Skip to main content

The Bioremediation Potential of Different Ecophysiological Groups of Fungi

  • Chapter
  • First Online:
Fungi as Bioremediators

Part of the book series: Soil Biology ((SOILBIOL,volume 32))

Abstract

Fungi play a major role in all ecosystems as decomposers, symbionts, and pathogens. Their morphological, physiological, and reproductive strategies make them especially suited for terrestrial habitats. This chapter intends to describe their multifaceted role in the biodegradation of natural and xenobiotic compounds taking into account the specific features of different ecophysiological groups, focusing both on saprotrophs, as wood, litter, and soil fungi, and on mycorrhizal fungi.

Successful use of fungi in soil bioremediation depends on a comprehensive knowledge of their ecology, physiology, and enzymology. Each section will start from the description of the role of the different groups in nature; then it will go on exploring the potential for degradation of the major organic pollutants in soil, in order to provide a comprehensive overview of the potential use of fungi as bioremediators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anastasi A, Vizzini A, Prigione V, Varese GC (2009a) Wood degrading fungi: morphology, metabolism and environmental applications. In: Varma A, Chauhan AK (eds) A textbook of molecular biotechnology. I.K. International, New Delhi, pp 957–993

    Google Scholar 

  • Anastasi A, Coppola T, Prigione V, Varese GC (2009b) Pyrene degradation and detoxification in soil by a consortium of basidiomycetes isolated from compost: role of laccases and peroxidases. J Hazard Mater 165:1229–1233

    Article  PubMed  CAS  Google Scholar 

  • Andersson BE, Welindera L, Olsson PA, Olsson S, Henrysson S (2000) Growth of inoculated white-rot fungi and their interactions with the bacterial community in soil contaminated with polycyclic aromatic hydrocarbons, as measured by phospholipid fatty acids. Bioresour Technol 73:29–36

    Article  CAS  Google Scholar 

  • Andersson BE, Tornberg K, Henrysson T, Olsson S (2001) Three-dimensional outgrowth of a wood-rotting fungus added to a contaminated soil from a former gasworks site. Bioresour Technol 78:37–45

    Article  PubMed  CAS  Google Scholar 

  • Andersson BE, Lundstedt S, Tornberg K, Schnurer Y, Lars G, Berg O, Mattiasson B (2003) Incomplete degradation of polycyclic aromatic hydrocarbons in soil inoculated with wood-rotting fungi and their effect on the indigenous soil bacteria. Environ Toxicol Chem 22:1238–1243

    Article  PubMed  CAS  Google Scholar 

  • Aranda E, Ullrich R, Hofrichter M (2010) Conversion of polycyclic aromatic hydrocarbons, methyl naphthalenes and dibenzofuran by two fungal peroxygenases. Biodegradation 21:267–281

    Article  PubMed  CAS  Google Scholar 

  • Baldrian P (2006) Fungal laccases – occurrence and properties. FEMS Microbiol Rev 30:215–242

    Article  PubMed  CAS  Google Scholar 

  • Baldrian P (2008) Wood-inhabiting ligninolytic basidiomycetes in soils: ecology and constraints for applicability in bioremediation. Fungal Ecol 1:4–12

    Article  Google Scholar 

  • Bengtsson G, Törneman N, Yang X (2010) Spatial uncoupling of biodegradation, soil respiration, and PAH concentration in a creosote contaminated soil. Environ Pollut 158:2865–2871

    Article  PubMed  CAS  Google Scholar 

  • Berg B, McClaugherty C (2003) Plant litter – decomposition, humus formation, carbon sequestration. Springer, Berlin, 352 pp

    Google Scholar 

  • Borràs E, Caminal G, Sarrà M, Novotny C (2010) Effect of soil bacteria on the ability of polycyclic aromatic hydrocarbons (PAHs) removal by Trametes versicolor and Irpex lacteus from contaminated soil. Soil Biol Biochem 42:2087–2093

    Article  Google Scholar 

  • Bumpus JA, Tien M, Wright D, Aust SD (1985) Oxidation of persistent environmental pollutants by a white rot fungus. Science 228:1434–1436

    Article  PubMed  CAS  Google Scholar 

  • Burke RM, Cairney JWG (2002) Laccases and other polyphenol oxidases in ecto- and ericoid mycorrhizal fungi. Mycorrhiza 12:105–116

