Skip to main content

Advertisement

Log in

The concept of molecular machinery is useful for design of stimuli-responsive gene delivery systems in the mammalian cell

  • Review Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Since the first generation of molecular machines including photoresponsive crown ethers and its analogues was reported by Shinkai et al., a huge number of molecular machines exhibiting dynamic chemical and physical functions have been designed and developed. On the other hand, non-viral vectors are desired to possess conflicting properties to associate with DNA until reaching the nucleus as their final destination and dissociate from DNA there. In other words, non-viral vectors should work as a sort of molecular machinery. To overcome this dilemma, recently, much attention is focused on the development of the intelligent vectors, also called as ‘stimuli responsive vectors’ working as molecular machines. In this review, stimulus responsive gene delivery systems in which some structural factors and/or physiological properties are regulated in response to extracellular signals such as redox, pH, ultrasound, light, temperature, etc. are introduced as a new generation of non-viral vectors. These extracellular signals such as ultrasound, light, and temperature can be potent stimuli capable of site-, timing-, and duration-specific gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. International Human Genome Sequencing Consortium: Finishing the euchromatic sequence of the human genome. Nature 431, 931–945 (2004)

    Article  CAS  Google Scholar 

  2. Wiethoff, C.M., Middaugh, C.R.: Barriers to nonviral gene delivery. J. Pharm. Sci. 92, 203–217 (2003)

    Article  CAS  Google Scholar 

  3. Wolkowicz, R., Nolan, G.P.: Gene therapy progress and prospects: novel gene therapy approaches for AIDS. Gene Ther. 12, 467–476 (2005)

    Article  CAS  Google Scholar 

  4. Strayer, D.S., Akkina, R., Bunnell, B.A., Dropulic, B., Planelles, V., Pomerantz, R.J., Rossi, J.J., Zaia, J.A.: Current status of gene therapy strategies to treat HIV/AIDS. Mol. Ther. 11, 823–842 (2005)

    Article  CAS  Google Scholar 

  5. Cho-Chung, Y.S.: DNA drug design for cancer therapy. Curr. Pharm. Des. 11, 2811–2823 (2005)

    Article  CAS  Google Scholar 

  6. Yechoor, V., Chen, L.: Gene therapy progress and prospects: Gene therapy for diabetes mellitus. Gene Ther. 12, 101–107 (2005)

    Article  CAS  Google Scholar 

  7. Morishita, R.: Perspective in progress of cardiovascular gene therapy. J. Pharm. Sci. 95, 1–8 (2004)

    Article  CAS  Google Scholar 

  8. Albelda, S.M., Wiewrodt, R., Zuckerman, J.B.: Gene therapy for lung disease: hype or hope? Ann. Intern. Med. 132, 649–660 (2000)

    CAS  Google Scholar 

  9. Niidome, T., Huang, L.: Gene therapy progress and prospects: nonviral vectors. Gene Ther. 9, 1647–1652 (2002)

    Article  CAS  Google Scholar 

  10. Cheng, S.H., Smith, A.E.: Gene therapy progress and prospects: gene therapy of lysosomal storage disorders. Gene Ther. 10, 1275–1281 (2003)

    Article  CAS  Google Scholar 

  11. Gardlík, R., Pálffy, R., Hodosy, J., Lukács, J., Turña, J., Celec, P.: Vectors and delivery systems in gene therapy. Med. Sci. Monit. 11, RA110–RA121 (2005)

    Google Scholar 

  12. Harada-Shiba, M.: Gene transfer and target diseases. In: Taira, K., Kataoka, K., Niidome, T. (eds.) Non-viral Gene Therapy, pp. 246–260. Springer-Verlag, Tokyo (2005)

    Chapter  Google Scholar 

  13. Yanagie, H.: Clinical trials using non-viral gene delivery systems. In: Taira, K., Kataoka, K., Niidome, T. (eds.) Non-viral Gene Therapy, pp. 261–290. Springer-Verlag, Tokyo (2005)

    Chapter  Google Scholar 

  14. Marshall, E.: Gene therapy death prompts review of adenovirus vector. Science 286, 2244–2245 (1999)

    Article  CAS  Google Scholar 

  15. Marshall, E.: FDA halts all gene therapy trials at Penn. Science 287, 565, 567 (1999)

    Google Scholar 

  16. Marshall, E.: Clinical research. Gene therapy a suspect in leukemia-like disease. Science 298, 34–35 (2002)

    Article  CAS  Google Scholar 

  17. Check, E.: A tragic setback. Nature 420, 116–118 (2002)

    Article  CAS  Google Scholar 

  18. Nagasaki, T.: Active DNA release from complexes. In: Taira, K., Kataoka, K., Niidome, T. (eds.) Non-viral Gene Therapy, pp. 155–164. Springer-Verlag, Tokyo (2005)

    Chapter  Google Scholar 

  19. Yokoyama, M.: Controlled release of DNA using thermoresponsive polymers. In: Taira, K., Kataoka, K., Niidome, T. (eds.) Non-viral Gene Therapy, pp. 165–175. Springer-Verlag, Tokyo (2005)

