Skip to main content
Log in

High-level expression and characterization of single chain urokinase-type plasminogen activator (scu-PA) produced in recombinant Chinese hamster ovary (CHO) cells

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The high-level expression of a human single chain urokinase-type plasminogen activator (scu-PA) was achieved by employing a methotrexate (MTX)-dependent gene amplification system in Chinese hamster ovary (CHO) cells. By cotransfecting and coamplifying a scu-PA expression plasmid and dihydrofolate reductase (DHFR) minigene, several scu-PA expressing CHO cell lines were selected and gene-amplified. These recombinant cell lines, MGpUKs, recreted a completely processed scu-PA of 54kD and up to 60 mg/L was accumulated in the culture medium when they were adapted to an optimal MTX concentration. Over 95% of the scu-PA expressed was secreted in the culture medium and identified as having the proper function of a plasminogen activator when activated by plasmin. Based on a genomic Southern analysis, a representative subclone, MGpUK-5, exhibited MTX-dependent scu-PA gene amplification, plus the initial single-copy gene of scu-PA eventually turned into about 150 copies of the amplified gene of scu-PA after gradual adaptation to 2.0 μM of MTX. Meanwhile, the transcripts of the scu-PA gene increased, although-early saturation of transcription was identified at 0.1 μM of MTX. The scu-PA production by the MGpUK-5 subclone also increased relative to the gene amplification and increased transcripts, however, the relationship was not linearly proportional. Accordingly, since the MGpUK cell lines expressed elevated levels of enzymatically active scu-PA, these cell lines could be applied to the large-scale production of scu-PA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stump, D. C., M. Thienpont, and D. Collen (1986) Urokinase-related proteins in human urine. Isolation and characterization of single-chain urokinase (prouroki-nase) and urokinase-inhibitor complex.J. Biol. Chem. 261: 1267–1273.

    CAS  Google Scholar 

  2. Kasai, S., H. Arimura, M. Nishida, and T. Suyama (1985) Proteolytic cleavage of single-chain pro-urokinase induces conformational change which follows activation of the zymogen and reduction of its high affinity for fibrin.J. Biol. Chem. 260: 12377–12381.

    CAS  Google Scholar 

  3. Weaver, W. D., J. R. Hartmann, J. L. Anderson, P. S. Reddy, J. C. Sobolski, and A. A. Sasahara (1994) New recombinant glycosylated prourokinase for treatment of patients with acute myocardial infarction. Prourokinase Study Group.J. Am. Coll. Cardiol. 24: 1242–1248.

    Article  CAS  Google Scholar 

  4. Ouriel, K., C. K. Shortell, J. A. DeWeese, R. M. Green, C. W. Francis, M. V. Azodo, O. H. Gutierrez, J. V. Manzione, C. Cox, and V. J. Marder (1994) A comparison of thrombolytic therapy with operative revascularization in the initial treatment of acute peripheral arterial ischemia.J. Vasc. Surg. 19: 1021–1030.

    CAS  Google Scholar 

  5. Wun, T. C., L. Ossowski, and E. Reich (1982) A proenzyme form of human urokinase.J. Biol. Chem. 257: 7262–7268.

    CAS  Google Scholar 

  6. Gunzler, W. A., G. J. Steffens, F. Otting, S. M. Kim, E. Frankus, and L. Flohe (1982) The primary structure of high molecular mass urokinase from human urine. The complete amino acid sequence of the A chain.Hoppe-Sevler’s Z. Physiol. Chem. 363: 1155–1165.

    CAS  Google Scholar 

  7. Novokhatny, V., L. Medved, A. Mazar, P. Marcotte, J. Henkin, and K. Ingham (1992) Domain structure and interactions of recombinant urokinase type plasminogen activator.J. Biol. Chem. 267: 3878–3885.

    CAS  Google Scholar 

  8. Husain, S. S., V. Gurewich, and B. Lipinski (1983) Purification and partial characterization of a single-chain high-molecular-weight form of urokinase from human urine.Arch. Biochem. Biophys. 220: 31–38.

    Article  CAS  Google Scholar 

  9. Ichinose, A., K. Fujikawa, and T. Suyama (1986) The activation of pro-urokinase by plasma kallikrein and its inactivation by thrombin.J. Biol. Chem. 261: 3486–3489.