    Article  PubMed  CAS  Google Scholar 

  • Canas AI, Camarero S (2010) Laccases and their natural mediators: biotechnological tools for sustainable eco-friendly processes. Biotechnol Adv 28:694–705

    Article  PubMed  CAS  Google Scholar 

  • Capotorti G, Digianvincenzo P, Cesti P, Bernardi A, Guglielmetti G (2004) Pyrene and benzo(a)pyrene metabolism by an Aspergillus terreus strain isolated from a polycylic aromatic hydrocarbons polluted soil. Biodegradation 15:79–85

    Article  PubMed  CAS  Google Scholar 

  • Casieri L, Anastasi A, Prigione V, Varese GC (2010) Survey of ectomycorrhizal, litter-degrading, and wood-degrading Basidiomycetes for dye decolorization and ligninolytic enzyme activity. Anton Leeuw Int J G 98:483–504

    Article  CAS  Google Scholar 

  • Cea M, Jorquera M, Rubilar O, Langer H, Tortella G, Diez MC (2010) Bioremediation of soil contaminated with pentachlorophenol by Anthracophyllum discolor and its effect on soil microbial community. J Hazard Mater 181:315–323

    Article  PubMed  CAS  Google Scholar 

  • Cerniglia CE, Sutherland JB (2001) Bioremediation of polycyclic aromatic hydrocarbons by ligninolytic and nonligninolytic fungi. In: Gadd GM (ed) Fungi in bioremediation. Cambridge University Press, Cambridge, pp 136–187

    Chapter  Google Scholar 

  • Courty PE, Labbé J, Kohler A, MarcxaisB BC, Churin JL, Garaye J, Le Tacon F (2011) Effect of poplar genotypes on mycorrhizal infection and secreted enzyme activities in mycorrhizal and non-mycorrhizal roots. J Exp Bot 62:249–260

    Article  PubMed  CAS  Google Scholar 

  • Covino S, Cvancarova M, Muzikar M, Svobodova K, D’annibale A, Petruccioli M, Federici F, Kresinova Z, Cajthaml T (2010) An efficient PAH-degrading Lentinus (Panus) tigrinus strain: effect of inoculum formulation and pollutant bioavailability in solid matrices. J Hazard Mater 183:669–676

    Article  PubMed  CAS  Google Scholar 

  • Cullings K, Ishkhanova G, Ishkhanov G, Henson J (2010) Induction of saprophytic behavior in the ectomycorrhizal fungus Suillus granulatus by litter addition in a Pinus contorta (Lodgepole pine) stand in Yellowstone. Soil Biol Biochem 42:1176–1178

    Article  CAS  Google Scholar 

  • Deacon J (2006) Fungal biology. Blackwell, Malden, MA, pp 1–371

    Google Scholar 

  • Farnet AM, Gil G, Ruaudel F, Chevremont AC, Ferre E (2009) Polycyclic aromatic hydrocarbon transformation with laccases of a white-rot fungus isolated from a Mediterranean schlerophyllous litter. Geoderma 149:267–271

    Article  CAS  Google Scholar 

  • Gao Y, Cheng Z, Ling W, Huang J (2011) Arbuscular mycorrhizal fungal hyphae contribute to the uptake of polycyclic aromatic hydrocarbons by plant roots. Bioresour Technol 101:6895–6901

    Article  Google Scholar 

  • Garon D, Krivobok S, Seigle-Murandi F (2000) Fungal degradation of fluorene. Chemosphere 40:91–97

    Article  PubMed  CAS  Google Scholar 

  • Genney DR, Alexander IJ, Killham K, Meharg AA (2004) Degradation of the polycyclic aromatic hydrocarbon (PAH) fluorene is retarded in a Scots pine ectomycorrhizosphere. New Phytol 163:641–649

    Article  CAS  Google Scholar 

  • Gonod LV, Chenu C, Soulas G (2003) Spatial variability of 2,4-dichlorophenoxyacetic acid (2,4-D) mineralisation potential at the millimetre scale in soil. Soil Biol Biochem 35:373–382

    Article  CAS  Google Scholar 

  • Gunderson JJ, Knight JD, Van Rees KCJ (2007) Impact of ectomycorrhizal colonization of hybrid poplar on the remediation of diesel-contaminated soil. J Environ Qual 36:927–934