    Chapter  Google Scholar 

  20. Dinçer, S., Türk, M., Piskin, E.: Intelligent polymers as nonviral vectors. Gene Ther. 12, S139–S145 (2005)

    Article  CAS  Google Scholar 

  21. Oupicky, D., Diwadkar, V.: Stimuli-responsive gene delivery vectors. Curr. Opin. Mol. Ther. 5, 345–350 (2003)

    CAS  Google Scholar 

  22. Feynman, R.P.: There's plenty of room at the bottom. Eng. Sci. 23, 22–26, 30, 34, 36 (1960)

    Google Scholar 

  23. Shinkai, S., Manabe, O.: Photocontrol of ion extraction and ion-transport by photofunctional crown ethers. Top. Curr. Chem. 121, 67–104 (1984)

    CAS  Google Scholar 

  24. Shinkai, S., Ogawa, T., Nakaji, T., Kusano, Y., Manabe, O.: Photo-controlled extraction ability of azobenzene-bridged azacrown ether. Tetrahedron Lett. 20, 4569 (1979)

    Article  Google Scholar 

  25. Shinkai, S., Nakaji, T., Nisihda, Y., Ogawa, T., Manabe, O.: Photoresponsive crown ethers. 1. Cis-trans isomerism of azobenzene as a tool to enforce conformational changes of crown ethers and polymers. J. Am. Chem. Soc. 102, 5860–5865 (1980)

    Article  CAS  Google Scholar 

  26. Shinkai, S., Ogawa, T., Kusano, Y., Manabe, O.: Selective extraction of alkali metal cations by a photoresponsive bis(crown ether). Chem. Lett. 9, 283–286 (1980)

    Article  Google Scholar 

  27. Shinkai, S., Nakaji, T., Ogawa, T., Shigematsu, K., Manabe, O.: Photoresponsive crown ethers. 2. Photocontrol of ion extraction and ion transport by a bis(crown ether) with a butterfly-like motion. J. Am. Chem. Soc. 103, 111–115 (1981)

    Article  CAS  Google Scholar 

  28. Shinkai, S.: Switch-functionalized systems in biomimetic chemistry. Pure Appl. Chem. 59, 425–430 (1987)

    CAS  Google Scholar 

  29. Shinkai, S.: Switchable guest-binding receptor molecules. In: Gokel, G.W. (ed.) Comprehensive Supramolecular Chemistry, pp. 671–700. Elsevier Science Ltd., Oxford (1999)

    Google Scholar 

  30. Masuda, T., Azuma, M., Ooshima, H., Tamagaki, S., Nagasaki, T.: Microbial Growth Regulation Using Photoresponsive Siderophore. Chem. Lett. 29, 872–873 (2000)

    Article  Google Scholar 

  31. Balzani, V., Credi, A., Raymo, F.M., Stoddart, J.F.: Artificial molecular machines. Angew. Chem. Int. Ed. 39, 3348–3391 (2000)

    Article  CAS  Google Scholar 

  32. Pease, A.R., Jeppesen, J.O., Stoddart, J.F., Luo, Y., Collier, C.P., Heath, J.R.: Switching devices based on interlocked molecules. Acc. Chem. Res. 34, 433–444 (2001)

    Article  CAS  Google Scholar 

  33. Ballardini, R., Balzani, V., Credi, A., Gandolfi, M.T., Venturi, M.: Artificial molecular-level machines: which energy to make them work? Acc. Chem. Res. 34, 445–455 (2001)

    Article  CAS  Google Scholar 

  34. Collin, J.-P., Dietrich-Buchecker, C., Gavina, P., Jimenez-Molero, M.C., Sauvage, J.-P.: Shuttles and muscles: linear molecular machines based on transition metals. Acc. Chem. Res. 34, 477–487 (2001)

    Article  CAS  Google Scholar 

  35. Takeuchi, M., Ikeda, M., Sugasaki, A., Shinkai, S.: Molecular design of artificial molecular and ion recognition systems with allosteric guest responses. Acc. Chem. Res. 34, 865–873 (2001)

    Article  CAS  Google Scholar 

  36. Kelly, T.R., De Silva, H., Silva, R.A.: Unidirectional rotary motion in a molecular system. Nature 400, 150–152 (1999)

    Article  CAS  Google Scholar 

  37. Kinbara, K., Aida, R.: Toward intelligent molecular machines: directed motions of biological and artificial molecules and assemblies. Chem. Rev. 105, 1377–1400 (2005)

    Article  CAS  Google Scholar 

  38. Browne, W.R., Fernga, B.L.: Making molecular machines work. Nat. Nanotech. 1, 25–35 (2006)

    Article  CAS  Google Scholar 

  39. Muraoka, T., Kinbara, K., Aida, T.: Mechanical twisting of a guest by a photoresponsive host. Nature 440, 512–515 (2006)

    Article  CAS  Google Scholar 

  40. Berg, K., Selbo, P.K., Prasmickaite, L., Tjelle, T.E., Sandvig, K., Moan, J., Gaudernack, G., Fodstad, Ø., Kjølsrud, S., Anholt, H., Rodal, G.H., Rodal, S.K., Høgset, A.: Photochemical internalization: a novel technology for delivery of macromolecules into cytosol. Cancer Res. 59, 1180–1183 (1999)

