing industrial effluents using Bacillus safensis LAU 13. J Environ Biotechnol Res 6:58–63

    Google Scholar 

  • Okazaki KI, Kiyama T, Hirahara K, Tanaka N, Kuwabata S, Torimoto T (2008) Single-step synthesis of gold-silver alloy nanoparticles in ionic liquids by sputter deposition technique. Chem Comm 6:691–693. https://doi.org/10.1039/B714761A

  • Oladipo IC, Lateef A, Azeez MA, Asafa TB, Yekeen TA, Akinboro A, Akinwale AS, Gueguim-Kana EB, Beukes LS (2017a) Green synthesis and antimicrobial activities of silver nanoparticles using cell free-extracts of Enterococcus species. Not. Sci Biol 9:196–203. https://doi.org/10.15835/nsb929938

  • Oladipo IC, Lateef A, Elegbede JA, Azeez MA, Asafa TB, Yekeen TA, Akinboro A, Gueguim-Kana EB, Beukes LS, Oluyide TO, Atanda OR (2017b) Enterococcus species for the one-pot biofabrication of gold nanoparticles: characterization and nanobiotechnological applications. J Photochem Photobiol B: Biol 173:250–257. https://doi.org/10.1016/j.jphotobiol.2017.06.003

    Article  CAS  Google Scholar 

  • Olajire AA, Abidemi JJ, Lateef A, Benson NU (2017) Adsorptive desulphurization of model oil by Ag nanoparticles-modified activated carbon prepared from brewer’s spent grains. J Environ Chem Eng 5:147–159. https://doi.org/10.1016/j.jece.2016.11.033

    Article  CAS  Google Scholar 

  • Oliveira RPS, Florence ACR, Silva RC, Perego P, Converti A, Gioielli LA (2009) Effects of different prebiotics on the fermentation kinetics, probiotic survival and fatty acids profiles in nonfat symbiotic fermented milk. Int J Food Microbiol 128:467–472. https://doi.org/10.1016/j.ijfoodmicro.2008.10.012

  • Omidi B, Hashemi S, Mansour B, Kambiz L (2014) Biosynthesis of silver nanoparticles by Lactobacillus fermentum. Bull Environ Pharmacol Life Sci 3:186–192

    Google Scholar 

  • Ozen M, Dinleyici EC (2015) The history of probiotics: the untold story. Benef Microb 6:159–165. https://doi.org/10.3920/BM2014.0103

    Article  CAS  Google Scholar 

  • Patel A, Shah N, Prajapati JB (2014) Clinical application of probiotics in the treatment of Helicobacter pylori infection-a brief review. J Microbiol Immunol Infect 47:429–437. https://doi.org/10.1016/j.jmii.2013.03.010

    Article  Google Scholar 

  • Patra JK, Das G, Fraceto LF, Campos EVR, del Pilar Rodriguez-Torres M, Acosta-Torres LS, Diaz-Torres LA, Grillo R, Swamy MK, Sharma S, Habtemariam S, Shin HS (2018) Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnol 16:71. https://doi.org/10.1186/s12951-018-0392-8

    Article  CAS  Google Scholar 

  • Patten DA, Laws AP (2015) Lactobacillus-produced exopolysaccharides and their potential health benefits: a review. Benef Microb 6:457–471. https://doi.org/10.3920/BM2014.0117

    Article  CAS  Google Scholar 

  • Pérez Martínez G, Bäuerl C, Collado MC (2014) Understanding gut microbiota in elderly’s health will enable intervention through probiotics. Benef Microb 5:235–246. https://doi.org/10.3920/BM2013.0079

    Article  CAS  Google Scholar 

  • Perez-Pardo P, Dodiya HB, Engen PA, Naqib A, Forsyth CB, Green SJ, Garssen J, Keshavarzian A, Kraneveld AD (2018) Gut bacterial composition in a mouse model of Parkinson’s disease. Benef Microb 9:799–814. https://doi.org/10.3920/BM2017.0202

    Article  CAS  Google Scholar 

  • Priya AJ, Vijayalakshmi SP, Raichur AM (2011) Enhanced survival of probiotic Lactobacillus acidophilus by encapsulation with nanostructured polyelectrolyte layers through layer-by-layer approach. J Agri Food Chem 59:11838–11845. https://doi.org/10.1021/jf203378s

