Skip to main content

Production of Thrombolytic and Fibrinolytic Proteases: Current Advances and Future Prospective

  • Chapter
  • First Online:
Bioprospecting of Enzymes in Industry, Healthcare and Sustainable Environment

Abstract

Cardiovascular diseases are one of the leading causes of death, globally. Thrombolytic and fibrinolytic therapies are effective treatments to dissolve the blood clots, improve the blood flow rate, and thereby, prevent tissue and organ damage. The advent of thrombolytic therapy, facilitated in easing the huge burden of cardiovascular diseases on the medical practitioners and provided them with a potential treatment for diseases like pulmonary embolism, myocardial infarction and deep vein thrombosis. Among all the thrombolytics, protease like Streptokinase, Urokinase, Nattokinase, and Tissue plasminogen activator (tPA) holds the majority. Thrombolytics are used as curative agents rather than prophylactics, administered to the site of blockage intravenously, or via long catheter or as dietary supplements. Despite the huge demand for thrombolytics, several factors like strain instability, cost-effectiveness, and lack of infrastructure contribute to the insufficient supply by the production units. Since, conventional production methods are inadequate to meet the spiking demands, high-throughput techniques like genetically engineered strains and fermentative methods are currently being preferred. Here, we discuss some present high-throughput production techniques, and also give an insight into potential ways of improving the yield, not only by adapting to high-throughput technologies but also by considering the eco-evolutionary history of the production strains.

Sabuj Sahoo was deceased at the time of publication.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Avilan L, Yarzabal A, Jürgensen C et al (1997) Cloning, expression and purification of recombinant streptokinase: partial characterization of the protein expressed in Escherichia coli. Braz J Med Biol Res 30(12):1427–1430

    Article  CAS  PubMed  Google Scholar 

  • Babashamsi M, Razavian MH, Nejadmoghaddam MR (2009) Production and purification of streptokinase by protected affinity chromatography. Avicenna J Med Biotechnol 1(1):47

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bansal V, Roychoudhury PK (2006) Production and purification of urokinase: a comprehensive review. Protein Expr Purif 45(1):1–4

    Article  CAS  PubMed  Google Scholar 

  • Bansal V, Roychoudhury PK, Kumar A (2007) Urokinase separation from cell culture broth of a human kidney cell line. Int J Biol Sci 3(1):64

    Article  CAS  Google Scholar 

  • Cesari M, Pahor M, Incalzi RA (2010) Plasminogen activator inhibitor-1 (PAI-1): a key factor linking fibrinolysis and age-related subclinical and clinical conditions. Cardiovasc Ther 28(5):e72–e91

    Article  CAS  PubMed  Google Scholar 

  • Chandramohan M, Yee CY, Beatrice PH et al (2019) Production, characterization and optimization of fibrinolytic protease from Bacillus pseudomycoides strain MA02 isolated from poultry slaughter house soils. Biocatal Agric Biotechnol 22:101371

    Article  Google Scholar 

  • Chandrasekaran SD, Mohanasrinivasan Vaithilingam RS, Kumar S et al (2015) Exploring the in vitro thrombolytic activity of nattokinase from a New Strain Pseudomonas aeruginosa CMSS. Jundishapur J Microbiol 8(10):e23567

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen PT, Chao YP (2006) Enhanced production of recombinant nattokinase in Bacillus subtilis by the elimination of limiting factors. Biotechnol Lett 28(19):1595–1600

    Article  CAS  PubMed  Google Scholar 

  • Chen PT, Chiang CJ, Chao YP (2007) Strategy to approach stable production of recombinant nattokinase in Bacillus subtilis. Biotechnol Prog 23(4):808–813

    Article  CAS  PubMed  Google Scholar 

  • Chen H, McGowan EM, Ren N et al (2018) Nattokinase: a promising alternative in prevention and treatment of cardiovascular diseases. Biomark Insights 13:1177271918785130

    Article  PubMed  PubMed Central  Google Scholar 

  • Clowes AW, Clowes MM, Au YP et al (1990) Smooth muscle cells express urokinase during mitogenesis and tissue-type plasminogen activator during migration in injured rat carotid artery. Circ Res 67(1):61–67