    CAS  Google Scholar 

  41. Prasmickaite, L., Høgset, A., Berg, K.: Photochemical transfection. Light-induced, site-directed gene delivery. Methods Mol. Med. 69, 123–135 (2002)

    CAS  Google Scholar 

  42. Selbo, P.K., Høgset, A., Prasmickaite, L., Berg, K.: Photochemical internalisation: a novel drug delivery system. Tumour Biol. 23, 103–112 (2002)

    Article  CAS  Google Scholar 

  43. Prasmickaite, L., Høgset, A., Selbo, P.K., Engeæter, B.Ø., Hellum, M., Berg, K.: Photochemical disruption of endocytic vesicles before delivery of drugs: a new strategy for cancer therapy. Br. J. Cancer 86, 652–657 (2002)

    Article  CAS  Google Scholar 

  44. Prasmickaite, L., Høgset, A., Engeæter, B.Ø., Bonsted, A., Berg, K.: Light-directed gene delivery by photochemical internalisation. Exp. Opin. Biol. Ther. 4, 1403–1412 (2004)

    Article  CAS  Google Scholar 

  45. Berg, K., Selbo, P.K., Prasmickaite, L., Høgset, A.: Photochemical drug and gene delivery. Curr. Opin. Mol. Ther. 6, 279–287 (2004)

    CAS  Google Scholar 

  46. Høgset, A., Prasmickaite, L., Selbo, P.K., Hellum, M., Engeæter, B.Ø., Bonsted, A., Berg, K.: Photochemical internalisation in drug and gene delivery. Adv. Drug Deliv. Rev. 56, 95–115 (2004)

    Article  CAS  Google Scholar 

  47. Selbo, P.K., Sivam, G., Fodstad, Ø., Sandvig, K., Berg, K.: In vivo documentation of photochemical internalization, a novel approach to site specific cancer therapy. Int. J. Cancer 92, 761–766 (2001)

    Article  CAS  Google Scholar 

  48. Maxfield, F.R.: Weak bases and ionophores rapidly and reversibly raise the pH of endocytic vesicles in cultured mouse fibroblasts. J. Cell Biol. 95, 676–681 (1982)

    Article  CAS  Google Scholar 

  49. Prasmickaite, L., Høgest, A., Tjelle, T.E., Olsen, V.M., Berg, K.: Role of endosomes in gene transfection mediated by photochemical internalisation (PCI). Somat. J. Gene Med. 2, 477–488 (2000)

    CAS  Google Scholar 

  50. Gao, X., Huang, L.: Cationic liposome-mediated gene transfer. Gene Ther. 2, 710–720 (1995)

    CAS  Google Scholar 

  51. Høgest, A., Prasmickaite, L., Tjelle, T.E., Berg, K.: Photochemical transfection: a new technology for light-induced, site-directed gene delivery. Hum. Gene Ther. 11, 869–880 (2000)

    Article  Google Scholar 

  52. Bonsted, A., Engesæter, B.Ø., Høgest, A., Mælandsmo, G.M., Prasmickaite, L., Kaalhus, O., Berg, K.: Transgene expression is increased by photochemically mediated transduction of polycation-complexed adenoviruses. Gene Ther. 11, 152–160 (2004)

    Article  CAS  Google Scholar 

  53. Prasmickaite, L., Høgest, A., Berg, K.: The role of the cell cycle on the efficiency of photochemical gene transfection. Biochim. Biophys. Acta 1570, 210–218 (2002)

    CAS  Google Scholar 

  54. Nishiyama, N., Iriyama, A., Jang, W.-D., Miyata, K., Ikata, K., Inoue, Y., Takahashi, H., Yanagi, Y., Tamaki, Y., Koyama, H., Kataoka, K.: Light-induced gene transfer from packaged DNA enveloped in a dendrimeric photosensitizer. Nat. Mater. 4, 934–941 (2005)

    Article  CAS  Google Scholar 

  55. Haensler, J., Szoka, F.C. Jr.: Polyamidoamine cascade polymers mediate efficient transfection of cells in culture. Bioconjug. Chem. 4, 372–379 (1993)

    Article  CAS  Google Scholar 

  56. Tang, M.X., Redemann, C.T., Szoka, F.C. Jr.: In vitro gene delivery by degraded polyamidoamine dendrimers. Bioconjug. Chem. 7, 703–714 (1996)

    Article  CAS  Google Scholar 

  57. Kúkowska-Latallo, J.F., Bielinska, A.U., Johnson, J., Spindler, R., Tomalia, D.A., Baker, J.R. Jr.: Efficient transfer of genetic material into mammalian cells using Starburst polyamidoamine dendrimers. Proc. Natl. Acad. USA 93, 4897–4902 (1996)

    Article  Google Scholar 

  58. Hudde, T., Rayner, S.A., Comer, R.M., Weber, M., Isaacs, J.D., Waldmann, H., Larkin, D.F.P., George, A.J.T.: Activated polyamidoamine dendrimers, a non-viral vector for gene transfer to the corneal endothelium. Gene Ther. 6, 939–943 (1999)

    Article  CAS  Google Scholar 

  59. Ohsaki, M., Okuda, T., Wada, A., Hirayama, T., Niidome, T., Aoyagi, H.: In vitro gene transfection using dendritic poly(L-lysine). Bioconjug. Chem. 13, 510–517 (2002)

