Skip to main content

The Prospects of RNAs and Common Significant Pathways in Cancer Therapy and Regenerative Medicine

  • Chapter
  • First Online:
Regenerative Medicine

Abstract

Cells undergoing initiation of carcinogenesis and regeneration often share most of the molecular pathways. Consequently, cancer treatment may compromise regenerative processes and vice versa may modulate the initiation or inhibition of carcinogenesis. This chapter thus focuses on categorically identifying and exploring the molecules, molecular pathways and their respective roles in both cancer development and regeneration, and on delineating them accordingly. Besides that, the role of inflammation, DNA methylation and epigenetic regulation, autophagy, as well as growth factors are discussed for both the processes. Moreover, focus was placed on identification of exclusive molecular targets, choosing therapeutic molecules as well as selecting suitable therapeutic strategies for achieving the desired results. In conclusion, pathway-targeting therapies, such as RNA therapy, gene therapy, lipid-based therapy and polymer-based therapies, can maintain exclusivity and may be the future of cancer therapy and regenerative medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ailawadi S, Wang X, Gu H, Fan G-C (2015) Pathologic function and therapeutic potential of exosomes in cardiovascular disease. Biochim Biophys Acta 1852:1–11. https://doi.org/10.1016/j.bbadis.2014.10.008

    Article  CAS  Google Scholar 

  • Ajiki T, Murakami T, Kobayashi Y, Hakamata Y, Wang J, Inoue S, Ohtsuki M, Nakagawa H, Kariya Y, Hoshino Y, Kobayashi E (2003) Long-lasting gene expression by particle-mediated intramuscular transfection modified with bupivacaine: combinatorial gene therapy with IL-12 and IL-18 cDNA against rat sarcoma at a distant site. Cancer Gene Ther 10:318–329. https://doi.org/10.1038/sj.cgt.7700575

    Article  CAS  Google Scholar 

  • Al-Dosari MS, Gao X (2009) Nonviral gene delivery: principle, limitations, and recent progress. AAPS J 11:671. https://doi.org/10.1208/s12248-009-9143-y

    Article  CAS  Google Scholar 

  • Ali MU, Ur Rahman MS, Jia Z, Jiang C (2017) Eukaryotic translation initiation factors and cancer. Tumor Biol 39(6):1010428317709805

    Article  Google Scholar 

  • Alsaab HO, Sau S, Alzhrani R, Tatiparti K, Bhise K, Kashaw SK, Iyer AK (2017) PD-1 and PD-L1 checkpoint signaling inhibition for cancer immunotherapy: mechanism, combinations, and clinical outcome. Front Pharmacol 8:561

    Article  Google Scholar 

  • Altomare DA, Testa JR (2005) Perturbations of the AKT signaling pathway in human cancer. Oncogene 24:7455–7464. https://doi.org/10.1038/sj.onc.1209085

    Article  CAS  Google Scholar 

  • Altundag O, Altundag K, Gunduz E (2005) Interleukin-6 and C-reactive protein in metastatic renal cell carcinoma. J Clin Oncol Off J Am Soc Clin Oncol 23(5):1044–1045

    Article  Google Scholar 

  • Amelio I, Melino G (2020) Context is everything: extrinsic signalling and gain-of-function p53 mutants. Cell Death Discov 6(1):1–7

    Article  Google Scholar 

  • Arthur LM, Heber-Katz E (2011) The role of p21 in regulating mammalian regeneration. Stem Cell Res Ther 2:30. https://doi.org/10.1186/scrt71

    Article  CAS  Google Scholar 

  • Aziz SA, Davies M, Pick E, Zito C, Jilaveanu L, Camp RL, Rimm DL, Kluger Y, Kluger HM (2009) Phosphatidylinositol-3-kinase as a therapeutic target in melanoma. Clin Cancer Res 15(9):3029–3036

    Article  CAS  Google Scholar 

  • Barboza JA, Liu G, Ju Z, El-Naggar AK, Lozano G (2006) p21 delays tumor onset by preservation of chromosomal stability. Proc Natl Acad Sci 103(52):19842–19847

    Article  CAS  Google Scholar 

  • Barnwal SK, Bendale H, Banerjee S (2022) Non-coding RNAs associated with autophagy and their regulatory role in cancer therapeutics. Mol Biol Rep 49(7):7025–7037. https://doi.org/10.1007/s11033-022-07517-8

    Article  CAS  Google Scholar 

  • Barresi V, Ieni A, Cardia R, Licata L, Vitarelli E, Reggiani Bonetti L, Tuccari G (2016) HOXB 13 as an immunohistochemical marker of prostatic origin in metastatic tumors. APMIS 124(3):188–193

    Article  CAS  Google Scholar 

  • Bergmann A, Steller H (2010) Apoptosis, stem cells, and tissue regeneration. Sci Signal 3:re8. https://doi.org/10.1126/scisignal.3145re8

    Article  CAS  Google Scholar 

  • Bertero A, Murry CE (2018) Hallmarks of cardiac regeneration. Nat Rev Cardiol 15:579–580. https://doi.org/10.1038/s41569-018-0079-8

    Article  CAS  Google Scholar 

  • Boice A, Bouchier-Hayes L (2020) Targeting apoptotic caspases in cancer. Biochim Biophys Acta (BBA)-Mol Cell Res 1867(6):118688

    Article  CAS  Google Scholar 

  • Boilly B, Faulkner S, Jobling P, Hondermarck H (2017) Nerve dependence: from regeneration to cancer. Cancer Cell 31:342–354. https://doi.org/10.1016/j.ccell.2017.02.005

    Article  CAS  Google Scholar 

  • Bouard D, Alazard-Dany N, Cosset F-L (2009) Viral vectors: from virology to transgene expression. Br J Pharmacol 157:153–165. https://doi.org/10.1038/bjp.2008.349

    Article  CAS  Google Scholar 

  • Bourguignon LY, Earle C, Wong G et al (2012) Stem cell marker (Nanog) and Stat-3 signaling promote MicroRNA-21 expression and chemoresistance in hyaluronan/CD44-activated head and neck squamous cell carcinoma cells. Oncogene 31:149–160

    Article  CAS  Google Scholar 

  • Bousoik E, Montazeri Aliabadi H (2018) “Do we know jack” about JAK? A closer look at JAK/STAT signaling pathway. Front Oncol 8:287

    Article  Google Scholar 

  • Bromberg JF, Wrzeszczynska MH, Devgan G, Zhao Y, Pestell RG, Albanese C, Darnell JE Jr (1999) Stat3 as an oncogene. Cell 98(3):295–303

    Article  CAS  Google Scholar 

  • Brooks A, Putoczki T (2020) JAK-STAT signalling pathway in cancer. Cancers 12(7):1971

    Article  CAS  Google Scholar 

  • Brown BN, Sicari BM, Badylak SF (2014) Rethinking regenerative medicine: a macrophage-centered approach. Front Immunol 5. https://doi.org/10.3389/fimmu.2014.00510

  • Bugter JM, Fenderico N, Maurice MM (2021) Mutations and mechanisms of WNT pathway tumour suppressors in cancer. Nat Rev Cancer 21(1):5–21

    Article  CAS  Google Scholar 

  • Calses PC, Crawford JJ, Lill JR, Dey A (2019) Hippo pathway in cancer: aberrant regulation and therapeutic opportunities. Trends Cancer 5(5):297–307

    Article  CAS  Google Scholar 

  • Canavese M, Santo L, Raje N (2012) Cyclin dependent kinases in cancer: potential for therapeutic intervention. Cancer Biol Ther 13(7):451–457

    Article  CAS  Google Scholar 

  • Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, Jacobsen A, Byrne CJ, Heuer ML, Larsson E, Antipin Y (2012) The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2(5):401–404

    Article  Google Scholar 

  • Chambers I, Colby D, Robertson M, Nichols J, Lee S, Tweedie S, Smith A (2003) Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 113(5):643–655

    Article  CAS  Google Scholar 

  • Chambers SM, Shaw CA, Gatza C, Fisk CJ, Donehower LA, Goodell MA (2007) Aging hematopoietic stem cells decline in function and exhibit epigenetic dysregulation. PLoS Biol 5(8):e201

    Article  Google Scholar 

  • Chang CH, Hsiao CF, Yeh YM, Chang GC, Tsai YH, Chen YM, Huang MS, Chen HL, Li YJ, Yang PC, Chen CJ (2013) Circulating interleukin-6 level is a prognostic marker for survival in advanced nonsmall cell lung cancer patients treated with chemotherapy. Int J Cancer 132(9):1977–1985

    Article  CAS  Google Scholar 

  • Charni M, Aloni-Grinstein R, Molchadsky A, Rotter V (2017) p53 on the crossroad between regeneration and cancer. Cell Death Differ 24:8–14. https://doi.org/10.1038/cdd.2016.117

    Article  CAS  Google Scholar 

  • Cheah E, Wu Z, Thakur SS, O’Carroll SJ, Svirskis D (2021) Externally triggered release of growth factors—a tissue regeneration approach. J Control Release 332:74–95. https://doi.org/10.1016/j.jconrel.2021.02.015

