Skip to main content

Role of Phytohormones in Plant Responses to Acid Rain

  • Chapter
  • First Online:
Plant Hormones and Climate Change

Abstract

Acid rain (AR) is considered one of the major abiotic hazards to agriculture due to rapid economic and industrial growth worldwide. Acid rain hampers the growth, development, photosynthesis, antioxidant defense, and molecular processes in plants. Plants suffer from oxidative stress under elevated levels of AR exposure because of rate-limiting antioxidant capacity. Acid rain also affects endogenous hormone homeostasis; hence, hormonal supplementation under such circumstances may strengthen plant defense in order to combat the stress generated by environmental threats. Moreover, various signaling molecules and plant growth regulators modulate vital physiological, biochemical, and molecular processes in plants to cope with environmental stresses. In the current book chapter, we highlight that melatonin (an indoleamine low molecular weight molecule), glutathione (free thiol tripeptide), and abscisic acid (isoprenoid plant hormone) act as significant growth regulators, bio-stimulators, and antioxidants to enhance growth, photosynthetic activity, and oxidative stress tolerance by reducing reactive oxygen species (ROS) accumulation under AR stress conditions. However, there is a research need to increase our understanding of the impact of phytohormones on basic life functions and develop new approaches to advance plant cultivation and industrial agriculture in AR conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acuña-Castroviejo, D., Martín, M., Macías, M., Escames, G., León, J., Khaldy, H., & Reiter, R. J. (2001). Melatonin, mitochondria, and cellular bioenergetics. Journal of Pineal Research, 30(2), 65–74.

    Article  Google Scholar 

  • Adeoye, E., Allison, P., Blackburn, C., Blocker, M., Grams, J., Jones, S., Lewis, L., Nativi, J., Ward, C., & Torrington, M. (2013). The effects of simulated acid rain on corn seed germination. FDOCUMENTS.

    Google Scholar 

  • Ahmad, P., Jaleel, C. A., Salem, M. A., Nabi, G., & Sharma, S. (2010). Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress. Critical Reviews in Biotechnology, 30(3), 161–175.

    Article  CAS  Google Scholar 

  • Akhi, M. Z., Haque, M. M., & Biswas, M. S. (2021). Role of secondary metabolites to attenuate stress damages in plants. In Antioxidants. IntechOpen.

    Google Scholar 

  • Ali, S., Hayat, K., Iqbal, A., & Xie, L. (2020). Implications of abscisic acid in the drought stress tolerance of plants. Agronomy, 10(9), 1323.

    Article  CAS  Google Scholar 

  • Andrade, G. C., & Silva, L. C. (2017). Responses of tropical legumes from the Brazilian Atlantic Rainforest to simulated acid rain. Protoplasma, 254(4), 1639–1649.

    Article  CAS  Google Scholar 

  • Anjum, N. A., Ahmad, I., Mohmood, I., Pacheco, M., Duarte, A. C., Pereira, E., Umar, S., Ahmad, A., Khan, N. A., & Iqbal, M. (2012). Modulation of glutathione and its related enzymes in plants’ responses to toxic metals and metalloids—a review. Environmental and Experimental Botany, 75, 307–324.

    CAS  Google Scholar 

  • Arnao, M. B., & Hernández-Ruiz, J. (2015). Functions of melatonin in plants: A review. Journal of Pineal Research, 59(2), 133–150. https://doi.org/10.1111/jpi.12253

    Article  CAS  Google Scholar 

  • Arvayo-Enríquez, H., Mondaca-Fernández, I., Gortárez-Moroyoqui, P., López-Cervantes, J., & Rodríguez-Ramírez, R. (2013). Carotenoids extraction and quantification: A review. Analytical Methods, 5(12), 2916–2924.

    Article  Google Scholar 

  • Ayala, A., Muñoz, M. F., & Argüelles, S. (2014). Lipid peroxidation: Production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxidative Medicine and Cellular Longevity, 2014, 360438.

    Article  Google Scholar 

  • Banerjee, S., & Margulis, L. (1973). Mitotic arrest by melatonin. Experimental Cell Research, 78(2), 314–318.

    Article  CAS  Google Scholar 

  • Banwart, W., Porter, P., Ziegler, E., & Hassett, J. (1988). Growth parameter and yield component response of field corn to simulated acid rain. Environmental and Experimental Botany, 28(1), 43–51.

    Article  CAS  Google Scholar 

  • Behera, S., Mallick, B., Tiwari, T., & Mishra, P. (2012). X-ray characterization of various aluminium phases in the medicinal herb Bacopa monnieri affected by simulated acid rain. Journal of Biomedical and Pharmaceutical Research, 1(1), 8–15.