    Article  CAS  Google Scholar 

  • Priyadarshini E, Pradhan N, Sukla LB, Panda PK, Mishra BK (2014) Biogenic synthesis of floral-shaped gold nanoparticles using a novel strain Talaromyces flavus. Ann Microbiol 64:1055–1063. https://doi.org/10.1007/s13213-013-0744-4

    Article  CAS  Google Scholar 

  • Qiao H, Zhu Z, Fang D, Sun Y, Kang C, Di L, Zhang L, Gao Y (2018) Redox-triggered mitoxantrone prodrug micelles for overcoming multidrug-resistant breast cancer. J Drug Targeting 26:75–85. https://doi.org/10.1080/1061186X.2017.1339195

    Article  CAS  Google Scholar 

  • Qiao L, Dou X, Yan S, Zhang B, Xu C (2020) Biogenic selenium nanoparticles synthesized by Lactobacillus casei ATCC 393 alleviate diquat-induced intestinal barrier dysfunction in C57BL/6 mice through their antioxidant activity. Food Funct 11(4):3020–3031. https://doi.org/10.1039/D0FO00132E

    Article  CAS  Google Scholar 

  • Rai T, Panda D (2015) An extracellular enzyme synthesizes narrow-sized silver nanoparticles in both water and methanol. Chem Phys Lett 623:108–112. https://doi.org/10.1016/j.cplett.2015.02.003

    Article  CAS  Google Scholar 

  • Raj R, Dalei K, Chakraborty J, Das S (2016) Extracellular polymeric substances of a marine bacterium mediated synthesis of CdS nanoparticles for removal of cadmium from aqueous solution. J Colloid Interf Sci 462:166–175. https://doi.org/10.1016/j.jcis.2015.10.004

    Article  CAS  Google Scholar 

  • Rajoka MS, Mehwish HM, Zhang H, Ashraf M, Fang H, Zeng X, Wu Y, Khurshid M, Zhao L, He Z (2020) Antibacterial and antioxidant activity of exopolysaccharide mediated silver nanoparticle synthesized by Lactobacillus brevis isolated from Chinese koumiss. Colloids Surf B: Biointerf 186:110734. https://doi.org/10.1016/j.colsurfb.2019.110734

    Article  CAS  Google Scholar 

  • Ramakrishna M, Babu DR, Gengan RM, Chandra S, Rao GN (2016) Green synthesis of gold nanoparticles using marine algae and evaluation of their catalytic activity. J Nanostruct Chem 6:1–13. https://doi.org/10.1007/s40097-015-0173-y

    Article  CAS  Google Scholar 

  • Ramalingmam P, Muthukrishnan S, Thangaraj P (2015) Biosynthesis of silver nanoparticles using an endophytic fungus, Curvularia lunata and its antimicrobial potential. J Nanosci Nanoeng 1:241–247

    Google Scholar 

  • Ranadheera RDCS, Baines SK, Adams MC (2010) Importance of food in probiotic efficacy. Food Res Int 43:1–7. https://doi.org/10.1016/j.foodres.2009.09.009

    Article  CAS  Google Scholar 

  • Ranganath E, Rathod V, Banu A (2012) Screening of Lactobacillus spp, for mediating the biosynthesis of silver nanoparticles from silver nitrate. IOSR J Pharm 2:237–241

    Google Scholar 

  • Recine N, Palma E, Domenici L, Giorgini M, Imperiale L, Sassu C, Musella A, Marchetti C, Muzii L, Panici PB (2016) Restoring vaginal microbiota: biological control of bacterial vaginosis. A prospective case–control study using Lactobacillus rhamnosus BMX 54 as adjuvant treatment against bacterial vaginosis. Arch Gynecol Obstetr 293:101–107. https://doi.org/10.1007/s00404-015-3810-2

    Article  Google Scholar 

  • Salem WM, Haridy M, Sayed WF, Hassan NH (2014) Antibacterial activity of silver nanoparticles synthesized from latex and leaf extract of Ficus sycomorus. Ind Crops Prod 62:228–234. https://doi.org/10.1016/j.indcrop.2014.08.030

  • Sani NJ, Aminu BM, Mukhtar MD (2017) Eco-friendly synthesis of silver nanoparticles using Lactobacillus delbrueckii subsp. bulgaricus isolated from kindrimo (locally fermented milk) in Kano State, Nigeria. Bayero J Pure Appl Sci 10:481–488