    Article  CAS  Google Scholar 

  • Chen C-H, Poss KD (2017) Regeneration genetics. Annu Rev Genet 51:63–82. https://doi.org/10.1146/annurev-genet-120116-024554

    Article  CAS  Google Scholar 

  • Chen CL, Cen L, Kohout J, Hutzen B, Chan C, Hsieh FC, Loy A, Huang V, Cheng G, Lin J (2008) Signal transducer and activator of transcription 3 activation is associated with bladder cancer cell growth and survival. Mol Cancer 7(1):1–12

    Article  Google Scholar 

  • Chen MF, Chen PT, Lu MS, Lin PY, Chen WC, Lee KD (2013) IL-6 expression predicts treatment response and outcome in squamous cell carcinoma of the esophagus. Mol Cancer 12(1):1–12

    Article  Google Scholar 

  • Chen B-J, Wu Y-L, Tanaka Y, Zhang W (2014) Small molecules targeting c-Myc oncogene: promising anti-cancer therapeutics. Int J Biol Sci 10:1084–1096. https://doi.org/10.7150/ijbs.10190

    Article  CAS  Google Scholar 

  • Chen L, Shi J, Wu Y, Qiu R, Zeng L, Lou L, Su J, Liao M, Deng X (2020) CircRNA CDR1as promotes hepatoblastoma proliferation and stemness by acting as a miR-7-5p sponge to upregulate KLF4 expression. Aging (Albany NY) 12(19):19233

    Article  CAS  Google Scholar 

  • Cheng S, Qian F, Huang Q, Wei L, Fu Y, Du Y (2018) HOXA4, down-regulated in lung cancer, inhibits the growth, motility and invasion of lung cancer cells. Cell Death Dis 9(5):1–13

    Article  Google Scholar 

  • Choi AM, Ryter SW, Levine B (2013) Autophagy in human health and disease. N Engl J Med 368(7):651–662

    Article  CAS  Google Scholar 

  • Chotiner JY, Wolgemuth DJ, Wang PJ (2019) Functions of cyclins and CDKs in mammalian gametogenesis. Biol Reprod 101(3):591–601

    Article  Google Scholar 

  • Chu D-T, Nguyen TT, Tien NLB, Tran D-K, Jeong J-H, Anh PG, Thanh VV, Truong DT, Dinh TC (2020) Recent progress of stem cell therapy in cancer treatment: molecular mechanisms and potential applications. Cells 9:563. https://doi.org/10.3390/cells9030563

    Article  CAS  Google Scholar 

  • Chung YC, Chang YF (2003) Serum interleukin-6 levels reflect the disease status of colorectal cancer. J Surg Oncol 83(4):222–226

    Article  Google Scholar 

  • Clevers H, Loh KM, Nusse R (2014) An integral program for tissue renewal and regeneration: Wnt signaling and stem cell control. Science 346:1248012. https://doi.org/10.1126/science.1248012

    Article  CAS  Google Scholar 

  • Comel A, Sorrentino G, Capaci V, Del Sal G (2014) The cytoplasmic side of p53’s oncosuppressive activities. FEBS Lett 588(16):2600–2609

    Article  CAS  Google Scholar 

  • Cooks T, Pateras IS, Jenkins LM, Patel KM, Robles AI, Morris J, Forshew T, Appella E, Gorgoulis VG, Harris CC (2018) Mutant p53 cancers reprogram macrophages to tumor supporting macrophages via exosomal miR-1246. Nat Commun 9(1):1–15

    Article  CAS  Google Scholar 

  • Crupi A, Costa A, Tarnok A, Melzer S, Teodori L (2015) Inflammation in tissue engineering: the Janus between engraftment and rejection. Eur J Immunol 45:3222–3236. https://doi.org/10.1002/eji.201545818

    Article  CAS  Google Scholar 

  • Culig Z, Puhr M (2012) Interleukin-6: a multifunctional targetable cytokine in human prostate cancer. Mol Cell Endocrinol 360(1–2):52–58

    Article  CAS  Google Scholar 

  • Cunningham R, Hansen CG (2022) The Hippo pathway in cancer: YAP/TAZ and TEAD as therapeutic targets in cancer. Clin Sci 136(3):197–222

    Article  CAS  Google Scholar 

  • Daley WP, Peters SB, Larsen M (2008) Extracellular matrix dynamics in development and regenerative medicine. J Cell Sci 121:255–264. https://doi.org/10.1242/jcs.006064

    Article  CAS  Google Scholar 

  • Davidson BL, McCray PB (2011) Current prospects for RNA interference-based therapies. Nat Rev Genet 12:329–340. https://doi.org/10.1038/nrg2968

    Article  CAS  Google Scholar 

  • De Benedetti A, Graff JR (2004) eIF-4E expression and its role in malignancies and metastases. Oncogene 23:3189–3199. https://doi.org/10.1038/sj.onc.1207545

    Article  CAS  Google Scholar 

  • De la Cueva E, Garcia-Cao I, Herranz M, Lopez P, Garcia-Palencia P, Flores JM, Serrano M, Fernandez-Piqueras J, Martin-Caballero J (2006) Tumorigenic activity of p21Waf1/Cip1 in thymic lymphoma. Oncogene 25(29):4128–4132. https://doi.org/10.1038/sj.onc.1209432

    Article  CAS  Google Scholar 

  • Del Bene F, Wittbrodt J (2005) Cell cycle control by homeobox genes in development and disease. In: Seminars in cell & developmental biology, vol 16, no. 3. Academic, p 449–460 https://doi.org/10.1016/j.semcdb.2005.02.001

  • Demoulin JB, Essaghir A (2014) PDGF receptor signaling networks in normal and cancer cells. Cytokine Growth Factor Rev 25(3):273–283. https://doi.org/10.1016/j.cytogfr.2014.03.003

    Article  CAS  Google Scholar 

  • Deshpande A, Sicinski P, Hinds PW (2005) Cyclins and cdks in development and cancer: a perspective. Oncogene 24(17):2909–2915. https://doi.org/10.1038/sj.onc.1208618

    Article  CAS  Google Scholar 

  • Dethlefsen C, Højfeldt G, Hojman P (2013) The role of intratumoral and systemic IL-6 in breast cancer. Breast Cancer Res Treat 138(3):657–664. https://doi.org/10.1007/s10549-013-2488-z

    Article  CAS  Google Scholar 

  • Di Leva G, Garofalo M, Croce CM (2014) MicroRNAs in cancer. Annu Rev Pathol 9:287–314. https://doi.org/10.1146/annurev-pathol-012513-104715

    Article  CAS  Google Scholar 

  • Dieci MV, Arnedos M, Andre F, Soria JC (2013) Fibroblast growth factor receptor inhibitors as a cancer treatment: from a biologic rationale to medical perspectives. Cancer Discov 3(3):264–279

    Article  CAS  Google Scholar 

  • Dillon RL, White DE, Muller WJ (2007) The phosphatidylinositol 3-kinase signaling network: implications for human breast cancer. Oncogene 26(9):1338–1345. https://doi.org/10.1158/2159-8290.CD-12-0362

    Article  CAS  Google Scholar 

  • Dong Q, Liu X, Cheng K, Sheng J, Kong J, Liu T (2021) Pre-metastatic niche formation in different organs induced by tumor extracellular vesicles. Front Cell Dev Biol 9:733627. https://doi.org/10.3389/fcell.2021.733627

    Article  Google Scholar 

  • Du N, Guo F, Wang Y, Cui J (2021) NK cell therapy: a rising star in cancer treatment. Cancers 13:4129. https://doi.org/10.3390/cancers13164129

    Article  CAS  Google Scholar 

  • Duffy MJ, Synnott NC, O’Grady S, Crown J (2020) Targeting p53 for the treatment of cancer. In: Seminars in cancer biology. Academic. https://doi.org/10.1016/j.semcancer.2020.07.005

    Chapter  Google Scholar 

  • Duronio RJ, Xiong Y (2013) Signaling pathways that control cell proliferation. Cold Spring Harb Perspect Biol 5:a008904–a008904. https://doi.org/10.1101/cshperspect.a008904

    Article  CAS  Google Scholar 

  • Easwaran H, Tsai HC, Baylin SB (2014) Cancer epigenetics: tumor heterogeneity, plasticity of stem-like states, and drug resistance. Mol Cell 54(5):716–727

    Article  CAS  Google Scholar 

  • Edmonston TB, Cuesta KH, Burkholder S, Barusevicius A, Rose D, Kovatich AJ, Boman B, Fry R, Fishel R, Palazzo JP (2000) Colorectal carcinomas with high microsatellite instability: defining a distinct immunologic and molecular entity with respect to prognostic markers. Hum Pathol 31(12):1506–1514

    Article  CAS  Google Scholar 

  • Efeyan A, Collado M, Velasco-Miguel S, Serrano M (2007) Genetic dissection of the role of p21Cip1/Waf1 in p53-mediated tumour suppression. Oncogene 26(11):1645–1649

    Article  CAS  Google Scholar 

  • Efiok BJ, Safer B (2000) Transcriptional regulation of E2F-1 and eIF-2 genes by α-Pal: a potential mechanism for coordinated regulation of protein synthesis, growth, and the cell cycle. Biochim Biophys Acta 1495(1):51–68