    CAS  Google Scholar 

  • Behera, S., Mishra, P. C., Ghosh, S., Goswami, C., & Mallick, B. (2019). Microscopic observation of acid rain induced bacopa monnieri L. Microscopy Research, 7(2), 11–25.

    Article  Google Scholar 

  • Bernacchi, C. J., Bagley, J. E., Serbin, S. P., Ruiz-Vera, U. M., Rosenthal, D. M., & Vanloocke, A. (2013). Modelling C 3 photosynthesis from the chloroplast to the ecosystem. Plant, Cell & Environment, 36(9), 1641–1657.

    Article  CAS  Google Scholar 

  • Bhargava, S., & Sawant, K. (2013). Drought stress adaptation: Metabolic adjustment and regulation of gene expression. Plant Breeding, 132(1), 21–32.

    Article  CAS  Google Scholar 

  • Birben, E., Sahiner, U. M., Sackesen, C., Erzurum, S., & Kalayci, O. (2012). Oxidative stress and antioxidant defense. World Allergy Organization Journal, 5(1), 9–19.

    Article  CAS  Google Scholar 

  • Biswas, M., Terada, R., & Ji, M. (2020). Inactivation of carbonyl-detoxifying enzymes by H2O2 is a trigger to increase carbonyl load for initiating programmed cell death in plants. Antioxidants, 9(2), 141.

    Article  CAS  Google Scholar 

  • Bonhomme, R. (2000). Bases and limits to using ‘degree. day’units. European Journal of Agronomy, 13(1), 1–10.

    Article  Google Scholar 

  • Borghesi, E., González-Miret, M. L., Escudero-Gilete, M. L., Malorgio, F., Heredia, F. J., & Meléndez-Martínez, A. J. (2011). Effects of salinity stress on carotenoids, anthocyanins, and color of diverse tomato genotypes. Journal of Agricultural and Food Chemistry, 59(21), 11676–11682. https://doi.org/10.1021/jf2021623

    Article  CAS  Google Scholar 

  • Bouwman, A. F., Vuuren, D. P. V., Derwent, R. G., & Posch, M. (2002). A global analysis of acidification and eutrophication of terrestrial ecosystems. Water, Air, & Soil Pollution, 141(1-4), 349–382.

    Article  CAS  Google Scholar 

  • Bowler, C., Van Camp, W., Van Montagu, M., Inzé, D., & Asada, K. (1994). Superoxide dismutase in plants. Critical Reviews in Plant Sciences, 13(3), 199–218.

    Article  CAS  Google Scholar 

  • Calviño, M., Bruggmann, R., & Messing, J. (2011). Characterization of the small RNA component of the transcriptome from grain and sweet sorghum stems. BMC Genomics, 12(1), 1–13.

    Article  Google Scholar 

  • Cao, C.-X., Zhou, Q., Han, L.-L., Zhang, P., & Jiang, H.-D. (2010). Effects of simulated acid rain on oilseed rape (Brassica napus) physiological characteristics at flowering stage and yield. Yingyong Shengtai Xuebao, 21(8), 2057–2062.

    CAS  Google Scholar 

  • Caverzan, A., Casassola, A., & Brammer, S. P. (2016). Antioxidant responses of wheat plants under stress. Genetics and Molecular Biology, 39, 1–6.

    Article  CAS  Google Scholar 

  • Chen, F., Wang, F., Wu, F., Mao, W., Zhang, G., & Zhou, M. (2010). Modulation of exogenous glutathione in antioxidant defense system against Cd stress in the two barley genotypes differing in Cd tolerance. Plant Physiology and Biochemistry, 48(8), 663–672.

    Article  CAS  Google Scholar 

  • Chen, G., Huo, Y., Tan, D.-X., Liang, Z., Zhang, W., & Zhang, Y. (2003). Melatonin in Chinese Medicinal Herbs. Life Sciences, 73(1), 19–26.

    Article  CAS  Google Scholar 

  • Chen, J., Li, W., & Gao, F. (2010). Biogeochemical effects of forest vegetation on acid precipitation-related water chemistry: A case study in southwest China. Journal of Environmental Monitoring, 12(10), 1799–1806. https://doi.org/10.1039/C0EM00116C

    Article  CAS  Google Scholar 

  • Chen, J., Wang, W.-H., Liu, T.-W., Wu, F.-H., & Zheng, H.-L. (2013). Photosynthetic and antioxidant responses of Liquidambar formosana and Schima superba seedlings to sulfuric-rich and nitric-rich simulated acid rain. Plant Physiology and Biochemistry, 64, 41–51.