    CAS  Google Scholar 

  10. Kobayashi, H., M. Schmitt, L. Goretzki, N. Chucholowski, J. Calvete, M. Kramer, W. A. Gunzler, F. Janicke, and H. Graeff (1991) Cathepsin B efficiently activates the soluble and the tumor cell receptor-bound form of the proenzyme urokinase-type plasminogen activator (ProuPA).J. Biol. Chem. 266: 5147–5152.

    CAS  Google Scholar 

  11. Loza, J. P., V. Gurewich, M. Johnstone, and R. Pannel (1994) Platelet-bound prekallikrein promotes pro-urokinase-induced clot lysis: a mechanism for targeting the factor XII dependent intrinsic pathway of fibrinolysis.Thromb. Haemost. 71: 347–352.

    CAS  Google Scholar 

  12. Gurewich, V., R. Pannell, S. Louie, P. Kelley, R. L. Suddith, and R. Greenlee (1984) Effective and fibrin-specific clot lysis by a zymogen precursor form of urokinase (prourokinase). A studyin vitro and in two animal species.J. Clin. Invest. 73: 1731–1739.

    Article  CAS  Google Scholar 

  13. Zamarron, C., H. R. Lijnen, B. Van Hoef, and D. Collen (1984) Biological and thrombolytic properties of proenzyme and active forms of human urokinase: I. Fibrinolytic and fibrinogenolytic properties in human plasmain vitro of urokinases obtained from human urine or by recombinant DNA technology.Thromb. Haemost. 52: 19–23.

    CAS  Google Scholar 

  14. Liu, J. N. and V. Gurewich (1992) Fragment E-2 from fibrin substantially enhances pro-urokinase-induced Gluplasminogen activation. A kinetic study using the plasmin-resistant mutant pro-urokinase Ala-158-rpro-UK.Biochemistry 31: 6311–6317.

    Article  CAS  Google Scholar 

  15. Collen, D., J. M. Stassen, M. Blaber, M. Winkler, and M. Verstraete (1984) Biological and thrombolytic properties of proenzyme and active forms of human urokinase. III. Thrombolytic properties of natural and recombinant urokinase in rabbits with experimental jugular vein thrombosis.Thromb. Haemost. 52: 27–30

    CAS  Google Scholar 

  16. Van de Werf, F., I. K. Jang, and D. Collen (1987) Thrombolysis with recombinant human single-chain urokinase-type plasminogen activator (rscu-PA): dose-response in dogs with coronary artery thrombosis.J. Cardiovase. Pharmacol. 9: 91–93.

    Google Scholar 

  17. Kido, H., K. Hayashi, T. Uchida, and M. Watanabe (1995) Low incidence of hemorrhagic infarction following coronary reperfusion with nasaruplase in a canine model of acute myocardial infarction. Comparison with recombinant t-PA.Jpn. Heart J. 36: 61–79.

    CAS  Google Scholar 

  18. Credo, R. B., J. C. Sobolski, W. D. Weaver, and J. R. Hartmann (1997) Recombinant glycosylated pro-urokinase: biochemistry, pharmacology, and early clinical experience. pp. 561–589. In: Sasahara, A. A., and J. Loscalzo (eds.).New Therapeutic Agents in Thrombosis and Thromebolysis. Marcel Dekker, NY, USA.

    Google Scholar 

  19. Gurewich, V., M. Johnstone, J. P. Loza, and R. Pannel (1993) Pro-urokinase and prekallikrein are both associated with platelets. Implications for the intrinsic pathway of fibrinolysis and for therapeutic thrombolysis.FEBS Lett. 318: 317–321.

    Article  CAS  Google Scholar 

  20. Wun, T. C., W. D. Schleuning, and E. Reich (1982) Isolation and characterization of urokinase from human plasma.J. Biol. Chem. 257: 3276–3283.

    CAS  Google Scholar 

  21. Nielsen, L. S., J. C. Hansen, L. Skriver, E. L. Wilson, K. Kaltoft, J. Zeuthen, and K. Dano (1982) Purification of zymogen to plasminogen activator from human glioblartoma cells by affinity chromatography with monoclonal antibody.Biochemistry 21: 6410–6415.

    Article  CAS  Google Scholar 

  22. Yoshimoto, M., Y. Ushiyama, M. Sakai, S. Tamaki, H. Hara, K. Takahashi, Y. Sawasaki, and K. Hanada (1996) Characterization of single chain urokinase-type plasminogen activator with a novel amino-acid substitution in the kringle structure.Biochim. Biophys. Acta. 1293: 83–89.

