Skip to main content

Influence of Xenobiotics on Fungal Ligninolytic Enzymes

  • Chapter
  • First Online:
Bioenergy Research: Basic and Advanced Concepts

Abstract

White rot fungi (WRF) (belonging to the Basidiomycota family) are considered as the most efficient microorganisms to degrade lignin polymer through secretion of lignin-modifying enzymes such as oxidases (laccase) and peroxidases (lignin peroxidase and manganese peroxidase). Non-specific nature of these LMEs has a wide range of industrial and environmental applications including biodegradation and bioremediation of xenobiotics. Environmental pollution was generally caused by the extensive use of xenobiotics in the ecosystem. Massive studies on bioremediation of pollutants by bacteria and actinomycetes are highly noticed. It was recognized that very fewer research reports have existed on the influence of xenobiotics on the growth of highly environmentally adapted fungi as well as white rot fungi (WRF). Hence, the present book chapter mainly reveals the effect of xenobiotics on growth and secretion or production of LMEs by WRF and their participation in the bioremediation of xenobiotics. This chapter initially revealed the chemical nature of xenobiotics and their toxicity impact on WRF biomass. Furthermore the effect of pesticides such as malathion, lindane, and diuron on white rot fungal (Pleurotus ostreatus, Phanerochaete chrysosporium, Ganoderma lucidum) growth as well as secretion of ligninolytic enzymes and minimization of xenobiotics including PAHs and dyes by the WRF was clearly explained. This chapter provides information about how to reduce the harmful impact of xenobiotics in the environment by using LMEs and improve the applications of enzymatic technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CPF:

Chlorpyrifos

CYP:

Cytochrome P450

HCH:

Hexachloro cyclohexane

LAC:

Laccase

LE:

Ligninolytic enzymes

LiP:

Lignin peroxidase

LMEs:

Lignin-modifying enzymes

MnP:

Manganese peroxidase.

MSM:

Mineral salts medium

PAHs:

Polyaromatic hydrocarbons

PCP:

Pentachlorophenol

SmF:

Submerged fermentation

SSF:

Solid-state fermentation

TCP:

2, 4,6 trichlorophenol

TNT:

Tri-nitrotoluene

WRF:

White rot fungi

References

  • Abbas M, Yadegar A (2015) The influence of pesticides and herbicides on the growth and spore germination of T. harzianum. Agri Sci Develop 4:41–44

    CAS  Google Scholar 

  • Abdel-Hamid AM, Solbiati JO, Cann IKO (2013) Insights into lignin degradation and its potential industrial applications. Adv Appl Microbiol 82:1–28

    Article  CAS  Google Scholar 

  • Acevedo F, Pizzul L, Castillo MP, Cuevas R, Diez MC (2011) Degradation of polycyclic aromatic hydrocarbons by the Chilean white-rot fungus Anthracophyllum discolor. J Hazard Mater 185:212–219

    Article  CAS  Google Scholar 

  • Agrawal K, Chaturvedi V, Verma P (2018a) Fungal laccase discovered but yet undiscovered. Bioresour Bioprocess 5:4–12

    Article  Google Scholar 

  • Agrawal N, Verma P, Shahi SK (2018b) Degradation of polycyclic aromatic hydrocarbons (phenanthrene and pyrene) by the ligninolytic fungi Ganoderma lucidum isolated from the hardwood stump. Bioresour Bioprocess 5:11

    Article  Google Scholar 

  • Amitai G, Adani R, Sod-Moriah G, Rabinovitz I, Vincze A, Leader H, Chefetz B, Leibovitz-Persky L, Friesem D, Hadar Y (1998) Oxidative biodegradation of phosphorothiolates by fungal laccase. FEBS Lett 438:195–200

    Article  CAS  Google Scholar 

  • Anastasi A, Tigini V, Varese GC (2013) The bioremediation potential of different ecophysiological groups of fungi. In: Goltapeh EM et al (eds) Fungi as bioremediators, soil biology 32. Springer, Berlin, Heidelberg, pp 29–49