    Article  CAS  Google Scholar 

  60. Okuda, T., Kioaki, S., Ohsaki, M., Koyama, Y., Yoshikawa, K., Niidome, T., Aoyagi, H.: Time-dependent complex formation of dendritic poly(L-lysine) with plasmid DNA and correlation with in vitro transfection efficiencies. Org. Biomol. Chem. 1, 1270–1273 (2003)

    Article  CAS  Google Scholar 

  61. Takahashi, T., Kono, K., Itoh, T., Emi, N., Takagishi, T.: Synthesis of novel cationic lipids having polyamidoamine dendrons and their transfection activity. Bioconjug. Chem. 14, 764–773 (2003)

    Article  CAS  Google Scholar 

  62. Nagasaki, T., Tamagaki, S., Ogino, K.: Syntheses and characterization of photochromic dendrimers including a 1,3-alternate calix[4]arene as a core and azobenzene moieties as branches. Chem. Lett. 19, 717–718 (1997)

    Article  Google Scholar 

  63. Nagasaki, T., Noguchi, A., Matsumoto, T., Tamagaki, S., Ogino, K.: Photochemically size-controllable dendrimers including a 1, 3-alternate calyx[4]arene as a core and azobenzene moieties as branch. Anl. Quím. Int. Ed. 93, 341–346 (1997)

    CAS  Google Scholar 

  64. Nagasaki, T., Atarashi, K., Makino, K., Noguchi, A., Tamagaki, S.: Synthesis of a novel water-soluble polyazobenzene dendrimer and photoregulation of affinity toward DNA. Mol. Cryst. Liq. Cryst. 345, 227–232 (2000)

    Article  CAS  Google Scholar 

  65. Nagasaki, T., Wada, K., Tamagaki, S.: Photo-enhancement of transfection efficiency with a novel azobenzene-based cationic lipid. Chem. Lett. 32, 88–89 (2003)

    Article  CAS  Google Scholar 

  66. Hamada, T., Sato, Y.T., Yoshikawa, K., Nagasaki, T.: Reversible photoswitching in a cell-sized vesicle. Langmuir 21, 7626–7628 (2005)

    Article  CAS  Google Scholar 

  67. Nagasaki, T., Taniguchi, A., Tamagaki, S.: Photoenhancement of transfection efficiency using novel cationic lipids having a photocleavable spacer. Bioconjug. Chem. 14, 513–516 (2003)

    Article  CAS  Google Scholar 

  68. Xu, Y., Szoka, F.C. Jr.: Chemical approaches to triggerable lipid vesicles for drug and gene delivery. Acc. Chem. Res. 36, 335–341 (2003)

    Article  CAS  Google Scholar 

  69. Meister, A.: Glutathione deficiency produced by inhibition of its synthesis, and its reversal; applications in research and therapy. Pharmacol. Ther. 51, 155–194 (1991)

    Article  CAS  Google Scholar 

  70. MaCarthy, M.P., White, W.I., Palmer-Hill, F., Koenig, S., Suzich, J.A.: Quantitative disassembly and reassembly of human papillomavirus type 11 viruslike particles in vitro. J. Viol. 72, 32–41 (1998)

    Google Scholar 

  71. Blessing, T., Remy, J.S., Behr, J.P.: Monomolecular collapse of plasmid DNA into stable virus-like particles. Proc. Natl. Acad. Sci. USA 95, 1427–1431 (1998)

    Article  CAS  Google Scholar 

  72. Dauty, E., Remy, J.S., Blessing, T., Behr, J.P.: Dimerizable cationic detergents with a low cmc condense plasmid DNA into nanometric particles and transfect cells in culture. J. Am. Chem. Soc. 123, 9227–9234 (2001)

    Article  CAS  Google Scholar 

  73. Ouyang, M., Remy, J.S., Szoka, F.C. Jr.: Controlled template-assisted assembly of plasmid DNA into nanometric particles with high DNA concentration. Bioconjug. Chem. 11, 104–112 (2000)

    Article  CAS  Google Scholar 

  74. Chilttimalla, C., Italiano, L.Z-., Zuber, G., Behr, J.P.: Monomolecular DNA nanoparticles for intravenous delivery of genes. J. Am. Chem. Soc. 127, 11436–11441 (2005)

    Article  CAS  Google Scholar 

  75. Wetzer, B., Byk, G., Frederic, M., Airiau, M., Blanche, F., Pitard, B., Scherman, D.: Reducible cationic lipids for gene transfer. Biochem. J. 356, 747–756 (2001)

    Article  CAS  Google Scholar 

  76. Oishi, M., Hayama, T., Akiyama, Y., Takae, S., Harada, A., Yamasaki, Y., Nagatsugi, F., Sasaki, S., Nagasaki, Y., Kataoka, K.: Supramolecular assemblies for the cytoplasmic delivery of antisense oligodeoxynucleotide: polyion complex (PIC) micelles based on poly(ethylene glycol)-SS-oligodeoxynucleotide conjugate. Biomacromolecules 6, 2449–2454 (2005)