    Article  PubMed  CAS  Google Scholar 

  • Günter T, Perner B, Gramss G (1998) Activities of phenol oxidizing enzymes of ectomycorrhizal fungi in axenic culture and in symbiosis with Scots pine (Pinus sylvestris L.). J Basic Microbiol 38:197–206

    Article  Google Scholar 

  • Hibbett DS, Donoghue MJ (2001) Analysis of character correlations among wood decay mechanisms, mating systems, and substrate ranges in homobasidiomycetes. Syst Biol 50:215–242

    Article  PubMed  CAS  Google Scholar 

  • Hofrichter M, Ullrich R, Pecyna MJ, Liers C, Lundell T (2010) New and classic families of secreted fungal heme peroxidases. Appl Microbiol Biotechnol 87:871–897

    Article  PubMed  CAS  Google Scholar 

  • Hyde SM, Wood PM (1997) A mechanism for production of hydroxyl radicals by the brownrot fungus Coniophora puteana: Fe(III) reduction by cellobiose dehydrogenase and Fe(II) oxidation at a distance from the hyphae. Microbiology 143:259–266

    Article  CAS  Google Scholar 

  • Joner EJ, Leyval C, Colpaert JV (2006) Ectomycorrhizas impede phytoremediation of polycyclic aromatic hydrocarbons (PAHs) both within and beyond the rhizosphere. Environ Pollut 142:34–38

    Article  PubMed  CAS  Google Scholar 

  • Kim G, Choia Y, Kim J (2009) Improving the efficiency of metal removal from CCA-treated wood using brown rot fungi. Environ Technol 30:673–679

    Article  PubMed  CAS  Google Scholar 

  • Kinne M, Zeisig C, Ullrich R, Kayser G, Hammel KE, Hofrichter M (2010) Stepwise oxygenations of toluene and 4-nitrotoluene by a fungal peroxygenase. Biochem Biophys Res Commun 397:18–21

    Article  PubMed  CAS  Google Scholar 

  • Kireeva NA, Bakaeva MD, Galimzianova NF (2008) Evaluation of the effect of various methods of oil-polluted soil bioremediation on micromycete complexes. Prikl Biokhim Mikrobiol 44:63–68

    PubMed  CAS  Google Scholar 

  • Koenigs JW (1974) Hydrogen peroxide and iron: a proposed system for decomposition of wood by brown rot basidiomycetes. Wood Fiber 6:66–79

    Google Scholar 

  • Kohlmeier S, Smits TMH, Ford RM, Keel C, Harms H, Lukas YW (2005) Taking the fungal highway: mobilization of pollutant-degrading bacteria by fungi. Environ Sci Technol 39:4640–4646

    Article  PubMed  CAS  Google Scholar 

  • Koivula TT, Salkinoja-Salonen M, Peltola R, Romantschuk M (2004) Pyrene degradation in forest humus microcosms with or without pine and its mycorrhizal fungus. J Environ Qual 33:45–53

    Article  PubMed  CAS  Google Scholar 

  • Korkama-Rajala T, Mueller MM, Pennanen T (2008) Decomposition and fungi of needle litter from slow- and fast-growing norway spruce (Picea abies) clones. Microb Ecol 56:76–89

    Article  PubMed  Google Scholar 

  • Kremer SM, Wood PM (1992) Evidence that cellobiose oxidase from Phanerochaete chrysosporium is primarily an Fe(III) reductase. Kinetic comparison with neutrophil NADPH oxidase and yeast flavocytochrome-B2. Eur J Biochem 205:133–138

    Article  PubMed  CAS  Google Scholar 

  • Kurakov AV, Than HTH, Belyuchenko IS (1994) Microscopic fungi of soil, rhizosphere and rhizoplane of cotton plant and tropical grasses introduced in the south of Tajikistan. Microbiology 63:624–629

    Google Scholar 

  • Li X, Lin X, Yin R, Wu Y, Chu H, Zeng J, Yang T (2010) Optimization of laccase-mediated benzo[a]pyrene oxidation and the bioremedial application in aged polycyclic aromatic hydrocarbons-contaminated soil. J Health Sci 56:534–540