    Chapter  Google Scholar 

  • Arakaki RL, Monteiro DA, Boscolo Dasilva X, Gomes E (2013) Halotolerance, ligninase production and herbicide degradation ability of basidiomycetes strains. Braz J Microbiol 44:1207–1214

    Article  CAS  Google Scholar 

  • Aranda E (2016) Promising approaches towards biotransformation of polycyclic aromatic hydrocarbons with Ascomycota fungi. Curr Opin Biotechnol 38:1–8. https://doi.org/10.1016/j.copbio.2015.12.002

    Article  CAS  Google Scholar 

  • Barajas-Aceves M, Hassan M, Tinoco R, Vazquez-Duhalt R (2002) Effect of pollutants on the ergosterol content as indicator of fungal biomass. J Microbiol Methods 50:227–236

    Article  CAS  Google Scholar 

  • Barlas NE (1996) Toxicological assessment of biodegraded malathion in albino mice. Bull Environ Contam Toxicol 57:705–712

    Article  CAS  Google Scholar 

  • Bautista LF, Morales G, Sanz R (2015) Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by laccase from Trametes versicolor covalently immobilized on amino-functionalized SBA-15. Chemosphere 136:273–280

    Article  CAS  Google Scholar 

  • Bending GD, Friloux M, Walker A (2002) Degradation of contrasting pesticides by white rot fungi and its relationship with lignolytic potential. FEMS Microbiol Lett 212:59–63

    Article  CAS  Google Scholar 

  • Bilal M, Asgher M, Iqbal HM, Hu H, Zhang X (2017) Bio-based degradation of emerging endocrine-disrupting and dye-based pollutants using cross-linked enzyme aggregates. Environ Sci Pollut Res Int 24:7035–7041

    Article  CAS  Google Scholar 

  • Breivik K, Pacyna JM, Munch J (1999) Use of α-, β-, γ- hexachlorocyclohexane in Europe, 1970–1996. Sci Total Environ 239:151–116

    Article  CAS  Google Scholar 

  • Cao H, Wang C, Liu H, Weili J, Hongwen S (2020) Enzyme activities during benzo[a]pyrene degradation by the fungus Lasiodiplodia theobromae isolated from a polluted soil. Sci Rep 10:865

    Article  CAS  Google Scholar 

  • Carmona-Ribeiro AM, Prieto T, Nantes I (2015) Nanostructures for peroxidases. Front Mol Biosci 2:50

    Article  CAS  Google Scholar 

  • Castillo MP, Von Wiron-Lehr S, Scheunert I, Torstensson L (2001) Degradation of isoproturon by the white rot fungus Phanerochaete chrysosporium. Biol Fertil Soils 33:521–528

    Article  CAS  Google Scholar 

  • Castro L, Crawford L, Mutengwa A, Gotze JP, Michael B (2016) Insights into structure and redox potential of lignin peroxidase from QM/MM calculations. Org Biomol Chem 14:2385–2389

    Article  CAS  Google Scholar 

  • Chambers WH (1992) Organophosphorous compounds: an overview. In: Chambers JE, Levi PE (eds) Oranophosphates, chemistry, fate, and effects. Academic Press, San Diego, pp 3–17

    Chapter  Google Scholar 

  • Cheng WN, Sim HK, Ahmad SA, Syed MA, Shukor MY, Yusof MT (2016) Characterization of an azo-dye-degrading white rot fungus isolated from Malaysia. Mycosphere 7(5):560–569

    Article  Google Scholar 

  • Chishti Z, Hussain S, Arshad KR, Khalid A, Arshad M (2013) Microbial degradation of chlorpyrifos in liquid media and soil. J Environ Manage 114:372–380

    Article  CAS  Google Scholar 

  • Chowdhary P, More N, Yadav A, Bharagava RN (2019) Ligninolytic enzymes: an introduction and applications in the food industry. In: Kuddus M (ed) Enzymes in food biotechnology, vol 2019, 1st edn. Academic Press, Cambridge, MA, pp 181–195