    Article  Google Scholar 

  • Saravanan M, Nanda A, Kingsley SJ (2011) Lactobacillus delbrueckii mediated synthesis of silver nanoparticles and their evaluation of antibacterial efficacy against MDR clinical pathogens. In: Nanoscience, Engineering and Technology (ICONSET), 2011 international conference on, pp 386–390. IEEE

    Google Scholar 

  • Saxami G, Karapetsas A, Chondrou P, Vasiliadis S, Lamprianidou E, Kotsianidis I, Ypsilantis P, Botaitis S, Simopoulos C, Galanis A (2017) Potentially probiotic Lactobacillus strains with anti-proliferative activity induce cytokine/chemokine production and neutrophil recruitment in mice. Benef Microb 8:615–623. https://doi.org/10.3920/BM2016.0202

    Article  CAS  Google Scholar 

  • Shankar S, Jaiswal L, Aparna RSL, Prasad RGSV (2014) Synthesis, characterization, in vitro biocompatibility, and antimicrobial activity of gold, silver and gold silver alloy nanoparticles prepared from Lansium domesticum fruit peel extract. Mater Lett 137:75–78. https://doi.org/10.1016/j.matlet.2014.08.122

    Article  CAS  Google Scholar 

  • Shankarappa SA, Koyakutty M, Nair SV (2014) Efficacy versus toxicity—the Ying and Yang in translating nanomedicines. Nanomater Nanotechnol 4:4–23. https://doi.org/10.5772/59127

    Article  CAS  Google Scholar 

  • Shanmugam C, Sivasubramanian G, Parthasarathi B, Baskaran K, Balachander R, Parameswaran VR (2016) Antimicrobial, free radical scavenging activities and catalytic oxidation of benzyl alcohol by nano-silver synthesized from the leaf extract of Aristolochia indica L.: a promenade towards sustainability. Appl Nanosci 6:711–723. https://doi.org/10.1007/s13204-015-0477-8

    Article  CAS  Google Scholar 

  • Shanthi S, Jayaseelan BD, Velusamy P, Vijayakumar S, Chih CT, Vaseeharan B (2016) Biosynthesis of silver nanoparticles using a probiotic Bacillus licheniformis Dahb1 and their antibiofilm activity and toxicity effects in Ceriodaphnia cornuta. Microb Pathog 93:70–77. https://doi.org/10.1016/j.micpath.2016.01.014

    Article  CAS  Google Scholar 

  • Shenoy D, Fu W, Li J, Crasto C, Jones G, DiMarzio C, Sridhar S, Amiji M (2006) Surface functionalization of gold nanoparticles using hetero-bifunctionalpoly (ethylene glycol) spacer for intracellular tracking and delivery. Int J Nanomed 1:51–57. https://doi.org/10.2147/nano.2006.1.1.51

    Article  CAS  Google Scholar 

  • Shinde NC (2012) Nanoparticles: advances in drug delivery systems. Res J Pharmaceut Biol Chem Sci 1:132–137

    Google Scholar 

  • Shrivastava S, Dash D (2009) Applying nanotechnology to human health: revolution in biomedical sciences. J Nanotechnol. Article ID 184702. https://doi.org/10.1155/2009/184702

    Google Scholar 

  • Singh P, Kim YJ, Yang DC (2015a) A strategic approach for rapid synthesis of gold and silver nanoparticles by Panax ginseng leaves. Artif Cells Nanomed Biotechnol 44:1949–1957. https://doi.org/10.3109/21691401.2015.1115410

    Article  CAS  Google Scholar 

  • Singh R, Shedbalkar UU, Wadhwani SA, Chopade BA (2015b) Bacteriagenic silver nanoparticles: synthesis, mechanism, and applications. Appl Microbiol Biotechnol 99:4579–4593. https://doi.org/10.1007/s00253-015-6622-1

    Article  CAS  Google Scholar 

  • Sonker AS, Pathak J, Kannaujiya V, Sinha R, Pathak J, Kannaujiya V (2017) Characterization and in vitro antitumor, antibacterial and antifungal activities of green synthesized silver nanoparticles using cell extract of Nostoc sp. strain HKAR-2. Canadian J Biotechnol 1:26–37

    Article  Google Scholar 

  • Spagnoletti FN, Spedalieri C, Kronberg F, Giacometti R (2019) Extracellular biosynthesis of bactericidal Ag/AgCl nanoparticles for crop protection using the fungus Macrophomina phaseolina. J Environ Manag 231:457–466. https://doi.org/10.24870/cjb.2017-000103