    Article  CAS  Google Scholar 

  • Chen, J., Yang, L., Yan, X., Liu, Y., Wang, R., Fan, T., Ren, Y., Tang, X., Xiao, F., & Liu, Y. (2016). Zinc-finger transcription factor ZAT6 positively regulates cadmium tolerance through the glutathione-dependent pathway in Arabidopsis. Plant Physiology, 171(1), 707–719.

    Article  CAS  Google Scholar 

  • Chen, Y. E., Mao, J. J., Sun, L. Q., Huang, B., Ding, C. B., Gu, Y., Liao, J. Q., Hu, C., Zhang, Z. W., & Yuan, S. (2018). Exogenous melatonin enhances salt stress tolerance in maize seedlings by improving antioxidant and photosynthetic capacity. Physiologia Plantarum, 164(3), 349–363.

    Article  CAS  Google Scholar 

  • Cheng, Z., Jin, R., Cao, M., Liu, X., & Chan, Z. (2016). Exogenous application of ABA mimic 1 (AM1) improves cold stress tolerance in bermudagrass (Cynodon dactylon). Plant Cell, Tissue and Organ Culture, 125(2), 231–240.

    Article  CAS  Google Scholar 

  • Cui, G., Zhao, X., Liu, S., Sun, F., Zhang, C., & Xi, Y. (2017). Beneficial effects of melatonin in overcoming drought stress in wheat seedlings. Plant Physiology and Biochemistry. https://doi.org/10.1016/j.plaphy.2017.06.014

  • da Fonseca, S. S., da Silva, B. R. S., & Lobato, A. K. (2020). 24-Epibrassinolide positively modulate leaf structures, antioxidant system and photosynthetic machinery in rice under simulated acid rain. Journal of Plant Growth Regulation, 39, 1559–1576.

    Article  Google Scholar 

  • Debnath, B., & Ahammed, G. J. (2020). Effect of acid rain on plant growth and development: Physiological and molecular interventions. In Contaminants in agriculture (pp. 103–114). Springer.

    Chapter  Google Scholar 

  • Debnath, B., Hussain, M., Irshad, M., Mitra, S., Li, M., Liu, S., & Qiu, D. (2018). Exogenous melatonin mitigates acid rain stress to tomato plants through modulation of leaf ultrastructure, photosynthesis and antioxidant potential. Molecules, 23(2), 388.

    Article  Google Scholar 

  • Debnath, B., Hussain, M., Li, M., Lu, X., Sun, Y., & Qiu, D. (2018). Exogenous melatonin improves fruit quality features, health promoting antioxidant compounds and yield traits in tomato fruits under acid rain stress. Molecules, 23(8), 1868.

    Article  Google Scholar 

  • Debnath, B., Irshad, M., Mitra, S., Li, M., Rizwan, H. M., Liu, S., Pan, T., & Qiu, D. (2018). Acid rain deposition modulates photosynthesis, enzymatic and non-enzymatic antioxidant activities in tomato. International Journal of Environmental Research, 12(2), 203–214.

    Article  CAS  Google Scholar 

  • Debnath, B., Islam, W., Li, M., Sun, Y., Lu, X., Mitra, S., Hussain, M., Liu, S., & Qiu, D. (2019). Melatonin mediates enhancement of stress tolerance in plants. International Journal of Molecular Sciences, 20(5), 1040.

    Article  CAS  Google Scholar 

  • Debnath, B., Li, M., Liu, S., Pan, T., Ma, C., & Qiu, D. (2020). Melatonin-mediate acid rain stress tolerance mechanism through alteration of transcriptional factors and secondary metabolites gene expression in tomato. Ecotoxicology and Environmental Safety, 200, 110720.

    Article  CAS  Google Scholar 

  • Debnath, B., Sikdar, A., Islam, S., Hasan, K., Li, M., & Qiu, D. (2021). Physiological and molecular responses to acid rain stress in plants and the impact of melatonin, glutathione and silicon in the amendment of plant acid rain stress. Molecules, 26(4), 862.

    Article  CAS  Google Scholar 

  • Dietz, K.-J., Mittler, R., & Noctor, G. (2016). Recent progress in understanding the role of reactive oxygen species in plant cell signaling. Plant Physiology, 171(3), 1535–1539.

    Article  CAS  Google Scholar 

  • Ding, F., Liu, B., & Zhang, S. (2017). Exogenous melatonin ameliorates cold-induced damage in tomato plants. Scientia Horticulturae, 219, 264–271.

    Article  CAS  Google Scholar 

  • Dolatabadian, A., Sanavy, S. A. M. M., Gholamhoseini, M., Joghan, A. K., Majdi, M., & Kashkooli, A. B. (2013). The role of calcium in improving photosynthesis and related physiological and biochemical attributes of spring wheat subjected to simulated acid rain. Physiology and Molecular Biology of Plants, 19(2), 189–198.