    Chapter  Google Scholar 

  • Claus H (2014) Microbial degradation of 2, 4, 6-trinitrotoluene in vitro and in natural environments. In: Singh SN (ed) Biological remediation of explosive residues. Springer, Berlin, pp 15–38

    Chapter  Google Scholar 

  • Coelho JS, de Oliveira AL, de Souza CGM, Bracht A, Peralta RM (2010) Effect of the herbicides bentazon and diuron on the production of ligninolytic enzymes by Ganoderma lucidum. Int Biodet Biodegrad 64:156–161

    Article  CAS  Google Scholar 

  • Coelho-Moreira JDS, Bracht A, Da Silva de Souza AC, Ferreira Oliveira R, De Sá-Nakanishi AB, Giatti Marques de Souza C, Peralta RM (2013) Degradation of Diuron by Phanerochaete chrysosporium: role of ligninolytic enzymes and cytochrome P450. Biomed Res Int 9:251354

    Google Scholar 

  • de Sousa Fragoeiro SI (2005) Use of fungi in bioremediation of pesticides. Applied Mycology Group Institute of Bioscience and Technology, Cranfield University, Cranfield

    Google Scholar 

  • Di Toro DM, McGrath JA, Hansen DJ (2000) Technical basis for narcotic chemicals and polycyclic aromatic hydrocarbon criteria. I Water and tissue. Environ Toxicol Chem 19(8):1951–1970

    Article  Google Scholar 

  • El-Ghany A, Masmal IA (2016) Fungal biodegradation of organophosphorus insecticides and their impact on soil microbial population. J Plant Pathol Microbiol 7:5

    Google Scholar 

  • Elgueta S, Diez MC (2010) Lignocellulosic support selection for colonization and ligninolytic enzyme production of white-rot fungus Anthracophyllum discolor. J Biotechnol 150:279–280

    Article  Google Scholar 

  • Elgueta S, Rubilar O, Lima N, Diez MC (2012) Selection of white-rot fungi to formulate complex and coated pellets for reactive orange 165 decolourization. Electron J Biotechnol 15:1–17

    Article  CAS  Google Scholar 

  • Elgueta S, Santos C, Lima SD, Diez MC (2016) Immobilization of the white-rot fungus Anthracophyllum discolor to degrade the herbicide atrazine. AMB Expr 6:104

    Article  CAS  Google Scholar 

  • Ford C, Walter M, Northcott G, Di H, Cameron K, Trower T (2007) Fungal inoculum properties: extracellular enzyme expression and pentachlorophenol removal in highly contaminated field soils. J Environ Qual 36:1749–1759

    Article  CAS  Google Scholar 

  • Fragoeiro S, Magan N (2008) Impact of Trametes versicolor and Phanerochaete chrysosporium on differential breakdown of pesticide mixtures in soil microcosms at two water potentials and associated respiration and enzyme activity. Int Biodeterior Biodegr 62:376–383

    Article  CAS  Google Scholar 

  • Fu Y, Liu F, Zhao C, Zhao Y, Liu Y, Zhu G (2015) Distribution of chlorpyrifos in rice paddy environment and its potential dietary risk. J Environ Sci 35:101–107

    Article  CAS  Google Scholar 

  • Ganash MA, Abdel Ghany TM, Reyad AM (2016) Pleurotus ostreatus as a biodegradator for organophosphorus insecticide—malathion. J Chem Biol Res 33:400–410

    Google Scholar 

  • Ghosal D, Shreya G, Tapan KD, Youngho A (2016) Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHs): a review. Front Microbiol 7:1369

    Google Scholar 

  • Giacomazzi S, Cochet N (2004) Environmental impact of diuron transformation: a review. Chemosphere 56(11):1021–1032

    Article  CAS  Google Scholar 

  • Giesy JP, Solomon KR, Mackay D, Giddings JM, Williams WM, Moore DR, Purdy J, Cutler GC (2014) Ecological risk assessment for chlorpyrifos in terrestrial and aquatic systems in the United States—overview and conclusions. Rev Environ Contam Toxicol 231:1–12