    Google Scholar 

  23. Kasai, S., H. Arimura, M. Nishida, and T. Suyama (1985) Frimary structure of single-chain pro-urokinase.J. Biol. Chem. 260: 12382–12389.

    CAS  Google Scholar 

  24. Nagai, M., R. Hiramatsu, T. Kaneda, N. Hayasuke, H. Arimura, M. Nishida, and T. Suyama (1985) Molecular cloning of cDNA coding for human preprourokinase.Gene 36: 183–188.

    Article  CAS  Google Scholar 

  25. Jacobs, P., A. Cravador, R. Loriau, F. Brockly, B. Colau, P. Chuchana, A. van Elsen, A. Herzog, and A. Bollen (1985) Molecular cloning sequencing, and expression inEscherichia coli of human preprourokinase cDNA.DNA 4: 139–146.

    Article  CAS  Google Scholar 

  26. Riccio, A., C. Grimaldi, P. Verde, G. Sebastio, S. Boast, and E. Blasi (1985) The human urokinase-plasminogen activator gene and its promoter.Nucleic Acids Res. 13: 2759–2771.

    Article  CAS  Google Scholar 

  27. Patthy, L. (1990) Evolutionary assembly of blood coagulation proteins.Semin. Thromb. Hemost. 16: 245–259.

    Article  CAS  Google Scholar 

  28. Brigelius-Flohe, R., G. Steffens, W. Strassburger, and L. Flohe (1992) High expression vectors for the production of recombinant single-chain urinary plasminogen activator fromEscherichia coli.Appl. Microbiol. Biotechnol. 36: 640–649.

    Article  CAS  Google Scholar 

  29. Melnick, L. M., B. G. Turner, P. Puma, B. Price-Tillotson, K. A. Salvato, D. R. Dumais, D. T. Moir, R. J. Broeze, and G. C. Avgerinos (1990) Characterization of a nonglycosylated single chain urinary plasminogen activator secreted from yeast.J. Biol. Chem. 265: 801–807.

    CAS  Google Scholar 

  30. Nelles, L., H. R. Lijnen, D. Collen, and W. E. Holmes (1987) Characterization of recombinant human single chain urokinase-type plasminogen activator mutants produced by site-specific mutagenesis of lysine 158.J. Biol. Chem. 262: 5682–5689.

    CAS  Google Scholar 

  31. Avgerinos, G. C., D. Drapeau, J. S. Socolow, J. I. Mao, K. Hsiao, and R. J. Broeze (1990) Spin filter perfusion system for high density cell culture: production of recombinant urinary type plasminogen activator in CHO cells.Bio/Technol. 8: 54–58.

    Article  CAS  Google Scholar 

  32. Satoh, M., S. Hosoi, H. Miyaji, S. Itoh, and S. Sato (1993) Stable production of recombinant pro-urokinase by human lymphoblastoid Namalwa KJM-1 cells: host-cell dependency of the expressed-protein stability.Cytotechnology 13: 79–88.

    Article  CAS  Google Scholar 

  33. Zang, M., H. Trautmann, C. Gandor, F. Asselbergs, C. Leist, A. Fiechter, and J. Reiser (1995) Production of recombinant proteins in Chinese hamster ovary cells using a protein-free cell culture medium.Bio/Technol. 13: 389–392.

    Article  CAS  Google Scholar 

  34. Mathey, D. G., J. Schofer, K. H. Kuck, U. Beil, and G. Kloppel (1982) Transmural, haemorrhagic myocardial infarction after intracoronary streptokinase. Clinical, angiographic, and necropsy findings.Br. Heart J. 48: 546–551.

    Article  CAS  Google Scholar 

  35. Bang, N. U. (1989) Tissue-type plasminogen activator mutants. Theoretical and clinical considerations.Circulation 79: 1391–1392.

    CAS  Google Scholar 

  36. Tebbe, U., W. A. Gunzler, G. R. Hopkins, T. Grymbowski, and H. Barth (1997) Thrombolytic therapy of acute myocardial infarction with saruphase, a single-chain urokinase-type plasminogen activator (scu-PA) from recombinant bacteria.Fibrinol. Proteolysis 11: 45–54.

    Article  CAS  Google Scholar 

  37. Collen, D., D. Stump, F. van de Werf, I. K. Jang, M. Nobuhara, and H. R. Lijnen (1985) Coronary thrombolysis in dogs with intravenously administered human prourokinase.Circulation 72: 384–388.