    Article  CAS  Google Scholar 

  • Du, E., Dong, D., Zeng, X., Sun, Z., Jiang, X., & de Vries, W. (2017). Direct effect of acid rain on leaf chlorophyll content of terrestrial plants in China. Science of the Total Environment, 605, 764–769.

    Article  Google Scholar 

  • Duan, L., Yu, Q., Zhang, Q., Wang, Z., Pan, Y., Larssen, T., Tang, J., & Mulder, J. (2016). Acid deposition in Asia: Emissions, deposition, and ecosystem effects. Atmospheric Environment, 146, 55–69. https://doi.org/10.1016/j.atmosenv.2016.07.018

    Article  CAS  Google Scholar 

  • Dubbels, R., Reiter, R., Klenke, E., Goebel, A., Schnakenberg, E., Ehlers, C., Schiwara, H., & Schloot, W. (1995). Melatonin in edible plants identified by radioimmunoassay and by high performance liquid chromatography-mass spectrometry. Journal of Pineal Research, 18(1), 28–31.

    Article  CAS  Google Scholar 

  • Dursun, A., Yildirim, E., & Güvenc, I. (2000). Kumlay A Effects of simulated acid rain on plant growth and yield of tomato (Lycopersicon esculentum). Balkan Symposium on Vegetables and Potatoes, 579, 245–248.

    Google Scholar 

  • Dwivedi, A., & Tripathi, B. (2007). Pollution tolerance and distribution pattern of plants in surrounding area of coal-fired industries. Journal of Environmental Biology, 28(2), 257–263.

    CAS  Google Scholar 

  • Erland, L. A., Murch, S. J., Reiter, R. J., & Saxena, P. K. (2015). A new balancing act: the many roles of melatonin and serotonin in plant growth and development. Plant Signaling & Behavior, 10(11), e1096469.

    Article  Google Scholar 

  • Erland, L. A., Saxena, P. K., & Murch, S. J. (2018). Melatonin in plant signalling and behaviour. Functional Plant Biology, 45(2), 58–69.

    Article  CAS  Google Scholar 

  • Evans, L. S., Lewin, K. F., Owen, E. M., & Santucci, K. A. (1986). Comparison of yields of several cultivars of field-grown soybeans exposed to simulated acidic rainfalls. New Phytologist, 102(3), 409–417.

    Article  Google Scholar 

  • Fairfax, J., & Lepp, N. (1975). Effect of simulated ‘acid rain’on cation loss from leaves. Nature, 255(5506), 324.

    Article  CAS  Google Scholar 

  • Feller, A., Machemer, K., Braun, E. L., & Grotewold, E. (2011). Evolutionary and comparative analysis of MYB and bHLH plant transcription factors. The Plant Journal, 66(1), 94–116.

    Article  CAS  Google Scholar 

  • Feng, Z. (2000). Impacts and control strategies of acid deposition on terrestrial ecosystems in China. Engineering and Science, 9, 5–11.

    Google Scholar 

  • Forman, H. J., Zhang, H., & Rinna, A. (2009). Glutathione: overview of its protective roles, measurement, and biosynthesis. Molecular Aspects of Medicine, 30(1-2), 1–12.

    Article  CAS  Google Scholar 

  • Foyer, C. H., & Noctor, G. (2011). Ascorbate and glutathione: the heart of the redox hub. Plant Physiology, 155(1), 2–18.

    Article  CAS  Google Scholar 

  • Fu, J., Wu, Y., Miao, Y., Xu, Y., Zhao, E., Wang, J., Sun, H., Liu, Q., Xue, Y., & Xu, Y. (2017). Improved cold tolerance in Elymus nutans by exogenous application of melatonin may involve ABA-dependent and ABA-independent pathways. Scientific Reports, 7(1), 1–11.

    Google Scholar 

  • Fujita, Y., Fujita, M., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2011). ABA-mediated transcriptional regulation in response to osmotic stress in plants. Journal of Plant Research, 124(4), 509–525.

    Article  CAS  Google Scholar 

  • Galano, A., Tan, D. X., & Reiter, R. J. (2011). Melatonin as a natural ally against oxidative stress: A physicochemical examination. Journal of Pineal Research, 51(1), 1–16. https://doi.org/10.1111/j.1600-079X.2011.00916.x

    Article  CAS  Google Scholar 

  • Gao, W., Zhang, Y., Feng, Z., Bai, Q., He, J., & Wang, Y. (2018). Effects of melatonin on antioxidant capacity in naked oat seedlings under drought stress. Molecules, 23(7), 1580.