    CAS  Google Scholar 

  • Guliy OI, Ignatov OV, Makarov OE, Ignatov VV (2003) Determination of organophosphorus aromatic nitro insecticides and p-nitrophenol by microbial-cell respiratory activity. Biosens Bioelectron 18:1005–1013

    Article  CAS  Google Scholar 

  • Gunjal AB, Patil NN, Shinde SS (2020) Ligninase in degradation of lignocellulosic wastes. In: enzymes in degradation of the lignocellulosic wastes. Springer, Cham, pp 1–132

    Google Scholar 

  • Harry-asobara JL, Kamei I (2019) Growth management of white-rot fungus Phlebia brevispora improved degradation of high-molecular-weight polycyclic aromatic hydrocarbons. 3 Biotech 9:403

    Article  Google Scholar 

  • Hatakka A (2001) Biodegradation of lignin. In: Steinbüchel A, Hofrichter M (eds) Biopolymers. Lignin, humic substances, and coal, vol 1. Weinheim, Wiley, pp 129–180

    Google Scholar 

  • Hina J, Samina I, Samina A, Rebecca EP (2015) Optimization of profenofos degradation by a novel bacterial consortium PBAC using response surface methodology. Int Biodeter Biodegr 100:89–97

    Article  CAS  Google Scholar 

  • Ijoma GN, Tekere M (2017) Potential microbial applications of co-cultures involving ligninolytic fungi in the bioremediation of recalcitrant xenobiotic compounds. Int J Environ Sci Technol 14:1787–1806. https://doi.org/10.1007/s13762-017-1269-3

    Article  CAS  Google Scholar 

  • Juhasz AL, Naidu R (2000) Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: a review of the microbial degradation of benzo[a]pyrene. Int Biodeterior Biodegrad 45:57–88

    Article  CAS  Google Scholar 

  • Kachlishvili E, Asatiani M, Kobakhidge A, Elisashvili V (2016) Trinitrotoluene and mandarin peel selectively affect lignin-modifying enzyme production in white-rot basidiomycetes. Springer Plus 5:252–260

    Article  CAS  Google Scholar 

  • Kadri T, Rouissi T, Brar SK, Cledon M, Sarma S, Verma M (2017) Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by fungal enzymes: a review. J Environ Sci 51:52–74

    Article  CAS  Google Scholar 

  • Kaur H, Kapoor S, Kaur G (2016) Application of ligninolytic potentials of a white-rot fungus Ganoderma lucidum for degradation of lindane. Environ Monit Assess 188(10):588–588

    Article  CAS  Google Scholar 

  • Kelly SL, Kelly DE (2013) Microbial cytochromes P450: biodiversity and biotech-nology. Where do cytochromes P450 come from, what do they do and what can they do for us? Philos Trans R Soc Lond B Biol Sci 368:20120476

    Article  CAS  Google Scholar 

  • Koroleva OV, Zherdev AV, Kulikova NA (2015) The role of white-rot fungi in herbicide transformation. In: Price A, Kelton J, Sarunaite L (eds) Herbicides, physiology of action, and safety. InTechOpen, London, pp 187–221

    Google Scholar 

  • Kostadinova N, Krumova E, Boteva R, Abrashev R, Staleva J, Spassova B, Angelova M (2018) Effect of copper ions on the ligninolytic enzyme complex and the antioxidant enzyme activity in the white-rot fungus Trametes trogii 46. Plant Biosystems 152:1–6

    Article  Google Scholar 

  • Krumova E, Kostadinova N, Miteva-Staleva J, Stoyancheva G, Spassova B, Abrashev R, Angelova M (2018) Potential of ligninolytic enzymatic complex produced by white-rot fungi from genus Trametes isolated from Bulgarian forest soil. Eng Life Sci 18:692–701