    CAS  Google Scholar 

  38. Urlaub, G. and L. A. Chasin (1980) Isolation of Chinese hamster cell mutants deficient in dihydrofolate reductase activity.Proc. Natl. Acad. Sci. USA 77: 4216–4220.

    Article  CAS  Google Scholar 

  39. Kaufman, R. J. and P. A. Sharp (1982) Amplification and expression of sequences cotransfected with a modular dihydrofolate reductase complementary DNA gene.J. Mol. Biol. 159: 601–621.

    Article  CAS  Google Scholar 

  40. Kaufman, R. J., L. C. Wasley, A. J. Spiliotes, S. I. Gossels, S. A. Latt, G. R. Larsen, and R. M. Kay (1985) Goamplification and coexpression of human tissue-type plasminegen activator and murine dihydrofolate reductase sequences in Chinese hamster ovary cells.Mol. Cell. Biol. 5: 1750–1759.

    CAS  Google Scholar 

  41. Gralnick, H. R., S. B. Williams, and M. E. Rick (1983) Role of carbohydrate in multimeric structure of factor VIII/von Willebrand factor protein.Proc. Natl. Acad. Sci. USA 80: 2771–2774.

    Article  CAS  Google Scholar 

  42. Goto, M., K. Akai, A. Murakanu, C. Hashimoto, E. Tsuda, M. Ueda, G. Kawanishi, N. Takahashi, A. Ishimoto, H. Chiba, and R. Sasaki (1988) Production of recombinant human erythropoiwtin in mammalian cells: host-cell dependency of biological activity of the cloned glycoprotein.Bio/Technol. 6: 67–71.

    Article  CAS  Google Scholar 

  43. Kaufman, R. J. (1990) Selection and coamplification of heterologous genes in mammalian cells.Methods Enzymol. 185: 537–566.

    Article  CAS  Google Scholar 

  44. Page, M. J. and M. A. Sydenham (1991) High level expression of the humanized monoclonal antibody Campath-1H in Chinese hamster ovary cells.Bio/Technol. 9: 64–68.

    Article  CAS  Google Scholar 

  45. Park, B. G., J. M. Chun, G. T. Lee, I. H. Kim, and Y. H. Jeong (2000) Development of high density mammalian cell culture system for the production of tissue-type plasminogen.Biotechnol. Bioprocess Eng. 5: 123–129.

    Article  CAS  Google Scholar 

  46. Kaufman, R. J. and R. T. Schimke (1981) Amplification and loss of dihydrofolate reductase genes in a Chinese hamster ovary cell line.Mol. Cell. Biol. 1: 1069–1076.

    CAS  Google Scholar 

  47. Stark, G. R., M. Debatisse, E. Giulotto, and G. M. Wall (1989) Recent progress in understanding mechanisms of mammalian DNA amplification.Cell 57: 901–908.

    Article  CAS  Google Scholar 

  48. Kim, S. J., N. S. Kim, C. J. Ryu, H. J. Hong, and C. M. Lee (1998) Characterization of chimeric antibody producing CHO cells in the course of dihydrofolate reductase-mediated gene amplification and their stability in the absence of selective pressure.Biotechnol. Bioeng. 58: 73–84.

    Article  CAS  Google Scholar 

  49. Urlaub, G., E. Kas, A. M. Carothers, and L. A. Chasin (1983) Deletion of the diploid dihydrofolate reductase locus from cultured mammalian cells.Cell 33: 405–412.

    Article  CAS  Google Scholar 

  50. Kim, H. G., K. D. Sung, M. S. Ham, K. H. Chung, K. H. Chung, and H. Y. Lee (1995) The optimization of serum-free medium for the production of the scu-PA by the addition of algal extracts.Cytotechnology 17: 165–172.

    Article  CAS  Google Scholar 

  51. Jo, E. C., J. W. Yun, S. I. Jung, K. H. Chung, and J. H. Kim (1998) Performance study of perfusion cultures for the production of single-chain urokinase-type plasminogen activator (scu-PA) in a 2.5 L spin-filter bioreactor.Bioproc. Eng. 19: 363–372.

    Article  CAS  Google Scholar 

  52. Venolia, L., G. Urlaub, and L. A. Chasin (1987) Polyadenylation of Chinese hamster dihydrofolate reductase genomic genes and minigenes after gene transfer.Somat. Cell. Mol. Genet. 13: 491–504.