    Article  CAS  Google Scholar 

  77. Miyata, K., Kakizawa, Y., Nishiyama, N., Harada, A., Yamasaki, Y., Koyama, H., Kataoka, K.: Block catiomer polyplexes with regulated densities of charge and disulfide cross-linking directed to enhance gene expression. J. Am. Chem. Soc. 126, 2355–2361 (2004)

    Article  CAS  Google Scholar 

  78. Gosselin, M.A., Guo, W., Lee, R.J.: Efficient gene transfer using reversibly cross-linked low molecular weight polyethylenimine. Bioconjug. Chem. 12, 989–994 (2001)

    Article  CAS  Google Scholar 

  79. Pichon, C., LeCam, E., Guerin, B., Coulaud, D., Delain, E., Midoux, P.: Poly[Lys-(AEDTP)]: a cationic polymer that allows dissociation of pDNA/cationic polymer complexes in a reductive medium and enhances polyfection. Bioconjug. Chem. 13, 76–82 (2002)

    Article  CAS  Google Scholar 

  80. McKenzie, D.L., Smiley, E., Kwok, K.Y., Rice, K.G.: Low molecular weight disulfide cross-linking peptides as nonviral gene delivery carriers. Bioconjug. Chem. 11, 901–909 (2000)

    Article  CAS  Google Scholar 

  81. McKenzie, D.L., Kwok, K.Y., Rice, K.G.: A potent new class of reductively activated peptide gene delivery agents. J. Biol. Chem. 275, 9970–9977 (2000)

    Article  CAS  Google Scholar 

  82. Oupický, D., Parker, A.L., Seymour, W.: Laterally stabilized complexes of DNA with linear reducible polycations: strategy for triggered intracellular activation of DNA delivery vectors. J. Am. Chem. Soc. 124, 8–9 (2002)

    Article  CAS  Google Scholar 

  83. Manickam, D.S., Bisht, H.S., Wan, L., Mao, G., Oupicky, D.: Influence of TAT-peptide polymerization on properties and transfection activity of TAT/DNA polyplexes. J. Control. Release 102, 293–306 (2005)

    Article  CAS  Google Scholar 

  84. Gerweck, L.E., Seetharaman, K.: Cellular pH gradient in tumor versus normal tissue: potential exploitation for the treatment of cancer. Cancer Res. 56, 1194–1198 (1996)

    CAS  Google Scholar 

  85. Asokan, A., Cho, M.J.: Exploitation of intracellular pH gradients in the cellular delivery of macromolecules. J. Pharm. Sci. 91, 903–913 (2002)

    Article  CAS  Google Scholar 

  86. Schmid, S.L.: Toward a biochemical definition of the endosomal compartment. Studies using free flow electrophoresis. Subcell. Biochem. 19, 1–28 (1993)

    CAS  Google Scholar 

  87. Boussif, O., Lezoualc’h, F., Zanta, M.A., Mergny, M.D., Scherman, D., Demeneix, B., Behr, J.P.: A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc. Natl. Acad. Sci. USA 92, 7297–7301 (1995)

    Article  CAS  Google Scholar 

  88. Sonawane, N.D., Szoka, F.C. Jr., Verkman, A.S.: Chloride accumulation and swelling in endosomes enhances DNA transfer by polyamine-DNA polyplexes. J. Biol. Chem. 278, 44826–44831 (2003)

    Article  CAS  Google Scholar 

  89. Pack, D.W., Hoffman, A.S., Pun, S., Stayton, P.S.: Design and development of polymers for gene delivery. Nat. Rev. Drug Discov. 4, 581–593 (2005)

    Article  CAS  Google Scholar 

  90. Li, W., Nicol, F., Szoka, F.C. Jr.: GALA: a designed synthetic pH-responsive amphipathic peptide with applications in drug and gene delivery. Adv. Drug Delivery Rev. 56, 967–985 (2004)

    Article  CAS  Google Scholar 

  91. Kakudo, T., Chaki, S., Futaki, S., Nakase, I., Akaji, K., Kawakami, T., Maruyama, K., Kamiya, H., Harashima, H.: Transferrin-modified liposomes equipped with a pH-sensitive fusogenic peptide: an artificial viral-like delivery system. Biochemistry 43, 5618–5628 (2004)

    Article  CAS  Google Scholar 

  92. Simōes, S., Slepushkin, V., Paris, P., Gaspar, R., Pedroso, M.C., Lima, D., Düzgünes, N.: Mechanisms of gene transfer mediated by lipoplexes associated with targeting ligands or pH-sensitive peptides. Gene Ther. 6, 1798–1807 (1999)

    Article  Google Scholar 

  93. Wagner, E.: Application of membrane-active peptides for nonviral gene delivery. Adv. Drug Delivery Rev. 38, 279–289 (1999)

    Article  CAS  Google Scholar 

  94. Wagner, E., Plank, C., Zatloukal, K., Cotton, M., Birnstiel, M.L.: Influenza virus hemagglutinin HA-2 N-terminal fusogenic peptides augment gene transfer by transferrin-polylysine-DNA complexes: toward a synthetic virus-like gene-transfer vehicle. Proc. Natl. Acad. Sci. USA 89, 7934–7938 (1992)