  • Sreelakshmi C, Datta KKR, Yadav JS, Reddy BV (2011) Honey derivatized Au and Ag nanoparticles and evaluation of its antimicrobial activity. J Nanosci Nanotechnol 11:6995–7000. https://doi.org/10.1166/jnn.2011.4240

    Article  CAS  Google Scholar 

  • Sreelakshmy V, Deepa MK, Mridula P (2016) Green synthesis of silver nanoparticles from Glycyrrhiza glabra root extract for the treatment of gastric ulcer. J Dev Drugs 5:152

    Google Scholar 

  • Sun JB, Duan JH, Dai SL (2007) In vitro and in vivo antitumor effects of doxorubicin loaded with bacterial magnetosomes (DBMs) on H22 cells: the magnetic bionanoparticles as drug carriers. Cancer Lett 258:109–117. https://doi.org/10.1016/j.canlet.2007.08.018

    Article  CAS  Google Scholar 

  • Suresh K, Prabagaran SR, Sengupta S, Shivaji S (2004) Bacillus indicus sp. nov., an arsenic-resistant bacterium isolated from an aquifer in West Bengal, India. Int J Syst Evolut Microbiol 54:1369–1375. https://doi.org/10.1099/ijs.0.03047-0

    Article  CAS  Google Scholar 

  • Sveinbjornsdottir S (2016) The clinical symptoms of Parkinson’s disease. J Neurochem 139:318–324. https://doi.org/10.1111/jnc.13691

  • Szajewska H, Skorka A, Dylag M (2007) Meta-analysis: Saccharomyces boulardii for treating acute diarrhoea in children. Aliment Pharmacol Therapeut 25:257–264. https://doi.org/10.1111/j.1365-2036.2006.03202.x

    Article  CAS  Google Scholar 

  • Talekar S, Joshi G, Chougle R, Nainegali B, Desai S, Joshi A, Kambale S, Kamat P, Haripurkar R, Jadhav S, Nadar S (2014) Preparation of stable cross-linked enzyme aggregates (CLEAs) of NADH-dependent nitrate reductase and its use for silver nanoparticle synthesis from silver nitrate. Catal Comm 53:62–66. https://doi.org/10.1016/j.catcom.2014.05.003

    Article  CAS  Google Scholar 

  • Torabian P, Ghandehari F, Fatemi M (2018) Biosynthesis of iron oxide nanoparticles by cytoplasmic extracts of bacteria Lactobacillus casei. Asian J Green Chem 2:181–188. https://doi.org/10.22034/AJGC.2018.57914

  • Van der Speeten K, Stuart OA, Sugarbaker PH (2009) Pharmacokinetics and pharmacodynamics of perioperative cancer chemotherapy in peritoneal surface malignancy. Cancer J 15:216–224. https://doi.org/10.1097/PPO.0b013e3181a58d95

    Article  Google Scholar 

  • Vijayanandan AS, Balakrishnan RM (2018) Biosynthesis of cobalt oxide nanoparticles using endophytic fungus Aspergillus nidulans. J Environ Manag 218:442–450. https://doi.org/10.1016/j.jenvman.2018.04.032

    Article  CAS  Google Scholar 

  • Visha P, Nanjappan K, Selvaraj P, Jayachandran S, Elango A, Kumaresan G (2015) Biosynthesis and structural characteristics of selenium nanoparticles using Lactobacillus acidophilus bacteria by wet sterilization process. Int J Adv Vet Sci Technol 4:178–183

    Article  Google Scholar 

  • Wani IA, Ahmad T (2013) Size and shape dependant antifungal activity of gold nanoparticles: a case study of Candida. Colloids Surf B: Biointerf 101:162–170. https://doi.org/10.1016/j.colsurfb.2012.06.005

  • Wei D, Qian W (2008) Facile synthesis of Ag and Au nanoparticles utilizing chitosan as a mediator agent. Colloids Surf B: Biointerf 62:136–142. https://doi.org/10.1016/j.colsurfb.2007.09.030

    Article  CAS  Google Scholar 

  • West CE (2016) Probiotics for allergy prevention. Benef Microb 7:171–179. https://doi.org/10.3920/BM2015.0073

    Article  CAS  Google Scholar 

  • Wu Z, Wang G, Pan D, Guo Y, Zeng X, Sun Y, Cao J (2016) Inflammation-related pro-apoptotic activity of exopolysaccharides isolated from Lactococcus lactis subsp. lactis. Benef Microb 7:761–768. https://doi.org/10.3920/BM2015.0192