    Article  Google Scholar 

  • Gatsuk, L., Smirnova, O., Vorontzova, L., Zaugolnova, L., & Zhukova, L. (1980). Age states of plants of various growth forms: A review. The Journal of Ecology, 68, 675–696.

    Article  Google Scholar 

  • Gill, S. S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48(12), 909–930.

    Article  CAS  Google Scholar 

  • Golldack, D., Lüking, I., & Yang, O. (2011). Plant tolerance to drought and salinity: stress regulating transcription factors and their functional significance in the cellular transcriptional network. Plant Cell Reports, 30(8), 1383–1391.

    Article  CAS  Google Scholar 

  • Gong, X., Shi, S., Dou, F., Song, Y., & Ma, F. (2017). Exogenous melatonin alleviates alkaline stress in Malus hupehensis Rehd. by regulating the biosynthesis of polyamines. Molecules, 22(9), 1542. https://doi.org/10.3390/molecules22091542

    Article  CAS  Google Scholar 

  • Goudriaan, J., & Van Laar, H. (2012). Modelling potential crop growth processes: Textbook with exercises (Vol. 2). Springer Science & Business Media.

    Google Scholar 

  • Guajardo, E., Correa, J. A., & Contreras-Porcia, L. (2016). Role of abscisic acid (ABA) in activating antioxidant tolerance responses to desiccation stress in intertidal seaweed species. Planta, 243(3), 767–781.

    Article  CAS  Google Scholar 

  • Han, C. (2009). Effect of simulated acid rain on seed germination and seedling growth in Vigna unguiculata ssp. Sesquipedatis (L.) Verdc. Journal of Changjiang Vegetables, 17, 35–36.

    Google Scholar 

  • Hardeland, R., Cardinali, D. P., Srinivasan, V., Spence, D. W., Brown, G. M., & Pandi-Perumal, S. R. (2011). Melatonin—a pleiotropic, orchestrating regulator molecule. Progress in Neurobiology, 93(3), 350–384. https://doi.org/10.1016/j.pneurobio.2010.12.004

    Article  CAS  Google Scholar 

  • Hasan, M. K., Liu, C., Wang, F., Ahammed, G. J., Zhou, J., Xu, M.-X., Yu, J.-Q., & Xia, X.-J. (2016). Glutathione-mediated regulation of nitric oxide, S-nitrosothiol and redox homeostasis confers cadmium tolerance by inducing transcription factors and stress response genes in tomato. Chemosphere, 161, 536–545.

    Article  CAS  Google Scholar 

  • Hasanuzzaman, M., Bhuyan, M., Zulfiqar, F., Raza, A., Mohsin, S. M., Mahmud, J. A., Fujita, M., & Fotopoulos, V. (2020). Reactive oxygen species and antioxidant defense in plants under abiotic stress: Revisiting the crucial role of a universal defense regulator. Antioxidants, 9(8), 681.

    Article  CAS  Google Scholar 

  • Hasanuzzaman, M., Nahar, K., Hossain, M., Mahmud, J. A., Rahman, A., Inafuku, M., Oku, H., & Fujita, M. (2017). Coordinated actions of glyoxalase and antioxidant defense systems in conferring abiotic stress tolerance in plants. International Journal of Molecular Sciences, 18(1), 200.

    Article  Google Scholar 

  • Hasanuzzaman, M., Nahar, K., Rahman, A., Mahmud, J. A., Alharby, H. F., & Fujita, M. (2018). Exogenous glutathione attenuates lead-induced oxidative stress in wheat by improving antioxidant defense and physiological mechanisms. Journal of Plant Interactions, 13(1), 203–212.

    Article  CAS  Google Scholar 

  • Hattori, A., Migitaka, H., Iigo, M., Itoh, M., Yamamoto, K., Ohtani-Kaneko, R., Hara, M., Suzuki, T., & Reiter, R. J. (1995). Identification of melatonin in plants and its effects on plasma melatonin levels and binding to melatonin receptors in vertebrates. Biochemistry and Molecular Biology International, 35(3), 627–634.

    CAS  Google Scholar 

  • Heyneke, E., Luschin-Ebengreuth, N., Krajcer, I., Wolkinger, V., Müller, M., & Zechmann, B. (2013). Dynamic compartment specific changes in glutathione and ascorbate levels in Arabidopsis plants exposed to different light intensities. BMC Plant Biology, 13(1), 1–19.

    Article  Google Scholar 

  • Hossain, M. A., Munné-Bosch, S., Burritt, D. J., Diaz-Vivancos, P., Fujita, M., & Lorence, A. (2017). Ascorbic acid in plant growth, development and stress tolerance. Springer.