    Article  CAS  Google Scholar 

  • Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494–498. https://doi.org/10.1038/35078107

    Article  CAS  Google Scholar 

  • El-Deiry WS (2016) p21(WAF1) mediates cell-cycle inhibition, relevant to cancer suppression and therapy. Cancer Res 76:5189–5191. https://doi.org/10.1158/0008-5472.CAN-16-2055

    Article  CAS  Google Scholar 

  • El-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, Lin D, Mercer WE, Kinzler KW, Vogelstein B (1993) WAF1, a potential mediator of p53 tumor suppression. Cell 75(4):817–825

    Article  CAS  Google Scholar 

  • Elliott RL, Blobe GC (2005) Role of transforming growth factor Beta in human cancer. J Clin Oncol 23(9):2078–2093

    Article  CAS  Google Scholar 

  • Eming SA, Krieg T, Davidson JM (2007) Inflammation in wound repair: molecular and cellular mechanisms. J Investig Dermatol 127:514–525. https://doi.org/10.1038/sj.jid.5700701

    Article  CAS  Google Scholar 

  • Fan Y, Chen C, Huang Y, Zhang F, Lin G (2017) Study of the pH-sensitive mechanism of tumor-targeting liposomes. Colloids Surf B: Biointerfaces 151:19–25. https://doi.org/10.1016/j.colsurfb.2016.11.042

    Article  CAS  Google Scholar 

  • Farazi TA, Spitzer JI, Morozov P, Tuschl T (2011) miRNAs in human cancer: miRNAs in human cancer. J Pathol 223:102–115. https://doi.org/10.1002/path.2806

    Article  CAS  Google Scholar 

  • Farghadani R, Naidu R (2021) The role of apoptosis as a double-edge sword in cancer. Regulation and dysfunction of apoptosis

    Google Scholar 

  • Farooq M, Khan AW, Kim MS, Choi S (2021) The role of fibroblast growth factor (FGF) Signaling in tissue repair and regeneration. Cells 10:3242. https://doi.org/10.3390/cells10113242

    Article  CAS  Google Scholar 

  • Feng R, Wen J (2015) Overview of the roles of Sox2 in stem cell and development. Biol Chem 396:883–891. https://doi.org/10.1515/hsz-2014-0317

    Article  CAS  Google Scholar 

  • Feng F, Ren Q, Wu S, Saeed M, Sun C (2017) Hoxa5 increases mitochondrial apoptosis by inhibiting Akt/mTORC1/S6K1 pathway in mice white adipocytes. Oncotarget 8(56):95332

    Article  Google Scholar 

  • Fiorenza MT, Rava A (2019) The TCL1 function revisited focusing on metabolic requirements of stemness. Cell Cycle 18(22):3055–3063

    Article  CAS  Google Scholar 

  • Firtina Karagonlar Z, Akbari S, Karabicici M, Sahin E, Tercan Avci S, Ersoy N, Eren Ates K, Balli T, Karacicek B, Kaplan KN, Celiker C (2020) A novel function for KLF4 in modulating the de-differentiation of EpCAM−/CD133− nonStem cells into EpCAM+/CD133+ liver cancer stem cells in HCC cell line HuH7. Cells 9(5):1198

    Article  Google Scholar 

  • Frank DA (2007) STAT3 as a central mediator of neoplastic cellular transformation. Cancer Lett 251(2):199–210

    Article  CAS  Google Scholar 

  • Fu M, Wang C, Li Z, Sakamaki T, Pestell RG (2004) Minireview: cyclin D1: normal and abnormal functions. Endocrinology 145(12):5439–5447

    Article  CAS  Google Scholar 

  • Gao X, Kim K-S, Liu D (2007) Nonviral gene delivery: what we know and what is next. AAPS J 9:E92–E104. https://doi.org/10.1208/aapsj0901009

    Article  CAS  Google Scholar 

  • Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, Sun Y, Jacobsen A, Sinha R, Larsson E, Cerami E (2013) Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal 6(269):pl1

    Article  Google Scholar 

  • Gehl J (2003) Electroporation: theory and methods, perspectives for drug delivery, gene therapy and research. Acta Physiol Scand 177:437–447. https://doi.org/10.1046/j.1365-201X.2003.01093.x

    Article  CAS  Google Scholar 

  • Geisen C, Möröy T (2002) The oncogenic activity of cyclin E is not confined to Cdk2 activation alone but relies on several other, distinct functions of the protein. J Biol Chem 277(42):39909–39918

    Article  CAS  Google Scholar 

  • Gilbert R, Vickaryous M, Viloria-Petit A (2016) Signalling by transforming growth factor beta isoforms in wound healing and tissue regeneration. J Dev Biol 4:21. https://doi.org/10.3390/jdb4020021

    Article  CAS  Google Scholar 

  • Goel HL, Mercurio AM (2013) VEGF targets the tumour cell. Nat Rev Cancer 13(12):871–882

    Article  CAS  Google Scholar 

  • Golberg A (2020) Chapter 9: Emerging electroporation-based technologies for wound care. In: Gefen A (ed) Innovations and emerging technologies in wound care. Academic, pp 155–170. https://doi.org/10.1016/B978-0-12-815028-3.00009-2

    Chapter  Google Scholar 

  • Goldman JA, Poss KD (2020) Gene regulatory programmes of tissue regeneration. Nat Rev Genet 21:511–525. https://doi.org/10.1038/s41576-020-0239-7

    Article  CAS  Google Scholar 

  • Goyal R, Reinhardt R, Jeltsch A (2006) Accuracy of DNA methylation pattern preservation by the Dnmt1 methyltransferase. Nucleic Acids Res 34(4):1182–1188

    Article  CAS  Google Scholar 

  • Gross G, Waks T, Eshhar Z (1989) Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc Natl Acad Sci 86:10024–10028. https://doi.org/10.1073/pnas.86.24.1002Gross4

    Article  CAS  Google Scholar 

  • Guertin DA, Sabatini DM (2007) Defining the role of mTOR in cancer. Cancer Cell 12:9–22. https://doi.org/10.1016/j.ccr.2007.05.008

    Article  CAS  Google Scholar 

  • Gurtner GC, Callaghan MJ, Longaker MT (2007) Progress and potential for regenerative medicine. Annu Rev Med 58:299–312. https://doi.org/10.1146/annurev.med.58.082405.095329

    Article  CAS  Google Scholar 

  • Han Y (2019) Analysis of the role of the Hippo pathway in cancer. J Transl Med 17(1):1–17. https://doi.org/10.1186/s12967-019-1869-4

    Article  Google Scholar 

  • Hao P, Yu J, Ward R, Liu Y, Hao Q, An S, Xu T (2020) Eukaryotic translation initiation factors as promising targets in cancer therapy. Cell Commun Signal 18(1):1–20

    Article  Google Scholar 

  • Harvey KF, Zhang X, Thomas DM (2013) The Hippo pathway and human cancer. Nat Rev Cancer 13(4):246–257

    Article  CAS  Google Scholar 

  • Hasmim M, Noman MZ, Lauriol J et al (2011) Hypoxia-dependent inhibition of tumor cell susceptibility to CTL-mediated lysis involves NANOG induction in target cells. J Immunol 187:4031–4039

    Article  CAS  Google Scholar 

  • He C, Wang L, Li L, Zhu G (2021) Extracellular vesicle-orchestrated crosstalk between cancer-associated fibroblasts and tumors. Transl Oncol 14(12):101231

    Article  CAS  Google Scholar 

  • Hemmings BA, Restuccia DF (2012) PI3K-PKB/Akt pathway. Cold Spring Harb Perspect Biol 4:a011189–a011189. https://doi.org/10.1101/cshperspect.a011189

    Article  CAS  Google Scholar 

  • Hennessy BT, Smith DL, Ram PT, Lu Y, Mills GB (2005) Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat Rev Drug Discov 4(12):988–1004

    Article  CAS  Google Scholar 

  • Holczbauer Á, Factor VM, Andersen JB, Marquardt JU, Kleiner DE, Raggi C, Kitade M, Seo D, Akita H, Durkin ME, Thorgeirsson SS (2013) Modeling pathogenesis of primary liver cancer in lineage-specific mouse cell types. Gastroenterology 145(1):221–231

    Article  CAS  Google Scholar 

  • Hollern DP, Honeysett J, Cardiff RD, Andrechek ER (2014) The E2F transcription factors regulate tumor development and metastasis in a mouse model of metastatic breast cancer. Mol Cell Biol 34(17):3229–3243

    Article  Google Scholar 

  • Hounsell C, Fan Y (2021) The duality of caspases in Cancer, as told through the fly. Int J Mol Sci 22(16):8927

    Article  CAS  Google Scholar 

  • Hsu J, Sage J (2016) Novel functions for the transcription factor E2F4 in development and disease. Cell Cycle 15:3183–3190. https://doi.org/10.1080/15384101.2016.1234551

    Article  CAS  Google Scholar 

  • Hua H, Kong Q, Zhang H, Wang J, Luo T, Jiang Y (2019) Targeting mTOR for cancer therapy. J Hematol Oncol 12(1):1–19