    Article  CAS  PubMed  Google Scholar 

  • Collen D, Lijnen HR (2009) The tissue-type plasminogen activator story. Arterioscler Thromb Vasc Biol 29(8):1151–1155

    Article  CAS  PubMed  Google Scholar 

  • Dabbagh F, Negahdaripour M, Berenjian A et al (2014) Nattokinase: production and application. Appl Microbiol Biotechnol 98(22):9199–9206

    Article  CAS  PubMed  Google Scholar 

  • Danø K, Andreasen PA, Grøndahl-Hansen J (1985) Plasminogen activators, tissue degradation, and cancer. In: Advances in cancer research, vol 44. Academic Press, New York, NY, pp 139–266

    Google Scholar 

  • Datar RV, Cartwright T, Rosen CG (1993) Process economics of animal cell and bacterial fermentations: a case study analysis of tissue plasminogen activator. Bio/Technology 11(3):349–357

    Article  CAS  Google Scholar 

  • Davenport PW, Griffin JL, Welch M (2015) Quorum sensing is accompanied by global metabolic changes in the opportunistic human pathogen Pseudomonas aeruginosa. J Bacteriol 197(12):2072–2082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eaton DL, Scott RW, Baker JB (1984) Purification of human fibroblast urokinase proenzyme and analysis of its regulation by proteases and protease nexin. J Biol Chem 259(10):6241–6247

    Article  CAS  PubMed  Google Scholar 

  • Fujita M, Nomura K, Hong K et al (1993) Purification and characterization of a strong fibrinolytic enzyme (nattokinase) in the vegetable cheese natto, a popular soybean fermented food in Japan. Biochem Biophys Res Commun 197(3):1340–1347

    Article  CAS  PubMed  Google Scholar 

  • Gao R, Zhang Y, Meng QX et al (1998) Characterization of three fibrinogenolytic enzymes from Chinese green tree viper (Trimeresurus stejnegeri) venom. Toxicon 36(3):457–467

    Article  CAS  PubMed  Google Scholar 

  • Ghaffar A, Ahmed B, Munir B et al (2015) Production and characterization of streptokinase enzyme by using Streptococcus mutans strain in liquid state fermentation through corn steep liquor (CSL) substrate. Biochem Physiol 4(178):2

    Google Scholar 

  • Giri S, Shitut S, Kost C (2020) Harnessing ecological and evolutionary principles to guide the design of microbial production consortia. Curr Opin Biotechnol 62:228–238

    Article  CAS  PubMed  Google Scholar 

  • Hernández L, Martinez Y, Quintana M et al (2005) Heberkinasa: recombinant streptokinase. Eur Heart J 26(16):1691

    Article  PubMed  Google Scholar 

  • Hiramatsu R, Horinouchi S, Beppu T (1991) Isolation and characterization of human pro-urokinase and its mutants accumulated within the yeast secretory pathway. Gene 99(2):235–241

    Article  CAS  PubMed  Google Scholar 

  • Holmes WE, Pennica D, Blaber M et al (1985) Cloning and expression of the gene for pro-urokinase in Escherichia coli. Bio/Technology 3(10):923–929

    Article  CAS  Google Scholar 

  • Islam M, Alam F, Khalil I et al (2016) Natural products towards the discovery of potential future antithrombotic drugs. Curr Pharm Des 22(20):2926–2946

    Article  CAS  PubMed  Google Scholar 

  • Jackson KW, Tang J (1982) Complete amino acid sequence of streptokinase and its homology with serine proteases. Biochemistry 21(26):6620–6625

    Article  CAS  PubMed  Google Scholar 

  • Jilani TN, Siddiqui AH (2019) Tissue plasminogen activator. StatPearls, Treasure Island, FL

    Google Scholar 

  • Kaptoge S, Pennells L, De Bacquer D et al (2019) World Health Organization cardiovascular disease risk charts: revised models to estimate risk in 21 global regions. Lancet Glob Health 7(10):e1332–e1345

    Article  Google Scholar 

  • Karimi Z, Babashamsi M, Asgarani E et al (2011) Fermentation, fractionation and purification of streptokinase by chemical reduction method. Iran J Microbiol 3(1):42