    Article  CAS  Google Scholar 

  • Kues U (2015) Fungal enzymes for environmental management. Curr Opin Biotechnol 33:268–278. https://doi.org/10.1016/j.copbio.2015.03.006

    Article  CAS  Google Scholar 

  • Kumar A, Chandra R (2020) Ligninolytic enzymes and its mechanisms for degradation of lignocellulosic waste in environment. Heliyon 6(2):1–18

    Article  CAS  Google Scholar 

  • Kumar B, Verma P (2020) Enzyme mediated multi-product process: a concept of bio-based refinery. Ind Crop Prod 154:1–26

    Article  CAS  Google Scholar 

  • Kunjadia PD, Sanghvi GV, Kunjadia AP, Mukhopadhyay PN, Dave GS (2016) Role of ligninolytic enzymes of white rot fungi (Pleurotus spp.) grown with azo dyes. Springerplus 5(1):1487–1495

    Article  CAS  Google Scholar 

  • Lazim ZM, Hadibarata T (2016) Ligninolyticfungus Polyporus sp.S133 mediated metabolic degradation of pyrene. Braz J Microbiol 47:610–616

    Article  CAS  Google Scholar 

  • Lewis TA, Newcombe DA, Crawford RL (2004) Bioremediation of soils contaminated with explosives. J Environ Manage 70:291–307. https://doi.org/10.1016/j.jenvman.2003.12.005

    Article  Google Scholar 

  • Li YF (1999) Global technical hexachlorocyclohexane usage and its contamination consequences in the environment: from 1948 to 1997. Sci Total Environ 232:121–158

    Article  CAS  Google Scholar 

  • Macrae IC, Yamaya Y, Yoshida T (1984) Persistence of hexachlorocyclohexane isomers in soil suspensions. Soil Biol Biochem 16:285–286

    Article  CAS  Google Scholar 

  • Mendonça Maciel MJ, Castroe Silva A, Telles Ribeiro HC (2010) Industrial and biotechnological applications of ligninolytic enzymes of the basidiomy-cota: a review. Electron J Biotechnol 13:1–13

    Article  CAS  Google Scholar 

  • Mester T, Tien M (2000) Oxidative mechanism of ligninolytic enzymes involved in the degradation of environmental pollutants. Int Biodeterior Biodegr 46:51–59

    Article  CAS  Google Scholar 

  • Mougin C, Laugero C, Asther M, Chaplain V (1997) Biotransformation of striazine herbicides and related degradation products in liquid cultures by the white rot fungus Phanerochaete chrysosporium. Pesticide Sci 49:169–177

    Article  CAS  Google Scholar 

  • Neve EPA, Ingelman-Sundberg M (2008) Intracellular transport and localization of microsomal cytochrome P450. Anal Bioanal Chem 392:1075–1084

    Article  CAS  Google Scholar 

  • Ning D, Wang H (2012) Involvement of cytochrome P450 in pentachlorophe-nol transformation in a white rot fungus Phanerochaete chrysosporium. PLoS One 7:e45887

    Article  CAS  Google Scholar 

  • Ozer A, Sal FA, Ali Belduz O, Kirci H, Canakci S (2019) Use of feruloyl esterase as laccase-mediator system in paper bleaching. Appl Biochem Biotechnol 190(2):721–731

    Article  CAS  Google Scholar 

  • Peter B, Araven T, Rajinikanth T (2019) Fungal enzymes for bioremediation of xenobiotic compounds. In: Recent advancement in white biotechnology through fungi, vol 3. Springer, Cham, pp 463–489

    Google Scholar 

  • Placido J, Chanaga X, Ortiz-Monsalve S, Yepes M, Mora A (2016) Degradation and detoxification of synthetic dyes and textile industry effluents by newly isolated Leptosphaerulina sp.isolated from Columbia. Bioresour Bioprocess 3:6–19

    Article  Google Scholar 

  • Pollegioni L, Tonin F, Rosini E (2015) Lignin-degrading enzymes. FEBS J 282:1190–1213