    Book  Google Scholar 

  • Hossain, M. S., Abdelrahman, M., Tran, C. D., Nguyen, K. H., Chu, H. D., Watanabe, Y., Hasanuzzaman, M., Mohsin, S. M., Fujita, M., & Tran, L. (2020). Insights into acetate-mediated copper homeostasis and antioxidant defense in lentil under excessive copper stress. Environmental Pollution, 258, 113544.

    Article  CAS  Google Scholar 

  • Hu, B., Deng, F., Chen, G., Chen, X., Gao, W., Long, L., Xia, J., & Chen, Z.-H. (2020). Evolution of abscisic acid signaling for stress responses to toxic metals and metalloids. Frontiers in Plant Science, 11, 909.

    Article  Google Scholar 

  • Hu, W.-J., Chen, J., Liu, T.-W., Wu, Q., Wang, W.-H., Liu, X., Shen, Z.-J., Simon, M., Wu, F.-H., & Pei, Z.-M. (2014). Proteome and calcium-related gene expression in Pinus massoniana needles in response to acid rain under different calcium levels. Plant and Soil, 380(1), 285–303.

    Article  CAS  Google Scholar 

  • Huang, J., Wang, H., Zhong, Y., Huang, J., Fu, X., Wang, L., & Teng, W. (2019). Growth and physiological response of an endangered tree, Horsfieldia hainanensis merr., to simulated sulfuric and nitric acid rain in southern China. Plant Physiology and Biochemistry, 144, 118–126.

    Article  CAS  Google Scholar 

  • Humplík, J. F., Bergougnoux, V., & Van Volkenburgh, E. (2017). To stimulate or inhibit? That is the question for the function of abscisic acid. Trends in Plant Science, 22(10), 830–841.

    Article  Google Scholar 

  • Ighodaro, O., & Akinloye, O. (2018). First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria Journal of Medicine, 54(4), 287–293.

    Article  Google Scholar 

  • Imbesi, M., Arslan, A. D., Yildiz, S., Sharma, R., Gavin, D., Tun, N., Manev, H., & Uz, T. (2009). The melatonin receptor MT1 is required for the differential regulatory actions of melatonin on neuronal ‘clock’ gene expression in striatal neurons in vitro. Journal of Pineal Research, 46(1), 87–94.

    Article  CAS  Google Scholar 

  • Isah, T. (2019). Stress and defense responses in plant secondary metabolites production. Biological Research, 52, 39.

    Article  Google Scholar 

  • Jackson, W. (1969). Regulation of mitosis: II. Interaction of isopropyl N-phenyl-carbamate and melatonin. Journal of Cell Science, 5(3), 745–755.

    Article  CAS  Google Scholar 

  • Jacobson, J. S., Osmeloski, J., Yamada, K., & Heller, L. (1987). The influence of simulated acidic rain on vegetative and reproductive tissues of cucumber (Cucumis sativus L.). New Phytologist, 105(1), 139–147.

    Article  CAS  Google Scholar 

  • Jan, J. E., Reiter, R. J., Wasdell, M. B., & Bax, M. (2009). The role of the thalamus in sleep, pineal melatonin production, and circadian rhythm sleep disorders. Journal of Pineal Research, 46(1), 1–7.

    Article  CAS  Google Scholar 

  • Jones, J. D., & Dangl, J. L. (2006). The plant immune system. Nature, 444(7117), 323–329.

    Article  CAS  Google Scholar 

  • Jones, M. P., Cao, J., O’Brien, R., Murch, S. J., & Saxena, P. K. (2007). The mode of action of thidiazuron: auxins, indoleamines, and ion channels in the regeneration of Echinacea purpurea L. Plant Cell Reports, 26(9), 1481–1490.

    Article  CAS  Google Scholar 

  • Ju, S., Wang, L., Yin, N., Li, D., Wang, Y., & Zhang, C. (2017). Silicon alleviates simulated acid rain stress of Oryza sativa L. seedlings by adjusting physiology activity and mineral nutrients. Protoplasma, 254(6), 2071–2081.

    Article  CAS  Google Scholar 

  • Ju, S., Yin, N., Wang, L., Zhang, C., & Wang, Y. (2017). Effects of silicon on Oryza sativa L. seedling roots under simulated acid rain stress. PLoS One, 12(3), e0173378.

    Article  Google Scholar 

  • Kartashov, I., Opanasenko, V., & Malyan, A. (2015). Effects of medium viscosity increasing agents on ATP synthesis in chloroplast thylakoids. Biofizika, 60(3), 481–486.