    Article  CAS  Google Scholar 

  53. Melera, P. W., J. P. Davide, C. A. Hession, and K. W. Scotto (1984) Phenotypic expression inEscherichia coli and nucleotide sequence of two Chinese hamster lung cell cDNAs encoding different dihydrofolate reductases.Mol. Cell. Biol. 4: 38–48.

    CAS  Google Scholar 

  54. Mitchell, P. J., A. M. Carothers, J. H. Han, J. D. Harding, E. Kas, L. Venolia, and L. A. Chasin (1986) Multiple transcription start sites, DNase I-hypersensitive sites, and an opposite-strand exon in the 5’ region of the CHOdhfr gene.Mol. Cell. Biol. 6: 425–440.

    CAS  Google Scholar 

  55. Mohr, G., A. Preininger, M. Himmelspach, B. Plaimauer, C. Arbesser, H. York, F. Dorner, and U. Schlokat (2000) Permanent mycoplasma removal from tissue culture cells: a genetic approach.Biotechnol. Bioprocess Eng. 5: 84–91.

    Article  CAS  Google Scholar 

  56. Kida, T., S. Fujishima, M. Matsumura, and P. C. Wang (2000) Immobilization of rat kidney glomerular mesangial cell and its coculture with glomerular epitherial cell.Biotechnol. Bioprocess Eng. 5: 92–93.

    Article  CAS  Google Scholar 

  57. Kluft, C. (1979) Studies on the fibrinolytic system in human plasma: quantitative determination of plasminogen activators and proactivators.Thromb. Haemost. 41: 365–333.

    CAS  Google Scholar 

  58. Corti, A., M. L. Nolli, and C. Cassani (1986) Differential detection of single-chain and two-chain urokinase-type plasminogen activator by a new immunoadsorbent-amidolytic assay (IAA).Thromb. Haemost. 56: 407–410.

    CAS  Google Scholar 

  59. Lichter, P., A. L. Boyle, T. Cremer, and D. C. Ward (1991) Analysis of genes and chromosomes by nonisotopicin situ hybridization.Genet. Anal. Tech. Appl. 8: 24–35.

    CAS  Google Scholar 

  60. Satoh, M., S. Hosoi, and S. Sato (1990) Chinese hamster overy cells continuously secrete a cysteine endopeptidase.In Vitro.Cell. Dev. Biol. 26: 1101–1104.

    Article  CAS  Google Scholar 

  61. Kaufman, R. J., L. C. Wasley, and A. J. Dorner (1988) Synthesis, processing, and secretion of recombinant human factor VIII expressed in mammalian cells.J. Biol. Chem. 268: 6352–6362.

    Google Scholar 

  62. Kentzer, E. J., A. Buko, G. Menon, and V. K. Sarin (1999) Carbohydrate composition and presence of a fucosepretein linkage in recombinant human pro-urokinase.Biochem. Biophys. Res. Commun. 171: 401–406.

    Article  Google Scholar 

  63. Lenich, C., R. Pannell, J. Henkin, and V. Gurewich (1992) The influence of glycosylation on the catalytic and fibrinolytic properties of pro-urokinase.Thromb. Haemost 68: 539–544.

    CAS  Google Scholar 

  64. Stief, A., D. M. Winter, W. H. Stratling, and A. E. Sippel (1989) A nuclear DNA attachment element mediates elevated and position-independent gene activity.Nature 341: 343–345.

    Article  CAS  Google Scholar 

  65. Klehr, D., K. Maass, and J. Bode (1991) Scaffold-attached regions from the human interferon beta domain can be used to enhance the stable expression of genes under the control of various promoters.Biochemistry 30: 1264–1270.

    Article  CAS  Google Scholar 

  66. Dorer, D. R. and S. Henikoff (1994) Expansions of transgene repeats cause heterochromatin formation and gene silencing inDrosophila.Cell 77: 993–1002.

    Article  CAS  Google Scholar 

  67. Kalos, M. and R. E. Fournier (1995) Position-independent transgene expression mediated by boundary elements from the apolipoprotein B chromatin domain.Mel. Cell Biol. 15: 198–207.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eui-Cheol Jo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, JS., Min, MK. & Jo, EC. High-level expression and characterization of single chain urokinase-type plasminogen activator (scu-PA) produced in recombinant Chinese hamster ovary (CHO) cells. Biotechnol. Bioprocess Eng. 6, 117–127 (2001). https://doi.org/10.1007/BF02931957

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02931957

Keywords

Navigation