    Article  CAS  Google Scholar 

  • Pozdnyakova NN (2012) Involvement of the ligninolytic system of white-rot and litter-decomposing fungi in the degradation of polycyclic aromatic hydrocarbons. Biotechnol Res Int 2012:243217

    Article  CAS  Google Scholar 

  • Pozdnyakova N, Dubrovskaya E, Chernyshova M, Makarov O, Golubev S, Balandina S, Turkovskaya O (2018) The degradation of three-ringed polycyclic aromatic hydrocarbons by wood-inhabiting fungus Pleurotus ostreatus and soil-inhabiting fungus Agaricus bisporus. Fungal Biol 122:363–372

    Article  CAS  Google Scholar 

  • Qin X, Zhang J, Zhang X, Yang Y (2014) Induction, purification and characterization of a novel manganese peroxidase from Irpex lacteus CD2 and its application in the decolorization of different types of dye. PLoS One 9:e113282

    Article  CAS  Google Scholar 

  • Quintero JC, Moreira MT, Feijoo G, Lema JM (2008) Screening of white rot fungal species for their capacity to degrade lindane and other isomers of hexachlorocyclohexane HCH. Ciencia e Investigación Agraria 35(2):159–167

    Article  Google Scholar 

  • Rabinovich ML, Bolobova AV, Vasil'chenko LG (2004) Fungal decomposition of natural aromatic structures and xenobiotics: a review. Appl Biochem Microbiol 40:1–17

    Article  CAS  Google Scholar 

  • Rajakumar R, Umamaheswari G (2014) Studies on biodegradation of pesticides by white rot fungi. Int J Life Sci Edu Res 2:42–48

    Google Scholar 

  • Reddy NC, Rao JV (2008) Biological response of earthworm, Eisenia foetida (Savigny) to an organophosphorous pesticide, profenofos. Ecotoxicol Environ Saf 71:574–582

    Article  CAS  Google Scholar 

  • Rengarajan T, Rajendran P, Nandakumar N, Lokeshkumar B, Rajendran P, Nishigaki I (2015) Exposure to polycyclic aromatic hydrocarbons with special focus on cancer. Asian Pac J Trop Biomed 5(3):182–189

    Article  CAS  Google Scholar 

  • Rostami I, Juhasz AL (2011) Assessment of persistent organic pollutant (POP) bioavailability and bioaccessibility for human health exposure assessment: a critical review. Crit Rev Environ Sci Technol 41(7):623–656

    Article  Google Scholar 

  • Rubilar O, Tortella G, Cea M, Acevedo F, Bustamante M, Gianfreda L, Diez MC (2011) Bioremediation of a chilean andisol contaminated with pentachlorophenol (PCP) by solid substrate cultures of white-rot fungi. Biodegradation 22:31–41

    Article  CAS  Google Scholar 

  • Ruiz-Hidalgo K, Chin-Pampillo JS, Masís-Mora M, Carazo RE, Rodríguez-Rodríguez CE (2014) Degradation of carbofuran by Trametes versicolor in rice husk as a potential lignocellulosic substrate for biomixtures: from mineralization to toxicity reduction. Process Biochem 49:2266–2271

    Article  CAS  Google Scholar 

  • Schmidt KR, Chand S, Gostomski PA, Boyd-Wilson KS, Ford C, Walter M (2005) Fungal inoculum properties and its effect on growth and enzyme activity of Trametes versicolor in soil. Biotechnol Prog 21:377–385

    Article  CAS  Google Scholar 

  • Serbent MP, Guimarães DKS, Drechsler-Santos ER et al (2020) Growth, enzymatic production and morphology of the white-rot fungi Lentinus crinitus (L.) Fr. Upon 2,4-D herbicide exposition. Int J Environ Sci Technol 17:2995–3012

    Article  CAS  Google Scholar 

  • Setyo PA, Nawfa R, Martak F, Shimizu K, Kamei I (2017) Biodegradation of Aldrin and Dieldrin by the white-rot fungus Pleurotus ostreatus. Curr Microbial 74(7):889–889