    Article  CAS  Google Scholar 

  • Huang J, Chen T, Liu X, Jiang J, Li J, Li D, Liu XS, Li W, Kang J, Pei G (2009) More synergetic cooperation of Yamanaka factors in induced pluripotent stem cells than in embryonic stem cells. Cell Res 19(10):1127–1138

    Article  Google Scholar 

  • Huang J, Luo Q, Xiao Y, Li H, Kong L, Ren G (2017) The implication from RAS/RAF/ERK signaling pathway increased activation in epirubicin treated triple negative breast cancer. Oncotarget 8(64):108249

    Article  Google Scholar 

  • Ibraheem D, Elaissari A, Fessi H (2014) Gene therapy and DNA delivery systems. Int J Pharm 459:70–83. https://doi.org/10.1016/j.ijpharm.2013.11.041

    Article  CAS  Google Scholar 

  • Islam F, Qiao B, Smith RA, Gopalan V, Lam AKY (2015) Cancer stem cell: fundamental experimental pathological concepts and updates. Exp Mol Pathol 98(2):184–191

    Article  CAS  Google Scholar 

  • Jang Y-N, Baik EJ (2013) JAK-STAT pathway and myogenic differentiation. JAKSTAT 2:e23282. https://doi.org/10.4161/jkst.23282

    Article  Google Scholar 

  • Jansson L, Kim GS, Cheng AG (2015) Making sense of Wnt signaling—linking hair cell regeneration to development. Front Cell Neurosci 9:66. https://doi.org/10.3389/fncel.2015.00066

    Article  CAS  Google Scholar 

  • Jean S, Kiger AA (2014) Classes of phosphoinositide 3-kinases at a glance. J Cell Sci 127(5):923–928

    Article  CAS  Google Scholar 

  • Jeong EG, Kim MS, Nam HK, Min CK, Lee S, Chung YJ, Yoo NJ, Lee SH (2008) Somatic mutations of JAK1 and JAK3 in acute leukemias and solid cancers. Clin Cancer Res 14(12):3716–3721

    Article  CAS  Google Scholar 

  • Jeter CR, Badeaux M, Choy G et al (2009) Functional evidence that the self-renewal gene NANOG regulates human tumor development. Stem Cells 27:993–1005

    Article  CAS  Google Scholar 

  • Jeter CR, Liu B, Liu X et al (2011) NANOG promotes cancer stem cell characteristics and prostate cancer resistance to androgen deprivation. Oncogene 30:3833–3845

    Article  CAS  Google Scholar 

  • Ji W, Jiang Z (2013) Effect of shRNA-mediated inhibition of Nanog gene expression on the behavior of human gastric cancer cells. Oncol Lett 6:367–374

    Article  Google Scholar 

  • Jinno T, Kawano S, Maruse Y, Matsubara R, Goto Y, Sakamoto T, Hashiguchi Y, Kaneko N, Tanaka H, Kitamura R, Toyoshima T (2015) Increased expression of interleukin-6 predicts poor response to chemoradiotherapy and unfavorable prognosis in oral squamous cell carcinoma. Oncol Rep 33(5):2161–2168

    Article  CAS  Google Scholar 

  • Johnson R, Halder G (2014) The two faces of Hippo: targeting the Hippo pathway for regenerative medicine and cancer treatment. Nat Rev Drug Discov 13(1):63–79

    Article  CAS  Google Scholar 

  • Kamalvand M, Biazar E, Daliri-Joupari M, Montazer F, Rezaei-Tavirani M, Heidari-Keshel S (2021) Design of a decellularized fish skin as a biological scaffold for skin tissue regeneration. Tissue Cell 71:101509. https://doi.org/10.1016/j.tice.2021.101509

    Article  CAS  Google Scholar 

  • Karin M, Clevers H (2016) Reparative inflammation takes charge of tissue regeneration. Nature 529:307–315. https://doi.org/10.1038/nature17039

    Article  CAS  Google Scholar 

  • Kay MA, Glorioso JC, Naldini L (2001) Viral vectors for gene therapy: the art of turning infectious agents into vehicles of therapeutics. Nat Med 7:33–40. https://doi.org/10.1038/83324

    Article  CAS  Google Scholar 

  • Ke X, Shelton L, Hu Y, Zhu Y, Chow E, Tang H, Santos JL, Mao H-Q (2020) Surface-functionalized PEGylated nanoparticles deliver messenger RNA to pulmonary immune cells. ACS Appl Mater Interfaces 12:35835–35844. https://doi.org/10.1021/acsami.0c08268

    Article  CAS  Google Scholar 

  • Kent LN, Leone G (2019) The broken cycle: E2F dysfunction in cancer. Nat Rev Cancer 19(6):326–338

    Article  CAS  Google Scholar 

  • Khan OF, Zaia EW, Yin H, Bogorad RL, Pelet JM, Webber MJ, Zhuang I, Dahlman JE, Langer R, Anderson DG (2014) Ionizable amphiphilic dendrimer-based nanomaterials with alkyl-chain-substituted amines for tunable siRNA delivery to the liver endothelium in vivo. Angew Chem Int Ed 53:14397–14401. https://doi.org/10.1002/anie.201408221

    Article  CAS  Google Scholar 

  • Kirkwood TB, Melov S (2011) On the programmed/non-programmed nature of aging within the life history. Curr Biol 21(18):R701–R707

    Article  CAS  Google Scholar 

  • Ko SY, Barengo N, Ladanyi A, Lee JS, Marini F, Lengyel E, Naora H (2012) HOXA9 promotes ovarian cancer growth by stimulating cancer-associated fibroblasts. J Clin Invest 122(10):3603–3617

    Article  CAS  Google Scholar 

  • Kotowicz B, Fuksiewicz M, Jonska-Gmyrek J, Bidzinski M, Kowalska M (2016) The assessment of the prognostic value of tumor markers and cytokines as SCCAg, CYFRA 21.1, IL-6, VEGF and sTNF receptors in patients with squamous cell cervical cancer, particularly with early stage of the disease. Tumor Biol 37(1):1271–1278

    Article  CAS  Google Scholar 

  • Kozielski KL, Ruiz-Valls A, Tzeng SY, Guerrero-Cázares H, Rui Y, Li Y, Vaughan HJ, Gionet-Gonzales M, Vantucci C, Kim J, Schiapparelli P, Al-Kharboosh R, Quiñones-Hinojosa A, Green JJ (2019) Cancer-selective nanoparticles for combinatorial siRNA delivery to primary human GBM in vitro and in vivo. Biomaterials 209:79–87. https://doi.org/10.1016/j.biomaterials.2019.04.020

    Article  CAS  Google Scholar 

  • Kretsovali A (2017) Dissecting the role of Sox2 in stemness regulation and regenerative medicine. J Stem Cell Res Transplant 4:1026. https://doi.org/10.26420/jstemcellrestransplant.2017.1026

    Article  Google Scholar 

  • Krishnamurthy J, Ramsey MR, Ligon KL, Torrice C, Koh A, Bonner-Weir S, Sharpless NE (2006) p16INK4a induces an age-dependent decline in islet regenerative potential. Nature 443(7110):453–457

    Article  CAS  Google Scholar 

  • La Fortezza M, Schenk M, Cosolo A, Kolybaba A, Grass I, Classen A-K (2016) JAK/STAT signalling mediates cell survival in response to tissue stress. Development 143(16):2907–2919. https://doi.org/10.1242/dev.132340

    Article  CAS  Google Scholar 

  • LaBaer J, Garrett MD, Stevenson LF, Slingerland JM, Sandhu C, Chou HS, Fattaey A, Harlow ED (1997) New functional activities for the p21 family of CDK inhibitors. Genes Dev 11(7):847–862

    Article  CAS  Google Scholar 

  • Lagadec C, Vlashi E, Della Donna L, Dekmezian C, Pajonk F (2012) Radiation-induced reprogramming of breast cancer cells. Stem Cells 30(5):833–844

    Article  CAS  Google Scholar 

  • Lane DP (1992) p53, guardian of the genome. Nature 358(6381):15–16

    Article  CAS  Google Scholar 

  • Levine AJ (2020) p53: 800 million years of evolution and 40 years of discovery. Nat Rev Cancer 20(8):471–480

    Article  CAS  Google Scholar 

  • Levine AJ, Jenkins NA, Copeland NG (2019) The roles of initiating truncal mutations in human cancers: the order of mutations and tumor cell type matters. Cancer Cell 35(1):10–15

    Article  CAS  Google Scholar 

  • Li FL, Guan KL (2021) The two sides of Hippo pathway in cancer. In: Seminars in cancer biology. Academic

    Google Scholar 

  • Li S-D, Huang L (2006) Gene therapy progress and prospects: non-viral gene therapy by systemic delivery. Gene Ther 13:1313–1319. https://doi.org/10.1038/sj.gt.3302838

    Article  CAS  Google Scholar 

  • Li SD, Ma M, Li H, Waluszko A, Sidorenko T, Schadt EE, Zhang DY, Chen R, Ye F (2017) Cancer gene profiling in non-small cell lung cancers reveals activating mutations in JAK2 and JAK3 with therapeutic implications. Genome Med 9(1):1–11