    Article  CAS  Google Scholar 

  95. Schoen, P., Chonn, A., Cullis, P.R., Wilschut, J., Scherrer, P.: Gene transfer mediated by fusion protein hemagglutinin reconstituted in cationic lipid vesicles. Gene Ther. 6, 823–832 (1999)

    Article  CAS  Google Scholar 

  96. Kyriakides, T.R., Cheung, C.Y., Murthy, N., Bornstein, P., Stayton, P.S., Hoffman, A.S.: pH-sensitive polymers that enhance intracellular drug delivery in vivo. J. Control. Release 78, 295–303 (2002)

    Article  CAS  Google Scholar 

  97. Cheung, C.Y., Murthy, N., Stayton, P.S., Hoffman, A.S.: A pH-sensitive polymer that enhances cationic lipid-mediated gene transfer. Bioconjug. Chem. 12, 906–910 (2001)

    Article  CAS  Google Scholar 

  98. Moore, C., Promes, S.B.: Ultrasound in pregnancy. Emerg. Med. Clin. North Am. 22, 697–722 (2004)

    Article  Google Scholar 

  99. Lindner, J.R.: Microbubbles in medical imaging: current applications and future directions. Nat. Rev. Drug Discov. 3, 527–532 (2004)

    Article  CAS  Google Scholar 

  100. Tachibana, K.: Emerging technologies in therapeutic ultrasound: thermal ablation to gene delivery. Hum. Cell 17, 7–15 (2004)

    Article  Google Scholar 

  101. Hosseinkhani, H., Aoyama, T., Ogawa, O., Tabata, Y.: Ultrasound enhances the transfection of plasmid DNA by non-viral vectors. Curr. Pharm. Biotechnol. 4, 109–122 (2003)

    Article  CAS  Google Scholar 

  102. Mitragotti, S.: Healing sound: the use of ultrasound in drug delivery and other therapeutic applications. Nat. Rev. Drug Discov. 4, 255–260 (2005)

    Article  CAS  Google Scholar 

  103. Taniyama, Y., Tachibana, K., Hiraoka, K., Namna, T., Yamasaki, K., Hashiya, N., Aoki, M., Ogihara, T., Kaneda, Y., Morishita, R.: Local delivery of plasmid DNA into rat carotid artery using ultrasound. Circulation 105, 1233–1239 (2002)

    Article  CAS  Google Scholar 

  104. Kondo, I., Ohmori, K., Oshita, A., Takeuchi, H., Fuke, S., Shiomiya, K., Noma, T., Namba, T., Kohno, M.: Treatment of acute myocardial infarction by hepatocyte growth factor gene transfer: the first demonstration of myocardial transfer of a "functional" gene using ultrasonic microbubble destruction. J. Am. Coll. Cardiol. 44, 644–653 (2004)

    Article  CAS  Google Scholar 

  105. Hashiya, N., Aoki, M., Tachibana, K., Taniyama, Y., Yamasaki, K., Hiraoka, K., Makino, H., Kaneda, Y., Ogihara, T., Morishita, R.: Local delivery of E2F decoy oligodeoxynucleotides using ultrasound with microbubble agent (Optison) inhibits intimal hyperplasia after balloon injury in rat carotid artery model. Biocim. Biophys. Res. Commun. 317, 508–514 (2004)

    Article  CAS  Google Scholar 

  106. Anwer, K., Kao, G., Procter, B., Anscombe, I., Florack, V., Earls, R., Wilson, E., McCreery, T., Unger, E., Rolland, A., Sullivan, S.M.: Ultrasound enhancement of cationic lipid-mediated gene transfer to primary tumors following systemic administration. Gene Ther. 7, 1833–1839 (2000)

    Article  CAS  Google Scholar 

  107. Dailey, L.A., Kleemann, E., Merdan, T., Petersen, H., Schmehl, T., Gessler, T., Hänze, J., Seeger, W., Kissel, T.: Modified polyethylenimines as non viral gene delivery systems for aerosol therapy: effects of nebulization on cellular uptake and transfection efficiency. J. Control. Release 100, 425–436 (2004)

    Article  CAS  Google Scholar 

  108. Kleemann, E., Dailey, L.A., Abdelhady, H.G., Gessler, T., Schmehl, T., Roberts, C.J., Davies, M.C., Seeger, W., Kissel, T.: Modified polyethylenimines as non-viral gene delivery systems for aerosol gene therapy: investigations of the complex structure and stability during air-jet and ultrasonic nebulization. J. Control. Release 100, 437–450 (2004)

    Article  CAS  Google Scholar 

  109. Suzuki, R., Takizawa, T., Negishi, Y., Hagisawa, K., Tanaka, K., Sawamura, K., Utoguchia, N., Nishioka, T., Maruyama, K.: Gene delivery by combination of novel liposomal bubbles with perfluoropropane and ultrasound. J. Control. Release 117, 130 (2007)

    Article  CAS  Google Scholar 

  110. Yokoyama, M.: Gene delivery using temperature-responsive polymeric carriers. Drug Disc. Today 7, 426 (2002)

    Article  CAS  Google Scholar 

  111. Kurisawa, M., Yokoyama, M., Okaano, T.: Transfection efficiency increases by incorporating hydrophobic monomer units into polymeric gene carriers. J. Control. Release 68, 1–8 (2000)