    Article  CAS  Google Scholar 

  • Shanthi Kumari BS (2014) Influence of chlorpyrifos on secretion of ligninolytic metallo enzymes by white rot fungus Stereum ostrea. M.Phil dissertation, Sri Krishnadevaraya University, Ananatapuramu, Andhra Pradesh

    Google Scholar 

  • Shanthi Kumari BS, Praveen K, Usha KY, Dileep Kumar K, Praveen Kumar Reddy G, Rajasekhar Reddy B (2019) Ligninolytic behavior of the white-rot fungus Stereum ostrea under influence of culture conditions, inducers and chlorpyrifos. 3 Biotech 9:424

    Article  CAS  Google Scholar 

  • Sharma B, Dangi AK, Shukla P (2018) Contemporary enzyme based technologies for bioremediation: a review. J Environ Manage 210:10–22

    Article  CAS  Google Scholar 

  • Singh B, Kuhad RC (2000) Degradation of insecticide lindane (g-HCH) by white-rot fungi Cyathus bulleri and Phanerochaete sordida. Pest Manag Sci 56:142–146

    Article  CAS  Google Scholar 

  • Singh B, Kaur J, Singh K (2012) Biodegradation of malathion by Brevibacillus sp. strain KB2 and Bacillus cereus strain PU. World J Microbiol Biotechnol 28:1133–1141

    Article  CAS  Google Scholar 

  • Solomon KR, Williams WM, Mackay D, Purdy J, Giddings JM, Giesy JP (2014) Properties and uses of chlorpyrifos in the United States. Rev Environ Contam Toxicol 231:13–34

    CAS  Google Scholar 

  • Ting W, Yuan S, Wu S, Chang S (2011) Biodegradation of phenanthrene and pyrene by Ganoderma lucidum. Int Biodeter Biodegr 65:238–242

    Article  CAS  Google Scholar 

  • Tišma M, Zelić B, Vasić-rački Đ (2010) White-rot fungi in phenols, dyes and other xenobiotics treatment—a brief review. Croat J Food Sci Technol 2(2):34–47

    Google Scholar 

  • Tomlin CDS (2006) The pesticide manual. A World Compendium. British Crop Protection Council (BCPC), Alton, Hampshire

    Google Scholar 

  • Torres DT, Canales MG, Santillan YM, Gomez CR, Sandoval OA (2016) Removal of polycyclic hydrocarbons by Pleurotus ostreatus sp.ATCC 38540 in liquid medium. Acad J Scientific Res 4:376–379

    Google Scholar 

  • Torres-Duarte C, Roman R, Tinoco R, Vazquez-Duhalt R (2009) Halogenated pesticide transformation by a laccase–mediator system. Chemosphere 77:687–692

    Article  CAS  Google Scholar 

  • Tortella G, Diez MC, Durán N (2005) Fungal diversity and use in decomposition of environmental pollutants. Crit Rev Microbiol 31:197–212

    Article  CAS  Google Scholar 

  • Tortella G, Rubilar O, Gianfreda L, Valenzuela E, Diez M (2008) Enzymatic characterization of Chilean native wood-rotting fungi for potenial use in the bioremediation of polluted environments with chlorophenols. World J Microbiol Biotechnol 24:2805–2818

    Article  CAS  Google Scholar 

  • Tripathi A, Dixit S (2016) Bioremediation of phenolic compounds by higher fungi—a review. Int J Adv Res 4(7):14–35

    Article  CAS  Google Scholar 

  • Tu CM (1970) Effect of four organophosphorus insecticides on microbial activities in soil. Appl Microbiol 19:479–484

    Article  CAS  Google Scholar 

  • Usha KY, Praveen K, Reddy BR (2014) Enhanced production of ligninolytic enzymes by a mushroom Stereum ostrea. Bio Med Res Int 5:9

    Google Scholar 

  • Valle JS, Van den Berghe LPS, Ollveira ACC, Taveres TFF, Linde GA (2015) Effect of different compounds on the induction of laccase by Agaricus blazei. Genet Mol Res 14(4):15882–15891