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khaparde SS, Roychoudhury PK (2005) Effect of temperature shift on urokinase production in hollow fiber bioreactor. Ind Chem Eng Conf Tech Sess Transc 2:255

    Google Scholar 

  • Kim JS, Min MK, Jo EC (2001) High-level expression and characterization of single chain urokinase-type plasminogen activator (scu-PA) produced in recombinant Chinese hamster ovary (CHO) cells. Biotechnol Bioprocess Eng 6(2):117–127

    Article  CAS  Google Scholar 

  • Kotb E (2013) Activity assessment of microbial fibrinolytic enzymes. Appl Microbiol Biotechnol 97(15):6647–6665

    Article  CAS  PubMed  Google Scholar 

  • Kotb E (2014) The biotechnological potential of fibrinolytic enzymes in the dissolution of endogenous blood thrombi. Biotechnol Prog 30(3):656–672

    Article  CAS  PubMed  Google Scholar 

  • Krätzschmar J, Haendler B, Langer G et al (1991) The plasminogen activator family from the salivary gland of the vampire bat Desmodus rotundas: cloning and expression. Gene 105(2):229–237

    Article  PubMed  Google Scholar 

  • Kumar A, Bansal V, Andersson J et al (2006) Supermacroporous cryogel matrix for integrated protein isolation: immobilized metal affinity chromatographic purification of urokinase from cell culture broth of a human kidney cell line. J Chromatogr A 1103(1):35–42

    Article  CAS  PubMed  Google Scholar 

  • Kunamneni A, Ravuri BD, Ellaiah P et al (2008) Urokinase-a strong plasminogen activator. Biotechnol Mol Biol Rev 3(3):58–70

    Google Scholar 

  • Lin L, Hu K (2014) Tissue plasminogen activator: side effects and signaling. J Drug Des Res 1(1):1001

    PubMed  PubMed Central  Google Scholar 

  • Long X, Gou Y, Luo M et al (2015) Soluble expression, purification, and characterization of active recombinant human tissue plasminogen activator by auto-induction in E. coli. BMC Biotechnol 15(1):13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Loy JA, Lin X, Schenone M et al (2001) Domain interactions between streptokinase and human plasminogen. Biochemistry 40(48):14686–14695

    Article  CAS  PubMed  Google Scholar 

  • Mahboubi A, Sadjady SK, Abadi MM et al (2012) Biological activity analysis of native and recombinant streptokinase using clot lysis and chromogenic substrate assay. Iranian J Pharmaceut Res 11(4):1087

    CAS  Google Scholar 

  • Masanori N, Ryuji H, Teruo K et al (1985) Molecular cloning of cDNA coding for human preprourokinase. Gene 36(1-2):183–188

    Article  Google Scholar 

  • Mihara H, Sumi H, Yoneta T et al (1991) A novel fibrinolytic enzyme extracted from the earthworm, Lumbricus rubellus. Jpn J Physiol 41(3):461–472

    Article  CAS  PubMed  Google Scholar 

  • Nakamura T, Yamagata Y, Ichishima E (1992) Nucleotide sequence of the subtilisin NAT gene, aprN, of Bacillus subtilis (natto). Biosci Biotechnol Biochem 56(11):1869–1871

    Article  CAS  PubMed  Google Scholar 

  • Noecker C, Chiu HC, McNally CP et al (2019) Defining and evaluating microbial contributions to metabolite variation in microbiome-metabolome association studies. mSystems 4(6):e00579

    Article  PubMed  PubMed Central  Google Scholar 

  • Reed GL, Houng AK, Singh S (2017) α2-Antiplasmin: new insights and opportunities for ischemic stroke. In: Seminars in thrombosis and hemostasis, vol 43, No. 2. Thieme Medical Publishers, New York, NY, pp 191–199

    Google Scholar 

  • Roychoudhury PA, Gomes J, Bhattacharyay SK et al (1999) Production of urokinase by HT 1080 human kidney cell line. Artif Cell Blood Subst Biotechnol 27(5-6):399–402