    CAS  Google Scholar 

  • Keutgen, A. J., & Pawelzik, E. (2007). Modifications of strawberry fruit antioxidant pools and fruit quality under NaCl stress. Journal of Agricultural and Food Chemistry, 55(10), 4066–4072. https://doi.org/10.1021/jf070010k

    Article  CAS  Google Scholar 

  • Khan, A., Numan, M., Khan, A. L., Lee, I.-J., Imran, M., Asaf, S., & Al-Harrasi, A. (2020). Melatonin: Awakening the defense mechanisms during plant oxidative stress. Plants, 9(4), 407.

    Article  CAS  Google Scholar 

  • Khan, A. A., & Khan, M. (2013). Observation of simulated acid rain impact on chickpea plant. Ecoprint: An International Journal of Ecology, 20, 77–80.

    Article  Google Scholar 

  • Kim, T.-H., Böhmer, M., Hu, H., Nishimura, N., & Schroeder, J. I. (2010). Guard cell signal transduction network: Advances in understanding abscisic acid, CO2, and Ca2+ signaling. Annual Review of Plant Biology, 61, 561–591.

    Article  CAS  Google Scholar 

  • Kordrostami, M., Rabiei, B., & Ebadi, A. A. (2019). Oxidative stress in plants: Production, metabolism, and biological roles of reactive oxygen species. In Handbook of plant and crop stress (4th ed., pp. 85–92). CRC Press.

    Google Scholar 

  • Kováčik, J., Klejdus, B., Bačkor, M., Stork, F., & Hedbavny, J. (2011). Physiological responses of root-less epiphytic plants to acid rain. Ecotoxicology, 20(2), 348–357. https://doi.org/10.1007/s10646-010-0585-x

    Article  CAS  Google Scholar 

  • Kusvuran, S., Kiran, S., & Ellialtioglu, S. S. (2016). Antioxidant enzyme activities and abiotic stress tolerance relationship in vegetable crops. Abiotic and biotic stress in plants-recent advances and future perspectives (1st ed., pp. 481–503). InTech.

    Google Scholar 

  • Lal, N. (2016). Effects of acid rain on plant growth and development. Journal of Science and Technology, 11(5), 85–108.

    Google Scholar 

  • Lee, H. J., & Back, K. (2016). 2-Hydroxymelatonin promotes the resistance of rice plant to multiple simultaneous abiotic stresses (combined cold and drought). Journal of Pineal Research, 61(3), 303–316.

    Article  CAS  Google Scholar 

  • Lerner, A. B., Case, J. D., Takahashi, Y., Lee, T. H., & Mori, W. (1958). Isolation of melatonin, the pineal gland factor that lightens melanocyteS1. Journal of the American Chemical Society, 80(10), 2587–2587.

    Article  CAS  Google Scholar 

  • Li, H., Chang, J., Chen, H., Wang, Z., Gu, X., Wei, C., Zhang, Y., Ma, J., Yang, J., & Zhang, X. (2017). Exogenous melatonin confers salt stress tolerance to watermelon by improving photosynthesis and redox homeostasis. Frontiers in Plant Science, 8, 295. https://doi.org/10.3389/fpls.2017.00295

    Article  Google Scholar 

  • Li, H.-H., Hao, R.-L., Wu, S.-S., Guo, P.-C., Chen, C.-J., Pan, L.-P., & Ni, H. (2011). Occurrence, function and potential medicinal applications of the phytohormone abscisic acid in animals and humans. Biochemical Pharmacology, 82(7), 701–712.

    Article  CAS  Google Scholar 

  • Li, X., Chen, L., Forde, B. G., & Davies, W. J. (2017). The biphasic root growth response to abscisic acid in Arabidopsis involves interaction with ethylene and auxin signalling pathways. Frontiers in Plant Science, 8, 1493.

    Article  Google Scholar 

  • Liang, C., Ge, Y., Su, L., & Bu, J. (2015). Response of plasma membrane H+-ATPase in rice (Oryza sativa) seedlings to simulated acid rain. Environmental Science and Pollution Research, 22(1), 535–545.

    Article  CAS  Google Scholar 

  • Liang, C., & Wang, W. (2013). Antioxidant response of soybean seedlings to joint stress of lanthanum and acid rain. Environmental Science and Pollution Research, 20(11), 8182–8191.

    Article  CAS  Google Scholar 

  • Liang, C., Zheng, G., Li, W., Wang, Y., Hu, B., Wang, H., Wu, H., Qian, Y., Zhu, X. G., & Tan, D. X. (2015). Melatonin delays leaf senescence and enhances salt stress tolerance in rice. Journal of Pineal Research, 59(1), 91–101.