    Article  CAS  Google Scholar 

  • Xu C, Guo Y, Qiao L, Ma L, Cheng Y, Roman A (2018a) Biogenic synthesis of novel functionalized selenium nanoparticles by Lactobacillus casei ATCC 393 and its protective effects on intestinal barrier dysfunction caused by enterotoxigenic Escherichia coli K88. Front Microbiol 9:1129. https://doi.org/10.3389/fmicb.2018.01129

    Article  Google Scholar 

  • Xu C, Qiao L, Guo Y, Ma L, Cheng Y (2018b) Preparation, characteristics and antioxidant activity of polysaccharides and proteins-capped selenium nanoparticles synthesized by Lactobacillus casei ATCC 393. Carbohydr Polym 195:576–585. https://doi.org/10.1016/j.carbpol.2018.04.110

    Article  CAS  Google Scholar 

  • Yao M, Li B, Ye H, Huang W, Luo Q, Xiao H, McClements DJ, Li L (2018) Enhanced viability of probiotics (Pediococcus pentosaceus Li05) by encapsulation in microgels doped with inorganic nanoparticles. Food Hydrocol 83:246–252. https://doi.org/10.1016/j.foodhyd.2018.05.024

    Article  CAS  Google Scholar 

  • Yazdi MKS, Davoodabadi A, Zarin HRK, Ebrahimi MT, Dallal MMS (2017) Characterisation and probiotic potential of lactic acid bacteria isolated from Iranian traditional Yogurts. Italian J Animal Sci 16:185–188. https://doi.org/10.1080/1828051X.2016.1222888

    Article  CAS  Google Scholar 

  • Yin Y, Yang X, Hu L, Tan Z, Zhao L, Zhang Z, Liu J, Jiang G (2016) Superoxide-mediated extracellular biosynthesis of silver nanoparticles by the fungus Fusarium oxysporum. Environ Sci Technol Lett 3:160–165. https://doi.org/10.1021/acs.estlett.6b00066

    Article  CAS  Google Scholar 

  • Yusof HM, Mohamad R, Zaidan UH (2020) Sustainable microbial cell nanofactory for zinc oxide nanoparticles production by zinc-tolerant probiotic Lactobacillus plantarum strain TA4. Microb Cell Factor 19:10. https://doi.org/10.1186/s12934-020-1279-6

    Article  CAS  Google Scholar 

  • Zamani B, Golkar HR, Farshbaf S, Emadi-Baygi M, Tajabadi-Ebrahimi M, Jafari P, Akhavan R, Taghizadeh M, Memarzadeh MR, Asemi Z (2016) Clinical and metabolic response to probiotic supplementation in patients with rheumatoid arthritis: a randomized, double-blind, placebo-controlled trial. Int J Rheum Dis 19:869–879. https://doi.org/10.1111/1756-185X.12888

    Article  CAS  Google Scholar 

  • Zamani B, Farshbaf S, Golkar HR, Bahmani F, Asemi Z (2017) Synbiotic supplementation and the effects on clinical and metabolic responses in patients with rheumatoid arthritis: a randomised, double-blind, placebo-controlled trial. Brit J Nutr 117:1095–1102. https://doi.org/10.1017/S000711451700085X

    Article  CAS  Google Scholar 

  • Zhang X, Yan S, Tyagi RD, Surampalli RY (2011) Synthesis of nanoparticles by microorganisms and their application in enhancing microbiological reaction rates. Chemosphere 82:489–494. https://doi.org/10.1016/j.chemosphere.2010.10.023

    Article  CAS  Google Scholar 

  • Zheng B, Qian L, Yuan H, Xiao D, Yang X, Paau MC, Choi MM (2010) Preparation of gold nanoparticles on eggshell membrane and their biosensing application. Talanta 82:177–183. https://doi.org/10.1016/j.talanta.2010.04.014

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the authorities of LAUTECH, Ogbomoso, Nigeria, for the provision of some of the facilities used in our works that are cited in this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Lateef .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Adebayo, E.A., Oladipo, I.C., Badmus, J.A., Lateef, A. (2021). Beneficial Microbes as Novel Microbial Cell Factories in Nanobiotechnology: Potentials in Nanomedicine. In: Lateef, A., Gueguim-Kana, E.B., Dasgupta, N., Ranjan, S. (eds) Microbial Nanobiotechnology. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-33-4777-9_11

Download citation

Publish with us

Policies and ethics