    Article  CAS  Google Scholar 

  • Sedlacek CJ, Nielsen S, Greis KD et al (2016) Effects of bacterial community members on the proteome of the ammonia-oxidizing bacterium Nitrosomonas sp. strain Is79. Appl Environ Microbiol 82(15):4776–4788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sikri N, Bardia A (2007) A history of streptokinase use in acute myocardial infarction. Tex Heart Inst J 34(3):318

    PubMed  PubMed Central  Google Scholar 

  • Sobel GW, Mohler SR, Jones NW et al (1952) Urokinase-an activator of plasma profibrinolysin extracted from urine. Am J Physiol 171(3):768–769

    Google Scholar 

  • Stepanova VV, Tkachuk VA (2002) Urokinase as a multidomain protein and polyfunctional cell regulator. Biochem Mosc 67(1):109–118

    Article  CAS  Google Scholar 

  • Sumi H, Hamada H, Tsushima H (1987) A novel fibrinolytic enzyme (nattokinase) in the vegetable cheese Natto; a typical and popular soybean food in the Japanese diet. Experientia 43(10):1110–1111

    Article  CAS  PubMed  Google Scholar 

  • Svoboda P, Barton RP et al (2004) Recombinant urokinase is safe and effective in restoring patency to occluded central venous access devices: a multiple-center. Crit Care Med 32(10):1990–1996

    Article  CAS  PubMed  Google Scholar 

  • Tang W, Sun ZY, Pannell R et al (1997) An efficient system for production of recombinant urokinase-type plasminogen activator. Protein Expr Purif 11(3):279–283

    Article  CAS  PubMed  Google Scholar 

  • Tran K, Gurramkonda C, Cooper MA et al (2018) Cell-free production of a therapeutic protein: expression, purification, and characterization of recombinant streptokinase using a CHO lysate. Biotechnol Bioeng 115(1):92–102

    Article  CAS  PubMed  Google Scholar 

  • Vellanki RN, Potumarthi R, Doddapaneni KK et al (2013) Constitutive optimized production of streptokinase in Saccharomyces cerevisiae utilizing glyceraldehyde 3-phosphate dehydrogenase promoter of Pichia pastoris. Biomed Res Int 2013:268249

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang C, Du M, Zheng D et al (2009) Purification and characterization of nattokinase from Bacillus subtilis natto B-12. J Agric Food Chem 57(20):9722–9729

    Article  CAS  PubMed  Google Scholar 

  • Warner TG (1999) Enhancing therapeutic glycoprotein production in Chinese hamster ovary cells by metabolic engineering endogenous gene control with antisense DNA and gene targeting. Glycobiology 9(9):841–850

    Article  CAS  PubMed  Google Scholar 

  • Wiebe MG, Karandikar A, Robson GD (2001) Production of tissue plasminogen activator (t-PA) in Aspergillus niger. Biotechnol Bioeng 76(2):164–174

    Article  CAS  PubMed  Google Scholar 

  • Young KC, Shi GY, Wu DH et al (1998) Plasminogen activation by streptokinase via a unique mechanism. J Biol Chem 273(5):3110–3116

    Article  CAS  PubMed  Google Scholar 

  • Ziche M, Parenti A, Ledda F et al (1997) Nitric oxide promotes proliferation and plasminogen activator production by coronary venular endothelium through endogenous bFGF. Circ Res 80(6):845–852

    Article  CAS  PubMed  Google Scholar 

  • Zu X, Zhang Z, Che H (2010) Nattokinase’s extraction from Bacillus subtilis fermented soybean curd residue and wet corn distillers’ grain and fibrinolytic activities. Int J Biol 2:120

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors are thankful to the Head, Post Graduate Department of Biotechnology, Utkal University and Center for Environment Climate Change & Public Health, COE under RUSA-2.0 for providing necessary facilities.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ghosh, S., Saha, S., Sahoo, S. (2021). Production of Thrombolytic and Fibrinolytic Proteases: Current Advances and Future Prospective. In: Thatoi, H., Mohapatra, S., Das, S.K. (eds) Bioprospecting of Enzymes in Industry, Healthcare and Sustainable Environment. Springer, Singapore. https://doi.org/10.1007/978-981-33-4195-1_17

Download citation

Publish with us

Policies and ethics