    Article  Google Scholar 

  • Liang G, Chan MF, Tomigahara Y, Tsai YC, Gonzales FA, Li E, Laird PW, Jones PA (2002) Cooperativity between DNA methyltransferases in the maintenance methylation of repetitive elements. Mol Cell Biol 22(2):480–491

    Article  CAS  Google Scholar 

  • Lim CP, Cao X (2006) Structure, function, and regulation of STAT proteins. Mol BioSyst 2(11):536–550

    Article  CAS  Google Scholar 

  • Lim S, Kaldis P (2013) Cdks, cyclins and CKIs: roles beyond cell cycle regulation. Development 140(15):3079–3093

    Article  CAS  Google Scholar 

  • Lim SM, Mohamad Hanif EA, Chin SF (2021) Is targeting autophagy mechanism in cancer a good approach? The possible double-edge sword effect. Cell Biosci 11(1):1–13

    Article  Google Scholar 

  • Lin MT, Pulkkinen L, Uitto J, Yoon K (2000) The gene gun: current applications in cutaneous gene therapy. Int J Dermatol 39:161–170. https://doi.org/10.1046/j.1365-4362.2000.00925.x

    Article  CAS  Google Scholar 

  • Lin ZP, Zhu YL, Ratner ES (2018) Targeting cyclin-dependent kinases for treatment of gynecologic cancers. Front Oncol 8:303

    Article  Google Scholar 

  • Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, Tonti-Filippini J, Nery JR, Lee L, Ye Z, Ngo QM, Edsall L (2009) Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462(7271):315–322

    Article  CAS  Google Scholar 

  • Liu Z, Jiang Z, Gao Y, Wang L, Chen C, Wang X (2019) TP53 mutations promote immunogenic activity in breast cancer. J Oncol 2019:5952836

    Article  Google Scholar 

  • Loyer P, Trembley JH (2020) Roles of CDK/Cyclin complexes in transcription and pre-mRNA splicing: cyclins L and CDK11 at the cross-roads of cell cycle and regulation of gene expression. In: Seminars in cell & developmental biology, vol 107. Academic, pp 36–45

    Google Scholar 

  • Luo N, Balko JM (2019) Role of JAK-STAT pathway in cancer signaling. In: Predictive biomarkers in oncology. p 311–319

    Google Scholar 

  • Luo D, Saltzman WM (2000) Synthetic DNA delivery systems. Nat Biotechnol 18:33–37. https://doi.org/10.1038/71889

    Article  CAS  Google Scholar 

  • Lv X, Li L, Lv L, Qu X, Jin S, Li K, Deng X, Cheng L, He H, Dong L (2015) HOXD9 promotes epithelial–mesenchymal transition and cancer metastasis by ZEB1 regulation in hepatocellular carcinoma. J Exp Clin Cancer Res 34(1):1–13

    Article  Google Scholar 

  • Ma C-C, Wang Z-L, Xu T, He Z-Y, Wei Y-Q (2020) The approved gene therapy drugs worldwide: from 1998 to 2019. Biotechnol Adv 40:107502. https://doi.org/10.1016/j.biotechadv.2019.107502

    Article  CAS  Google Scholar 

  • Macciò A, Madeddu C (2013) The role of interleukin-6 in the evolution of ovarian cancer: clinical and prognostic implications—a review. J Mol Med 91(12):1355–1368

    Article  Google Scholar 

  • Malumbres M (2007) Cyclins and related kinases in cancer cells. J BUON 12:S45–S52

    Google Scholar 

  • Manou D, Caon I, Bouris P, Triantaphyllidou IE, Giaroni C, Passi A, Karamanos NK, Vigetti D, Theocharis AD (2019) The complex interplay between extracellular matrix and cells in tissues. The extracellular matrix. Methods Mol Biol 1952:1–20

    Article  CAS  Google Scholar 

  • Mantovani F, Collavin L, Del Sal G (2019) Mutant p53 as a guardian of the cancer cell. Cell Death Differ 26(2):199–212

    Article  Google Scholar 

  • Mao AS, Mooney DJ (2015) Regenerative medicine: current therapies and future directions. Proc Natl Acad Sci 112:14452–14459. https://doi.org/10.1073/pnas.1508520112

    Article  CAS  Google Scholar 

  • Mason C, Dunnill P (2008) A brief definition of regenerative medicine. Regen Med 3:1–5. https://doi.org/10.2217/17460751.3.1.1

    Article  Google Scholar 

  • McCubrey JA, Steelman LS, Chappell WH, Abrams SL, Wong EW, Chang F, Lehmann B, Terrian DM, Milella M, Tafuri A, Stivala F (2007) Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim Biophys Acta 1773(8):1263–1284

    Article  CAS  Google Scholar 

  • McIlwain DR, Berger T, Mak TW (2013) Caspase functions in cell death and disease. Cold Spring Harb Perspect Biol 5(4):a008656

    Article  Google Scholar 

  • Mehier-Humbert S, Guy RH (2005) Physical methods for gene transfer: improving the kinetics of gene delivery into cells. Adv Drug Deliv Rev 57:733–753. https://doi.org/10.1016/j.addr.2004.12.007

    Article  CAS  Google Scholar 

  • Miliotou AN, Papadopoulou LC (2018) CAR T-cell therapy: a new era in cancer immunotherapy. Curr Pharm Biotechnol 19:5–18. https://doi.org/10.2174/1389201019666180418095526

    Article  CAS  Google Scholar 

  • Miller KR, Patel JN, Zhang Q, Norris EJ, Symanowski J, Michener C, Sehouli J, Braicu I, Destephanis DD, Sutker AP, Jones W (2018) HOXA4/HOXB3 gene expression signature as a biomarker of recurrence in patients with high-grade serous ovarian cancer following primary cytoreductive surgery and first-line adjuvant chemotherapy. Gynecol Oncol 149(1):155–162

    Article  CAS  Google Scholar 

  • Mills CD (2015) Anatomy of a discovery: M1 and M2 macrophages. Front Immunol 6:212. https://doi.org/10.3389/fimmu.2015.00212

    Article  CAS  Google Scholar 

  • Minucci S, Monestiroli S, Giavara S, Ronzoni S, Marchesi F, Insinga A, Diverio D, Gasparini P, Capillo M, Colombo E, Matteucci C (2002) PML-RAR induces promyelocytic leukemias with high efficiency following retroviral gene transfer into purified murine hematopoietic progenitors. Blood 100(8):2989–2995

    Article  CAS  Google Scholar 

  • Mitsui K, Tokuzawa Y, Itoh H, Segawa K, Murakami M, Takahashi K, Maruyama M, Maeda M, Yamanaka S (2003) The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113(5):631–642

    Article  CAS  Google Scholar 

  • Miura T, Mitsunaga S, Ikeda M, Shimizu S, Ohno I, Takahashi H, Furuse J, Inagaki M, Higashi S, Kato H, Terao K (2015) Characterization of patients with advanced pancreatic cancer and high serum interleukin-6 levels. Pancreas 44(5):756–763

    Article  CAS  Google Scholar 

  • Mizushima N (2007) Autophagy: process and function. Genes Dev 21(22):2861–2873

    Article  CAS  Google Scholar 

  • Mohr S, Doebele C, Comoglio F, Berg T, Beck J, Bohnenberger H, Alexe G, Corso J, Ströbel P, Wachter A, Beissbarth T (2017) Hoxa9 and Meis1 cooperatively induce addiction to Syk signaling by suppressing miR-146a in acute myeloid leukemia. Cancer Cell 31(4):549–562

    Article  CAS  Google Scholar 

  • Moore DL, Apara A, Goldberg JL (2011) Krüppel-like transcription factors in the nervous system: novel players in neurite outgrowth and axon regeneration. Mol Cell Neurosci 47:233–243. https://doi.org/10.1016/j.mcn.2011.05.005

    Article  CAS  Google Scholar 

  • Muangmoonchai R, Wong SC, Smirlis D, Phillips IR, Shephard EA (2002) Transfection of liver in vivo by biolistic particle delivery. Mol Biotechnol 20:145–151. https://doi.org/10.1385/MB:20:2:145

    Article  CAS  Google Scholar 

  • Munier S, Messai I, Delair T, Verrier B, Ataman-Onal Y (2005) Cationic PLA nanoparticles for DNA delivery: comparison of three surface polycations for DNA binding, protection and transfection properties. Colloids Surf B Biointerfaces 43:163–173. https://doi.org/10.1016/j.colsurfb.2005.05.001

    Article  CAS  Google Scholar 

  • Nagasaki T, Shinkai S (2007) The concept of molecular machinery is useful for design of stimuli-responsive gene delivery systems in the mammalian cell. J Incl Phenom Macrocycl Chem 58:205–219. https://doi.org/10.1007/s10847-007-9303-6

    Article  CAS  Google Scholar 

  • Nakatani K, Maehama T, Nishio M, Goto H, Kato W, Omori H, Miyachi Y, Togashi H, Shimono Y, Suzuki A (2017) Targeting the Hippo signalling pathway for cancer treatment. J Biochem 161(3):237–244

    CAS  Google Scholar 

  • Neuzillet C, Tijeras-Raballand A, de Mestier L, Cros J, Faivre S, Raymond E (2014) MEK in cancer and cancer therapy. Pharmacol Ther 141(2):160–171