    Article  CAS  Google Scholar 

  • Ventura-Camargo BDC, Marin-Morales MA (2013) Azo dyes: characterization and toxicity—a review. Ind Sci Technol 2:85–103

    Google Scholar 

  • Wali A, Gupta M, Gupta S, Sharma V, Salgotra R, Sharma M (2020) Lignin degradation and nutrient cycling by white rot fungi under the influence of pesticides. 3 Biotech 10:266

    Article  Google Scholar 

  • Weisburger JH (2002) Comments on the history and importance of aromatic and heterocyclic amines in public health. Mutat Res 506:9–20

    Article  Google Scholar 

  • Willett KL, Ulrich EM, Hites RA (1998) Differential toxicity and environmental fates of hexachlorocyclohexane isomers. Environ Sci Technol 32:2197–2207

    Article  CAS  Google Scholar 

  • Xiao P, Kondo R (2020a) Biodegradation and biotransformation of pentachlorophenol by wood-decaying white rot fungus Phlebia acanthocystis TMIC34875. J Wood Sci 66:2

    Article  CAS  Google Scholar 

  • Xiao P, Kondo R (2020b) Potency of Phlebia species of white rot fungi for the aerobic degradation, transformation and mineralization of lindane. J MicrobiolJ Microbiol 58:395–404

    Article  CAS  Google Scholar 

  • Xu F (1996) Oxidation of phenols, anilines, and benzenethiols by fungal laccases: correlation between activity and redox potentials as well as halide inhibition. Biochemistry 35:7608–7614

    Article  CAS  Google Scholar 

  • Zahmatkesh M, Tabandeh F, Ebrahimi S (2010) Biodegradation of reactive orange 16 by Phanerochaete chrysosporium fungus; application in a fluidized bed bioreactor. J Environ Health Sci Eng 7:385–390

    CAS  Google Scholar 

  • Zahmatkesh M, Spanjers H, Toran MJ, Blánquez P, Van Lier JB (2016) Bioremoval of humic acid from water by white rot fungi: exploring the removal mechanisms. AMB Express 6:118

    Article  CAS  Google Scholar 

  • Zhang S, Ning Y, Zhang X, Zhao Y, Yang X, Wu K, Yang S, La G, Sun X, Li X (2015) Contrasting characteristics of anthracene and pyrene degradation by wood rot fungus Pycnoporus sanguineus H1. Int Biodeterior Biodegrad 105:228–232

    Article  CAS  Google Scholar 

  • Zhang H, Zhang S, He F, Qin X, Zhang X, Yang Y (2016) Characterization of a manganese peroxidase from white-rot fungus Trametes sp.48424 with strong ability of degrading different types of dyes and polycyclic aromatic hydrocarbons. J Hazard Mater 320:265–277

    Article  CAS  Google Scholar 

  • Zuleta-Correa A, Merino-Restropo A, Jimanez-Correa S, Hormazo-Anaguano A, Cardona-Gallo SA (2016) Use of white rot fungi in the degradation of an azo dye from the textile industry. DYNA 83:128–135

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Prof. B. Rajasekhar Reddy (SK University, AP, India) and Dr. G. Narasimha (SV University AP, India) for the revision of this book chapter, while B. S. Shanthi Kumari is grateful to the Major Research Project Fellowship (F.No. 42-476/2013 (SR) dated 22-03-2013) from University Grants Commission (UGC), New Delhi, India for providing the financial support for a doctoral degree.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shanthi Kumari, B.S., Kumar, K.D., Sai Geetha, K., Narasimha, G., Rajasekhar Reddy, B. (2021). Influence of Xenobiotics on Fungal Ligninolytic Enzymes. In: Srivastava, M., Srivastava, N., Singh, R. (eds) Bioenergy Research: Basic and Advanced Concepts. Clean Energy Production Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-33-4611-6_4

Download citation

Publish with us

Policies and ethics