    Article  CAS  Google Scholar 

  • Lindahl BD, Ihrmark K, Boberg J, Trumbore SE, Högberg P, Stenlid J, Finlay RD (2007) Spatial separation of litter decomposition and mycorrhizal nitrogen uptake in a boreal forest. New Phytol 173:611–620

    Article  PubMed  CAS  Google Scholar 

  • Lundell TK, Makela MR, Hilden K (2010) Lignin-modifying enzymes in filamentous basidiomycetes – ecological, functional and phylogenetic review. J Basic Microbiol 50:5–20

    Article  PubMed  CAS  Google Scholar 

  • Lyr H (1963) Enzymatische detoxification chlorieter phenole. Phytopathol Z 47:73–83

    Article  CAS  Google Scholar 

  • Martens R, Wetzstein HG, Zadrazil F, Capelari M, Hoffmann P, Schmeer N (1996) Degradation of fluoroquinolone Enrofloxacin by wood-rotting fungi. Appl Environ Microbiol 62:4206–4209

    PubMed  CAS  Google Scholar 

  • Martínez AT, Speranza M, Ruiz-Dueñas FJ, Ferreira P, Camarero S, Guillén F, Gutiérrez A, Martínez MJ, del Río JC (2005) Biodegradation of lignocellulosics: microbial, chemical, and enzymatic aspects of the fungal attack of lignin. Int Microbiol 8:195–204

    PubMed  Google Scholar 

  • McErlen C, Marchant R, Banat IM (2006) An evaluation of soil colonisation potential of selected fungi and their production of ligninolytic enzymes for use in soil bioremediation applications. Anton Leeuw Int J G 90:147–158

    Article  Google Scholar 

  • Meharg AA, Cairney JWG, Maguire N (1997) Mineralization of 2,4-dichlorophenol by ectomycorrhizal fungi in axenic culture and in symbiosis with pine. Chemosphere 34:2495–2504

    Article  CAS  Google Scholar 

  • Nikiforova SV, Pozdnyakova NN, Makarov OE, Chernyshova MP, Turkovskaya OV (2010) Chrysene bioconversion by the white rot fungus Pleurotus ostreatus D1. Microbiology 79:456–460

    Article  CAS  Google Scholar 

  • Osono T (2006) Role of phyllosphere fungi of forest trees in the development of decomposer fungal communities and decomposition processes of leaf litter. Can J Microbiol 52:701–716

    Article  PubMed  CAS  Google Scholar 

  • Osono T (2007) Ecology of ligninolytic fungi associated with leaf litter decomposition. Ecol Res 22:955–974

    Article  Google Scholar 

  • Osono T, Takeda H (2002) Comparison of litter decomposing ability among diverse fungi in a cool temperate deciduous forest in Japan. Mycologia 94:421–427

    Article  PubMed  CAS  Google Scholar 

  • Pinedo-Rivilla C, Aleu J, Collado IG (2009) Pollutants biodegradation by fungi. Curr Org Chem 13:1194–1214

    Article  CAS  Google Scholar 

  • Purnomo AF, Kamei I, Kondo R (2008) Degradation of 1,1,1-trichloro-2,2-bis (4-chlorophenyl) ethane (DDT) by brown-rot fungi. J Biosci Bioeng 105:614–621

    Article  PubMed  CAS  Google Scholar 

  • Rabinovich ML, Bolobova AV, Vasilchenko LG (2004) Fungal decomposition of natural aromatic structures and xenobiotics: a review. Appl Biochem Microbiol 40:1–17

    Article  CAS  Google Scholar 

  • Reddy CA, Mathew Z (2001) Bioremediation potential of white rot fungi. In: Gadd GM (ed) Fungi in bioremediation. Cambridge University Press, Cambridge, pp 52–78

    Chapter  Google Scholar 

  • Riva S (2006) Laccases: blue enzymes for green chemistry. Trends Biotechnol 24:219–226

    Article  PubMed  CAS  Google Scholar 

  • Robertson SJ, McGill WB, Massicotte HB, Rutherford M (2007) Petroleum hydrocarbon contamination in boreal forest soils: a mycorrhizal ecosystems perspective. Biol Rev 82:213–240

    Article  PubMed  Google Scholar 

  • Rodriguez A, Carnicero A, Perestelo F, de la Fluente G, Milstein O, Falcón MA (1994) Effect of Penicillium chrysogenum on lignin transformation. Appl Environ Microbiol 60:2971–2976