    Article  CAS  Google Scholar 

  • Nielsen C, Birgens HS, Nordestgaard BG, Kjær L, Bojesen SE (2011) The JAK2 V617F somatic mutation, mortality and cancer risk in the general population. Haematologica 96(3):450

    Article  Google Scholar 

  • Niidome T, Huang L (2002) Gene therapy progress and prospects: nonviral vectors. Gene Ther 9:1647–1652. https://doi.org/10.1038/sj.gt.3301923

    Article  CAS  Google Scholar 

  • Niland S, Eble JA (2020) Hold on or cut? Integrin-and MMP-mediated cell–matrix interactions in the tumor microenvironment. Int J Mol Sci 22(1):238

    Article  Google Scholar 

  • Nunnery SE, Mayer IA (2020) Targeting the PI3K/AKT/mTOR pathway in hormone-positive breast cancer. Drugs 80(16):1685–1697

    Article  CAS  Google Scholar 

  • Olsson M, Zhivotovsky B (2011) Caspases and cancer. Cell Death Differ 18(9):1441–1449

    Article  CAS  Google Scholar 

  • Oviedo NJ, Beane WS (2009) Regeneration: the origin of cancer or a possible cure? Semin Cell Dev Biol 20:557–564. https://doi.org/10.1016/j.semcdb.2009.04.005

    Article  Google Scholar 

  • Owen KL, Brockwell NK, Parker BS (2019) JAK-STAT signaling: a double-edged sword of immune regulation and cancer progression. Cancer 11(12):2002

    Article  CAS  Google Scholar 

  • Ozbolat IT (2015) Bioprinting scale-up tissue and organ constructs for transplantation. Trends Biotechnol 33:395–400. https://doi.org/10.1016/j.tibtech.2015.04.005

    Article  CAS  Google Scholar 

  • Pan H, Cai N, Li M, Liu G, Izpisua Belmonte JC (2013) Autophagic control of cell ‘stemness’. EMBO Mol Med 5:327–331. https://doi.org/10.1002/emmm.201201999

    Article  CAS  Google Scholar 

  • Patel S, Alam A, Pant R, Chattopadhyay S (2019) Wnt signaling and its significance within the tumor microenvironment: novel therapeutic insights. Front Immunol 10:2872

    Article  CAS  Google Scholar 

  • Paul U, Banerjee S (2022) The functional significance and cross-talk of non-coding RNAs in triple negative and quadruple negative breast cancer. Mol Biol Rep 49(7):6899–6918

    Article  CAS  Google Scholar 

  • Pedroza-Torres A, Romero-Córdoba SL, Justo-Garrido M, Salido-Guadarrama I, Rodríguez-Bautista R, Montaño S, Muñiz-Mendoza R, Arriaga-Canon C, Fragoso-Ontiveros V, Álvarez-Gómez RM, Hernández G, Herrera LA (2019) MicroRNAs in tumor cell metabolism: roles and therapeutic opportunities. Front Oncol 9:1404. https://doi.org/10.3389/fonc.2019.01404

    Article  Google Scholar 

  • Pencik J, Pham HTT, Schmoellerl J, Javaheri T, Schlederer M, Culig Z, Merkel O, Moriggl R, Grebien F, Kenner L (2016) JAK-STAT signaling in cancer: from cytokines to non-coding genome. Cytokine 87:26–36

    Article  CAS  Google Scholar 

  • Peng Y, Croce CM (2016) The role of MicroRNAs in human cancer. Signal Transduct Target Ther 1:15004. https://doi.org/10.1038/sigtrans.2015.4

    Article  Google Scholar 

  • Pesic M, Greten FR (2016) Inflammation and cancer: tissue regeneration gone awry. Curr Opin Cell Biol 43:55–61. https://doi.org/10.1016/j.ceb.2016.07.010

    Article  CAS  Google Scholar 

  • Petit-Zeman S (2001) Regenerative medicine. Nat Biotechnol 19:201–206. https://doi.org/10.1038/85619

    Article  CAS  Google Scholar 

  • Peyssonnaux C, Eychène A (2012) The Raf/MEK/ERK pathway: new concepts of activation. Biol Cell 93:53–62. https://doi.org/10.1016/S0248-4900(01)01125-X

    Article  Google Scholar 

  • Piperigkou Z, Kyriakopoulou K, Koutsakis C, Mastronikolis S, Karamanos NK (2021) Key matrix remodeling enzymes: functions and targeting in cancer. Cancers 13(6):1441

    Article  CAS  Google Scholar 

  • Porta C, Paglino C, Mosca A (2014) Targeting PI3K/Akt/mTOR signaling in cancer. Front Oncol 4:64

    Article  Google Scholar 

  • Pradere JP, Dapito DH, Schwabe RF (2014) The Yin and Yang of Toll-like receptors in cancer. Oncogene 33(27):3485–3495

    Article  CAS  Google Scholar 

  • Qiao C, Huang W, Chen J, Feng W, Zhang T, Wang Y, Liu D, Ji X, Xie M, Sun M, Fan D (2021) IGF1-mediated HOXA13 overexpression promotes colorectal cancer metastasis through upregulating ACLY and IGF1R. Cell Death Dis 12(6):1–18

    Article  Google Scholar 

  • Qin S, Zou Y, Zhang C-L (2013) Cross-talk between KLF4 and STAT3 regulates axon regeneration. Nat Commun 4:2633. https://doi.org/10.1038/ncomms3633

    Article  CAS  Google Scholar 

  • Quéré R, Karlsson G, Hertwig F, Rissler M, Lindqvist B, Fioretos T, Vandenberghe P, Slovak ML, Cammenga J, Karlsson S (2011) Smad4 binds Hoxa9 in the cytoplasm and protects primitive hematopoietic cells against nuclear activation by Hoxa9 and leukemia transformation. Blood 117(22):5918–5930

    Article  Google Scholar 

  • Rebouissou S, Amessou M, Couchy G, Poussin K, Imbeaud S, Pilati C, Izard T, Balabaud C, Bioulac-Sage P, Zucman-Rossi J (2009) Frequent in-frame somatic deletions activate gp130 in inflammatory hepatocellular tumours. Nature 457(7226):200–204

    Article  CAS  Google Scholar 

  • Reddy KB (2015) MicroRNA (miRNA) in cancer. Cancer Cell Int 15:38. https://doi.org/10.1186/s12935-015-0185-1

    Article  CAS  Google Scholar 

  • Reya T, Clevers H (2005) Wnt signalling in stem cells and cancer. Nature 434:843–850. https://doi.org/10.1038/nature03319

    Article  CAS  Google Scholar 

  • Riedel F, Zaiss I, Herzog D, Götte K, Naim R, Hörmann K (2005) Serum levels of interleukin-6 in patients with primary head and neck squamous cell carcinoma. Anticancer Res 25(4):2761–2765

    CAS  Google Scholar 

  • Robertson KD (2005) DNA methylation and human disease. Nat Rev Genet 6(8):597–610

    Article  CAS  Google Scholar 

  • Roeser JC, Leach SD, McAllister F (2015) Emerging strategies for cancer immunoprevention. Oncogene 34(50):6029–6039

    Article  CAS  Google Scholar 

  • Rowe RG, Weiss SJ (2009) Navigating ECM barriers at the invasive front: the cancer cell–stroma interface. Annu Rev Cell Dev 25:567–595

    Article  CAS  Google Scholar 

  • Roy S, Kar M, Roy S, Padhi S, Saha A, Banerjee B (2019) KLF4 expression in the surgical cut margin is associated with disease relapse of oral squamous cell carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol 128(2):154–165

    Article  Google Scholar 

  • Sadelain M, Brentjens R, Rivière I (2013) The basic principles of chimeric antigen receptor design. Cancer Discov 3:388–398. https://doi.org/10.1158/2159-8290.CD-12-0548

    Article  CAS  Google Scholar 

  • Sanguinete MMM, Oliveira PHD, Martins-Filho A, Micheli DC, Tavares-Murta BM, Murta EFC, Nomelini RS (2017) Serum IL-6 and IL-8 correlate with prognostic factors in ovarian cancer. Immunol Investig 46(7):677–688

    Article  CAS  Google Scholar 

  • Saunders A, Faiola F, Wang J (2013) Concise review: pursuing self-renewal and pluripotency with the stem cell factor nanog. Stem Cells 31:1227–1236. https://doi.org/10.1002/stem.1384

    Article  CAS  Google Scholar 

  • Scourzic L, Mouly E, Bernard OA (2015) TET proteins and the control of cytosine demethylation in cancer. Genome Med 7(1):1–16

    Article  Google Scholar 

  • Seifert A (2015) Role of Hox genes in stem cell differentiation. World J Stem Cells 7:583. https://doi.org/10.4252/wjsc.v7.i3.583

    Article  Google Scholar 

  • Selivanova G (2010) Therapeutic targeting of p53 by small molecules. Semin Cancer Biol 20:46–56. https://doi.org/10.1016/j.semcancer.2010.02.006

    Article  CAS  Google Scholar 

  • Sen CK, Ghatak S (2015) miRNA control of tissue repair and regeneration. Am J Pathol 185:2629–2640. https://doi.org/10.1016/j.ajpath.2015.04.001