    Article  CAS  Google Scholar 

  112. Kurisawa, M., Yokoyama, M., Okaano, T.: Gene expression control by temperature with thermo-responsive polymeric gene carriers. J. Control. Release 69, 127–137 (2000)

    Article  CAS  Google Scholar 

  113. Takeda, N., Nakamura, E., Yokoyama, M., Okano, T.: Temperature-responsive polymeric carriers incorporating hydrophobic monomers for effective transfection in small doses. J. Control. Release 95, 343–355 (2004)

    Article  CAS  Google Scholar 

  114. Oupicky, D., Reschel, T., Konak, C., Oupická, L.: Temperature-Controlled Behavior of Self-Assembly Gene Delivery Vectors Based on Complexes of DNA with Poly(L-lysine)-graft-poly(N-isopropylacrylamide). Macromolecules 36, 6863–6872 (2003)

    Article  CAS  Google Scholar 

  115. Twaites, B.R., de las Heras Alarcón, C., Cunliffe, D., Lavigne, M., Pennadam, S., Smith, J.R., Górecki, D.C., Alexander, C.: Thermo and pH responsive polymers as gene delivery vectors: effect of polymer architecture on DNA complexation in vitro. J. Control. Release 97, 551–566 (2004)

    CAS  Google Scholar 

  116. Dincer, S., Tuncel, A., Piskin, E.: A potential gene delivery vector: N-isopropylacrylamide-ethyleneimine block copolymers. Macromol. Chem. Phys. 203, 1460–1465 (2002)

    Article  CAS  Google Scholar 

  117. Li, Z., Ning, W., Wang, J., Choi, A., Lee, P-Y., Tyagi, P., Huang, L.: Controlled gene delivery system based on thermosensitive biodegradable hydrogel. Pharm. Res. 20, 884–888 (2003)

    Article  CAS  Google Scholar 

  118. Falk, M.H., Issels, R.D.: Hyperthermia in oncology. Int. J. Hyperthermia 17, 1–18 (2001)

    Article  CAS  Google Scholar 

  119. Walker, G.F., Fella, C., Pelisek, J., Fahrmeir, J., Boeckle, S., Ogris, M., Wagner, E.: Toward synthetic viruses: endosomal pH-triggered deshielding of targeted polyplexes greatly enhances gene transfer in vitro and in vivo. Mol. Ther. 11, 418–425 (2005)

    Article  CAS  Google Scholar 

  120. Choi, J.S., Mackay, J.A., Szoka, F.C. Jr.: Low-pH-sensitive PEG-stabilized plasmid-lipid nanoparticles: preparation and characterization. Bioconjug. Chem. 14, 420–429 (2003)

    Article  CAS  Google Scholar 

  121. Lim, Y.-B., Kim, C.-H., Kim, K., Kim, S.W., Park, J.-S.: Development of a safe gene delivery system using biodegradable polymer, poly[a-(4-aminobutyl)-L-glycolic acid]. J. Am. Chem. Soc. 122, 6524–6525 (2000)

    Article  CAS  Google Scholar 

  122. Wang, J., Mao, H.-Q., Leong, K.W.: A novel biodegradable gene carrier based on polyphosphoester. J. Am. Chem. Soc. 123, 9480–9481 (2001)

    Article  CAS  Google Scholar 

  123. Ahn, C.-H., Chae, S.Y., Bae, Y.H., Kim, S.W.: Biodegradable poly(ethylenimine) for plasmid DNA delivery. J. Control. Release 80, 273–282 (2002)

    Article  CAS  Google Scholar 

  124. Petersen, H., Merdan, T., Kunath, K., Fischer, D., Kissel, T.: Poly(ethylenimine-co-L-lactamide-co-succinamide): a biodegradable polyethylenimine derivative with an advantageous pH-dependent hydrolytic degradation for gene delivery. Bioconjug. Chem. 13, 812–821 (2002)

    Article  CAS  Google Scholar 

  125. Lim, Y.-B., Kim, S.-M., Suh, H., Park, J.-S.: Biodegradable, endosome disruptive, and cationic network-type polymer as a highly efficient and nontoxic gene delivery carrier. Bioconjug. Chem. 13, 952–957 (2002)

    Article  CAS  Google Scholar 

  126. Choi, J.S., MacKay, J.A., Szoka, F.C. Jr.: Low-pH-sensitive PEG-stabilized plasmid-lipid nanoparticles: preparation and characterization. Bioconjug. Chem. 14, 420–429 (2003)

    Article  CAS  Google Scholar 

  127. Forrest, M.L., Koerber, J.T., Pack, D.W.: A degradable polyethylenimine derivative with low toxicity for highly efficient gene delivery. Bioconjug. Chem. 14, 934–940 (2003)

    Article  CAS  Google Scholar 

  128. Li, Y., Wang, J., Lee, C.G.L., Wang, C.Y., Gao, S.J., Tang, G.P., Ma, Y.X., Yu, H., Mao, H.-Q., Leong, K.W., Wang, S.: CNS gene transfer mediated by a novel controlled release system based on DNA complexes of degradable polycation PPE-EA: a comparison with polyethylenimine/DNA complexes. Gene Ther. 11, 109–114 (2004)