    PubMed  CAS  Google Scholar 

  • Schauer F, Borriss R (2004) Biocatalysis and biotransformation. In: Tkacz JS, Lane L (eds) Advances in fungal biotechnology for industry, agriculture, and medicine. Kluwer/Plenum, New York

    Google Scholar 

  • Schlosser D, Fahr K, Karl W, Wetzstein HG (2000) Hydroxylated metabolites of 2,4-dichlorophenol imply a Fenton-type reaction in Gloeophyllum striatum. Appl Environ Microbiol 66:2479–2483

    Article  PubMed  CAS  Google Scholar 

  • Singh H (2006) Fungal metabolism of polycyclic aromatic hydrocarbons. In: Singh H (ed) Mycoremediation, fungal bioremediation. Wiley, Hoboken, NJ, pp 283–356

    Chapter  Google Scholar 

  • Singleton I (2001) Fungal remediation of soils contaminated with persistent organic pollutants. In: Gadd GM (ed) Fungi in bioremediation. Cambridge University Press, Cambridge, pp 79–96

    Chapter  Google Scholar 

  • Steffen KT, Hatakka A, Hofrichter M (2002) Removal and mineralization of polycyclic aromatic hydrocarbons by litter-decomposing basidiomycetous fungi. Appl Microbiol Biotechnol 60:212–217

    Article  PubMed  CAS  Google Scholar 

  • Steffen KT, Schubert S, Tuomela M, Hatakka A, Hofrichter M (2007) Enhancement of bioconversion of high-molecular mass polycyclic aromatic hydrocarbons in contaminated non-sterile soil by litter-decomposing fungi. Biodegradation 18:359–369

    Article  PubMed  CAS  Google Scholar 

  • Teng Y, Luo Y, Sun X, Tu C, Xu L, Liu W, Li Z, Christie P (2010) Influence of arbuscular mycorrhiza and rhizobium on phytoremediation by alfalfa of an agricultural soil contaminated with weathered PCBs: a field study. Int J Phytoremediation 12:516–533

    Article  PubMed  CAS  Google Scholar 

  • Thorn RG, Tsuneda A (1992) Interactions between various wood-decay fungi and bacteria: antibiosi, attack, lysis or inhibition. Rep Tottori Mycol Inst 30:13–20

    Google Scholar 

  • Tigini V, Prigione V, Di Toro S, Fava F, Varese GC (2009) Isolation and characterisation of polychlorinated biphenyl (PCB) degrading fungi from a historically contaminated soil. Microb Cell Fact 8:5

    Article  PubMed  Google Scholar 

  • Valentín L, Kluczek-Turpeinen B, Oivanen P, Hatakka A, Steffen K, Tuomela M (2009) Evaluation of basidiomycetous fungi for pretreatment of contaminated soil. J Chem Technol Biotechnol 84:851–858

    Article  Google Scholar 

  • Venosa AD, Zhu X (2003) Biodegradation of crude oil contaminating marine shorelines and freshwater wetlands. Spill Sci Technol Bull 8:163–178

    Article  CAS  Google Scholar 

  • Verdin A, Sahraoui AL-H, Durand R (2004) Degradation of benzo[a]pyrene by mitosporic fungi and extracellular oxidative enzymes. Int Biodeter Biodegr 53:65–70

    Article  CAS  Google Scholar 

  • Vidossich P, Alfonso-Prieto M, Carpena X, Fita I, Loewen P, Rovira C (2010) The dynamic role of distal side residues in heme hydroperoxidase catalysis. Interplay between X-ray crystallography and ab initio MD simulations. Arch Biochem Biophys 500:37–44

    Article  PubMed  CAS  Google Scholar 

  • Wunch KG, Alworth WL, Bennett JW (1999) Mineralization of benzo[a]pyrene by Marasmiellus troyanus, a mushroom isolated from a toxic waste site. Microbiol Res 154:75–79

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanna Cristina Varese .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Anastasi, A., Tigini, V., Varese, G.C. (2013). The Bioremediation Potential of Different Ecophysiological Groups of Fungi. In: Goltapeh, E., Danesh, Y., Varma, A. (eds) Fungi as Bioremediators. Soil Biology, vol 32. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33811-3_2

Download citation

Publish with us

Policies and ethics