    Article  CAS  Google Scholar 

  • Shah N, Sukumar S (2010) The Hox genes and their roles in oncogenesis. Nat Rev Cancer 10(5):361–371

    Article  CAS  Google Scholar 

  • Shalini S, Dorstyn L, Dawar S, Kumar S (2015) Old, new and emerging functions of caspases. Cell Death Differ 22:526–539. https://doi.org/10.1038/cdd.2014.216

    Article  CAS  Google Scholar 

  • Sharma A, Mir R, Galande S (2021) Epigenetic regulation of the Wnt/β-catenin signaling pathway in cancer. Front Genet 12:681053

    Article  CAS  Google Scholar 

  • Shen KC, Heng H, Wang Y, Lu S, Liu G, Deng CX, Brooks SC, Wang YA (2005) ATM and p21 cooperate to suppress aneuploidy and subsequent tumor development. Cancer Res 65(19):8747–8753

    Article  CAS  Google Scholar 

  • Shin DS, Zaretsky JM, Escuin-Ordinas H, Garcia-Diaz A, Hu-Lieskovan S, Kalbasi A, Grasso CS, Hugo W, Sandoval S, Torrejon DY, Palaskas N (2017) Primary resistance to PD-1 blockade mediated by JAK1/2 mutations. Cancer Discov 7(2):188–201

    Article  CAS  Google Scholar 

  • Si W, Shen J, Zheng H, Fan W (2019) The role and mechanisms of action of microRNAs in cancer drug resistance. Clin Epigenetics 11(1):25

    Article  Google Scholar 

  • Siegl-Cachedenier I, Muñoz P, Flores JM, Klatt P, Blasco MA (2007) Deficient mismatch repair improves organismal fitness and survival of mice with dysfunctional telomeres. Genes Dev 21(17):2234–2247

    Article  CAS  Google Scholar 

  • Smetana K, Dvořánková B, Lacina L (2013) Phylogeny, regeneration, ageing and cancer: role of microenvironment and possibility of its therapeutic manipulation. Folia Biol (Praha) 59:207–216

    Google Scholar 

  • Song H, Hollstein M, Xu Y (2007) p53 gain-of-function cancer mutants induce genetic instability by inactivating ATM. Nat Cell Biol 9(5):573–580

    Article  CAS  Google Scholar 

  • Sonnenblick A, Shriki A, Galun E, Axelrod JH, Daum H, Rottenberg Y, Hamburger T, Mali B, Peretz T (2012) Tissue microarray-based study of patients with lymph node-positive breast cancer shows tyrosine phosphorylation of signal transducer and activator of transcription 3 (tyrosine705-STAT3) is a marker of good prognosis. Clin Transl Oncol 14(3):232–236

    Article  CAS  Google Scholar 

  • Sparks AB, Morin PJ, Vogelstein B, Kinzler KW (1998) Mutational analysis of the APC/β-catenin/Tcf pathway in colorectal cancer. Cancer Res 58(6):1130–1134

    CAS  Google Scholar 

  • Stamatakos M, Palla V, Karaiskos I, Xiromeritis K, Alexiou I, Pateras I, Kontzoglou K (2010) Cell cyclins: triggering elements of cancer or not? World J Surg Oncol 8(1):1–8

    Article  Google Scholar 

  • Stemke-Hale K, Gonzalez-Angulo AM, Lluch A, Neve RM, Kuo WL, Davies M, Carey M, Hu Z, Guan Y, Sahin A, Symmans WF (2008) An integrative genomic and proteomic analysis of PIK3CA, PTEN, and AKT mutations in breast cancer. Cancer Res 68(15):6084–6091

    Article  CAS  Google Scholar 

  • Stribley JM, Rehman KS, Niu H, Christman GM (2002) Gene therapy and reproductive medicine. Fertil Steril 77:645–657. https://doi.org/10.1016/S0015-0282(01)03233-2

    Article  Google Scholar 

  • Tadesse S, Caldon EC, Tilley W, Wang S (2018) Cyclin-dependent kinase 2 inhibitors in cancer therapy: an update. J Med Chem 62(9):4233–4251

    Article  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676

    Article  CAS  Google Scholar 

  • Takemoto S, Ushijima K, Kawano K, Yamaguchi T, Terada A, Fujiyoshi N, Nishio S, Tsuda N, Ijichi M, Kakuma T, Kage M (2009) Expression of activated signal transducer and activator of transcription-3 predicts poor prognosis in cervical squamous-cell carcinoma. Br J Cancer 101(6):967–972

    Article  CAS  Google Scholar 

  • Tan Z, Chen K, Wu W, Zhou Y, Zhu J, Wu G, Cao L, Zhang X, Guan H, Yang Y, Zhang W (2018) Overexpression of HOXC10 promotes angiogenesis in human glioma via interaction with PRMT5 and upregulation of VEGFA expression. Theranostics 8(18):5143

    Article  CAS  Google Scholar 

  • Taura M, Fukuda R, Suico MA, Eguma A, Koga T, Shuto T, Sato T, Morino-Koga S, Kai H (2010) TLR3 induction by anticancer drugs potentiates poly I: C-induced tumor cell apoptosis. Cancer Sci 101(7):1610–1617

    Article  CAS  Google Scholar 

  • Thatcher EJ, Patton JG (2010) Small RNAs have a big impact on regeneration. RNA Biol 7:333–338. https://doi.org/10.4161/rna.7.3.12085

    Article  CAS  Google Scholar 

  • Thiem A, Hesbacher S, Kneitz H, di Primio T, Heppt MV, Hermanns HM, Goebeler M, Meierjohann S, Houben R, Schrama D (2019) IFN-gamma-induced PD-L1 expression in melanoma depends on p53 expression. J Exp Clin Cancer Res 38(1):1–15

    Article  Google Scholar 

  • Tian T, Li X, Zhang J (2019) mTOR signaling in cancer and mTOR inhibitors in solid tumor targeting therapy. Int J Mol Sci 20(3):755

    Article  CAS  Google Scholar 

  • Uygun BE, Soto-Gutierrez A, Yagi H, Izamis M-L, Guzzardi MA, Shulman C, Milwid J, Kobayashi N, Tilles A, Berthiaume F, Hertl M, Nahmias Y, Yarmush ML, Uygun K (2010) Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix. Nat Med 16:814–820. https://doi.org/10.1038/nm.2170

    Article  CAS  Google Scholar 

  • Vakhshiteh F, Atyabi F, Ostad SN (2019) Mesenchymal stem cell exosomes: a two-edged sword in cancer therapy. Int J Nanomedicine 14:2847–2859. https://doi.org/10.2147/IJN.S200036

    Article  CAS  Google Scholar 

  • Villarino AV, Kanno Y, O’Shea JJ (2017) Mechanisms and consequences of Jak–STAT signaling in the immune system. Nat Immunol 18(4):374–384

    Article  CAS  Google Scholar 

  • Vivier E, Tomasello E, Baratin M, Walzer T, Ugolini S (2008) Functions of natural killer cells. Nat Immunol 9:503–510. https://doi.org/10.1038/ni1582

    Article  CAS  Google Scholar 

  • Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr, Kinzler KW (2013) Cancer genome landscapes. Science 339(6127):1546–1558

    Article  CAS  Google Scholar 

  • Walker C, Mojares E, Del Río Hernández A (2018) Role of extracellular matrix in development and cancer progression. Int J Mol Sci 19:3028. https://doi.org/10.3390/ijms19103028

    Article  CAS  Google Scholar 

  • Walther W, Stein U (2000) Viral vectors for gene transfer. Drugs 60:249–271. https://doi.org/10.2165/00003495-200060020-00002

    Article  CAS  Google Scholar 

  • Wang YA, Elson A, Leder P (1997) Loss of p21 increases sensitivity to ionizing radiation and delays the onset of lymphoma in atm-deficient mice. Proc Natl Acad Sci 94(26):14590–14595

    Article  CAS  Google Scholar 

  • Wang J, Wang H, Li Z, Wu Q, Lathia JD, McLendon RE, Hjelmeland AB, Rich JN (2008) c-Myc is required for maintenance of glioma cancer stem cells. PLoS One 3(11):e3769

    Article  Google Scholar 

  • Wang KC, Helms JA, Chang HY (2009) Regeneration, repair and remembering identity: the three Rs of Hox gene expression. Trends Cell Biol 19:268–275. https://doi.org/10.1016/j.tcb.2009.03.007

    Article  CAS  Google Scholar 

  • Wang C, Chen L, Huang Y, Li K, Jinye A, Fan T, Zhao R, Xia X, Shen B, Du J, Liu Y (2019a) Exosome-delivered TRPP2 siRNA inhibits the epithelial-mesenchymal transition of FaDu cells. Oncol Lett 17:1953–1961. https://doi.org/10.3892/ol.2018.9752

    Article  CAS  Google Scholar 

  • Wang P, Perche F, Logeart-Avramoglou D, Pichon C (2019b) RNA-based therapy for osteogenesis. Int J Pharm 569:118594. https://doi.org/10.1016/j.ijpharm.2019.118594