    Article  CAS  Google Scholar 

  129. Sano, A., Maeda, M., Nagahara, S., Ochiya, T., Honma, K., Itoh, H., Miyata, T., Fujioka, K.: Atelocollagen for protein and gene delivery. Adv. Drug Deliv. Rev. 55, 1651–1677 (2003)

    Article  CAS  Google Scholar 

  130. Prata, C.A.H., Zhao, Y., Barthelemy, P., Li, Y., Luo, D., McIntosh, T.J., Lee, S.J., Grinstaff, M.W.: Charge-reversal amphiphiles for gene delivery. J. Am. Chem. Soc. 126, 12196–12197 (2004)

    Article  CAS  Google Scholar 

  131. Katayama, Y., Sonoda, T., Maeda, M.: A polymer micelle responding to the protein kinase a signal. Macromolecules 34, 8569–8573 (2001)

    Article  CAS  Google Scholar 

  132. Katayama, Y., Fujii, K., Ito, E., Sakakihara, S., Sonoda, T., Murata, M., Maeda, M.: Intracellular signal-responsive artificial gene regulation for novel gene delivery. Biomacromolecules 3, 905–909 (2002)

    Article  CAS  Google Scholar 

  133. Sakakihara, S., Fujii, K., Katayama, Y., Maeda, M.: A novel regulation system of gene expression responding to protease signal. Nucleic Acids Res. Suppl. 1, 149–150 (2001)

    Google Scholar 

  134. Kawamura, K., Oishi, J., Kang, J.-H., Kodama, K., Sonoda, T., Murata, M., Niidome, T., Katayama, Y.: Intracellular signal-responsive gene carrier for cell-specific gene expression. Biomacromolecules 6, 908–913 (2005)

    Article  CAS  Google Scholar 

  135. Sonoda, T., Nogami, T., Oishi, J., Murata, M., Niidome, T., Katayama, Y.: A peptide sequence controls the physical properties of nanoparticles formed by peptide-polymer conjugates that respond to a protein kinase a signal. Bioconjug. Chem. 16, 1542–1546 (2005)

    Article  CAS  Google Scholar 

  136. Oishi, J., Kawamura, K., kang, J.-H., Kodama, K., Sonoda, T., Murata, M., Niidome, T., Katayama, Y.: An intracellular kinase signal-responsive gene carrier for disordered cell-specific gene therapy. J. Control. Release 110, 431–436 (2006)

    Article  CAS  Google Scholar 

  137. Oishi, J., Ijuin, M., Sonoda, T., kang, J.-H., Kawamura, K., Mori, T., Niidome, T., Katayama, Y.: A protein kinase signal-responsive gene carrier modified RGD peptide. Bioorg. Med. Chem. Let. 16, 5740–5743 (2006)

    Article  CAS  Google Scholar 

  138. Kawamura, K., Oishi, J., Sakakihara, J., Niidome, T., Katayama, Y.: Intracellular signal-responsive artificial gene regulation. J. Drug Target 14, 456–464 (2006)

    Article  CAS  Google Scholar 

  139. Aris, A., Feliu, J.X., Knight, A., Coutelle, C., Villaverde, C.: Exploiting viral cell-targeting abilities in a single polypeptide, non-infectious, recombinant vehicle for integrin-mediated DNA delivery and gene expression. Biotechnol. Bioeng. 68, 689–696 (2000)

    Article  CAS  Google Scholar 

  140. Demeneix, B., Hassani, Z., Behr, J.P.: Towards multifunctional synthetic vectors. Curr. Gene Ther. 4, 445–455 (2004)

    CAS  Google Scholar 

  141. Kogure, K., Moriguchi, R., Sasaki, K., Ueno, M., Futaki, S., Harashima, H.: Development of a non-viral multifunctional envelope-type nano device by a novel lipid film hydration method. J. Control. Release 98, 317 (2004)

    Article  CAS  Google Scholar 

  142. Sasaki, K., Kogure, K., Chiaki, S., Kihara, Y., Ueno, M., Harashima, H.: Construction of a multifunctional envelope-type nano device by a SUV*-fusion method. Int. J. Pharm. 296, 142–150 (2005)

    Article  CAS  Google Scholar 

  143. Moriguchi, R., Kogure, K., Akita, H., Futaki, S., Miyagishi, M., Taira, K., Harashima, H.: A multifunctional envelope-type nano device for novel gene delivery of siRNA plasmids. Int. J. Pharm. 301, 277–285 (2005)

    Article  CAS  Google Scholar 

  144. Moffatt, S., Wiehle, S., Cristiano, R.J.: A multifunctional PEI-based cationic polyplex for enhanced systemic p53-mediated gene therapy. Gene Ther. 13, 1512–1523 (2006)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Nagasaki.

Additional information

This is a paper selected for “HGCS Japan Award of Excellence 2006”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagasaki, T., Shinkai, S. The concept of molecular machinery is useful for design of stimuli-responsive gene delivery systems in the mammalian cell. J Incl Phenom Macrocycl Chem 58, 205–219 (2007). https://doi.org/10.1007/s10847-007-9303-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-007-9303-6

Keywords

Navigation