    Article  CAS  Google Scholar 

  • Watanabe R, Murai MJ, Singh CR, Fox S, Ii M, Asano K (2010) The eukaryotic initiation factor (eIF) 4G HEAT domain promotes translation re-initiation in yeast both dependent on and independent of eIF4A mRNA helicase. J Biol Chem 285(29):21922–21933

    Article  CAS  Google Scholar 

  • Watt FM, Fujiwara H (2011) Cell-extracellular matrix interactions in normal and diseased skin. Cold Spring Harb Perspect Biol 3:a005124. https://doi.org/10.1101/cshperspect.a005124

    Article  CAS  Google Scholar 

  • Wei X, Luo L, Chen J (2019) Roles of mTOR signaling in tissue regeneration. Cells 8:1075. https://doi.org/10.3390/cells8091075

    Article  CAS  Google Scholar 

  • Whittaker SR, Mallinger A, Workman P, Clarke PA (2017) Inhibitors of cyclin-dependent kinases as cancer therapeutics. Pharmacol Ther 173:83–105

    Article  CAS  Google Scholar 

  • Wilkinson MG, Millar JBA (2000) Control of the eukaryotic cell cycle by MAP kinase signaling pathways. FASEB J 14:2147–2157. https://doi.org/10.1096/fj.00-0102rev

    Article  CAS  Google Scholar 

  • Wilson A, Murphy MJ, Oskarsson T, Kaloulis K, Bettess MD, Oser GM, Pasche A-C, Knabenhans C, MacDonald HR, Trumpp A (2004) c-Myc controls the balance between hematopoietic stem cell self-renewal and differentiation. Genes Dev 18:2747–2763. https://doi.org/10.1101/gad.313104

    Article  CAS  Google Scholar 

  • Witsch E, Sela M, Yarden Y (2010) Roles for growth factors in cancer progression. Physiology 25(2):85–101

    Article  CAS  Google Scholar 

  • Wolfer A, Wittner BS, Irimia D, Flavin RJ, Lupien M, Gunawardane RN, Meyer CA, Lightcap ES, Tamayo P, Mesirov JP, Liu XS (2010) MYC regulation of a “poor-prognosis” metastatic cancer cell state. Proc Natl Acad Sci 107(8):3698–3703

    Article  CAS  Google Scholar 

  • Wong RS (2011) Apoptosis in cancer: from pathogenesis to treatment. J Exp Clin Cancer Res 30(1):1–14

    Article  Google Scholar 

  • Wu G, Schöler HR (2014) Role of Oct4 in the early embryo development. Cell Regen 3(3):7. https://doi.org/10.1186/2045-9769-3-7

    Article  CAS  Google Scholar 

  • Xanthoulis A, Tiniakos DG (2013) E2F transcription factors and digestive system malignancies: how much do we know? World J Gastroenterol 19(21):3189

    Article  Google Scholar 

  • Xie D, Pei Q, Li J, Wan X, Ye T (2021) Emerging role of E2F family in cancer stem cells. Front Oncol 11:723137

    Article  Google Scholar 

  • Yadav P, Yadav R, Jain S, Vaidya A (2021) Caspase-3: a primary target for natural and synthetic compounds for cancer therapy. Chem Biol Drug Des 98(1):144–165

    Article  CAS  Google Scholar 

  • Yang J, Nie J, Ma X, Wei Y, Peng Y, Wei X (2019) Targeting PI3K in cancer: mechanisms and advances in clinical trials. Mol Cancer 18(1):1–28

    Article  Google Scholar 

  • Yang D, Zhang N, Li M, Hong T, Meng W, Ouyang T (2021) The Hippo signaling pathway: the trader of tumor microenvironment. Front Oncol:11

    Google Scholar 

  • Ye M, Song Y, Pan S, Chu M, Wang ZW, Zhu X (2020) Evolving roles of lysyl oxidase family in tumorigenesis and cancer therapy. Pharmacol Ther 215:107633

    Article  CAS  Google Scholar 

  • Young ARJ, Narita M, Ferreira M, Kirschner K, Sadaie M, Darot JFJ, Tavaré S, Arakawa S, Shimizu S, Watt FM, Narita M (2009) Autophagy mediates the mitotic senescence transition. Genes Dev 23:798–803. https://doi.org/10.1101/gad.519709

    Article  Google Scholar 

  • Yu F, Li J, Chen H, Fu J, Ray S, Huang S, Zheng H, Ai W (2011) Kruppel-like factor 4 (KLF4) is required for maintenance of breast cancer stem cells and for cell migration and invasion. Oncogene 30(18):2161–2172

    Article  CAS  Google Scholar 

  • Yu J, Xu X, Yao F, Luo Z, Jin L, Xie B, Shi S, Ma H, Li X, Chen H (2014) In situ covalently cross-linked PEG hydrogel for ocular drug delivery applications. Int J Pharm 470:151–157. https://doi.org/10.1016/j.ijpharm.2014.04.053

    Article  CAS  Google Scholar 

  • Yu X, Odenthal M, Fries JWU (2016) Exosomes as miRNA carriers: formation–function–future. Int J Mol Sci 17:2028. https://doi.org/10.3390/ijms17122028

    Article  CAS  Google Scholar 

  • Yu L, Chen Y, Tooze SA (2018) Autophagy pathway: cellular and molecular mechanisms. Autophagy 14(2):207–215

    Article  CAS  Google Scholar 

  • Yu M, Zhan J, Zhang H (2020) HOX family transcription factors: related signaling pathways and post-translational modifications in cancer. Cell Signal 66:109469

    Article  CAS  Google Scholar 

  • Yuan TL, Cantley LC (2008) PI3K pathway alterations in cancer: variations on a theme. Oncogene 27:5497–5510. https://doi.org/10.1038/onc.2008.245

    Article  CAS  Google Scholar 

  • Yun CW, Lee SH (2018) The roles of autophagy in cancer. Int J Mol Sci 19(11):3466

    Article  Google Scholar 

  • Zamore PD, Tuschl T, Sharp PA, Bartel DP (2000) RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101:25–33. https://doi.org/10.1016/S0092-8674(00)80620-0

    Article  CAS  Google Scholar 

  • Zbinden M, Duquet A, Lorente-Trigos A et al (2010) NANOG regulates glioma stem cells and is essential in vivo acting in a cross-functional network with GLI1 and p53. EMBO J 29:2659–2674

    Article  CAS  Google Scholar 

  • Zhan T, Rindtorff N, Boutros M (2017) Wnt signaling in cancer. Oncogene 36(11):1461–1473

    Article  CAS  Google Scholar 

  • Zhan J, Wang P, Li S, Song J, He H, Wang Y, Liu Z, Wang F, Bai H, Fang W, Du Q (2019) HOXB13 networking with ABCG1/EZH2/Slug mediates metastasis and confers resistance to cisplatin in lung adenocarcinoma patients. Theranostics 9(7):2084

    Article  CAS  Google Scholar 

  • Zhang Y, Wang X (2020) Targeting the Wnt/β-catenin signaling pathway in cancer. J Hematol Oncol 13(1):1–16

    Article  Google Scholar 

  • Zhang HF, Chen Y, Wu C, Wu ZY, Tweardy DJ, Alshareef A, Liao LD, Xue YJ, Wu JY, Chen B, Xu XE (2016) The opposing function of STAT3 as an oncoprotein and tumor suppressor is dictated by the expression status of STAT3β in esophageal squamous cell carcinoma. Clin Cancer Res 22(3):691–703

    Article  CAS  Google Scholar 

  • Zhang B, Chen Y, Shi X, Zhou M, Bao L, Hatanpaa KJ, Patel T, DeBerardinis RJ, Wang Y, Luo W (2021) Regulation of branched-chain amino acid metabolism by hypoxia-inducible factor in glioblastoma. Cell Mol Life Sci 78(1):195–206

    Article  CAS  Google Scholar 

  • Zhao H, Chen T (2013) Tet family of 5-methylcytosine dioxygenases in mammalian development. J Hum Genet 58(7):421–427

    Article  CAS  Google Scholar 

  • Zhou BP, Hu MCT, Miller SA, Yu Z, Xia W, Lin SY, Hung MC (2000) HER-2/neu blocks tumor necrosis factor-induced apoptosis via the Akt/NF-κB pathway. J Biol Chem 275(11):8027–8031

    Article  CAS  Google Scholar 

  • Zhou L, Wang Y, Zhou M, Zhang Y, Wang P, Li X et al (2018) HOXA9 inhibits HIF-1a-mediated glycolysis through interacting with CRIP2 to repress cutaneous squamous cell carcinoma development. Nat Commun 9:1480

    Article  Google Scholar 

  • Zou Z, Tao T, Li H, Zhu X (2020) mTOR signaling pathway and mTOR inhibitors in cancer: progress and challenges. Cell Biosci 10(1):1–11

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Debasish Mishra or Satarupa Banerjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gattupalli, M., Dey, P., Poovizhi, S., Patel, R.B., Mishra, D., Banerjee, S. (2023). The Prospects of RNAs and Common Significant Pathways in Cancer Therapy and Regenerative Medicine. In: Chakravorty, N., Shukla, P.C. (eds) Regenerative Medicine. Springer, Singapore. https://doi.org/10.1007/978-981-19-6008-6_16

Download citation

Publish with us

Policies and ethics