    Article  CAS  Google Scholar 

  • Liang, D., Gao, F., Ni, Z., Lin, L., Deng, Q., Tang, Y., Wang, X., Luo, X., & Xia, H. (2018). Melatonin improves heat tolerance in kiwifruit seedlings through promoting antioxidant enzymatic activity and glutathione S-transferase transcription. Molecules, 23(3), 584.

    Article  Google Scholar 

  • Liu, H., Ren, X., Zhu, J., Wu, X., & Liang, C. (2018). Effect of exogenous abscisic acid on morphology, growth and nutrient uptake of rice (Oryza sativa) roots under simulated acid rain stress. Planta, 248(3), 647–659.

    Article  CAS  Google Scholar 

  • Liu, J., Zhao, Y., Song, H., Chen, J., & Long, Y. (2020). Antagonism or synergism? Combined effects of enhanced uv-b radiation and acid rain on photosynthesis in seedlings of two c4 plants. Acta Ecologica Sinica, 40(1), 72–80.

    Article  Google Scholar 

  • Liu, J.-X., Feng, K., Duan, A.-Q., Li, H., Yang, Q.-Q., Xu, Z.-S., & Xiong, A.-S. (2019). Isolation, purification and characterization of an ascorbate peroxidase from celery and overexpression of the AgAPX1 gene enhanced ascorbate content and drought tolerance in Arabidopsis. BMC Plant Biology, 19(1), 1–13.

    Article  Google Scholar 

  • Liu, M., Korpelainen, H., Dong, L., & Yi, L. (2019). Physiological responses of Elaeocarpus glabripetalus seedlings exposed to simulated acid rain and cadmium. Ecotoxicology and Environmental Safety, 175, 118–127.

    Article  CAS  Google Scholar 

  • Liu, T., Chen, J. A., Wang, W., Simon, M., Wu, F., Hu, W., Chen, J. B., & Zheng, H. (2014). A combined proteomic and transcriptomic analysis on sulfur metabolism pathways of Arabidopsis thaliana under simulated acid rain. PLoS One, 9(3), e90120.

    Article  Google Scholar 

  • Liu, T., Ma, J., Li, M., Pan, T., Ma, C., & Qiu, D. (2019). cDNA-AFLP analysis reveals inducible gene expression in tomato leaves in response to simulated acid rain. Applied Ecology and Environmental Research, 17(3), 6515–6533.

    Article  Google Scholar 

  • Liu, T.-W., Fu, B., Niu, L., Chen, J., Wang, W.-H., He, J.-X., Pei, Z.-M., & Zheng, H.-L. (2011). Comparative proteomic analysis of proteins in response to simulated acid rain in Arabidopsis. Journal of Proteome Research, 10(5), 2579–2589.

    Article  CAS  Google Scholar 

  • Liu, T. W., Niu, L., Fu, B., Chen, J., Wu, F. H., Chen, J., Wang, W. H., Hu, W. J., He, J. X., & Zheng, H. L. (2013). A transcriptomic study reveals differentially expressed genes and pathways respond to simulated acid rain in Arabidopsis thaliana. Genome, 56(1), 49–60.

    Article  CAS  Google Scholar 

  • Liu, T.-W., Wu, F.-H., Wang, W.-H., Chen, J., Li, Z.-J., Dong, X.-J., Patton, J., Pei, Z.-M., & Zheng, H.-L. (2011). Effects of calcium on seed germination, seedling growth and photosynthesis of six forest tree species under simulated acid rain. Tree Physiology, 31(4), 402–413.

    Article  Google Scholar 

  • Lorrai, R., Boccaccini, A., Ruta, V., Possenti, M., Costantino, P., & Vittorioso, P. (2018). Abscisic acid inhibits hypocotyl elongation acting on gibberellins, DELLA proteins and auxin. AoB Plants, 10(5), 61.

    Google Scholar 

  • Ma, Y., Ren, X., & Liang, C. (2021). Exogenous Ca2+ enhances antioxidant defense in rice to simulated acid rain by regulating ascorbate peroxidase and glutathione reductase. Planta, 254(2), 1–16.

    Article  Google Scholar 

  • Madiha, Y., Khan, A. A., & Darma, Z. U. (2015). Effect of acid rain on growth of Papaya (Carica papaya) and Castor (Ricinus communis) plants.

    Google Scholar 

  • Malcheska, F., Ahmad, A., Batool, S., Müller, H. M., Ludwig-Müller, J., Kreuzwieser, J., Randewig, D., Hänsch, R., Mendel, R. R., & Hell, R. (2017). Drought-enhanced xylem sap sulfate closes stomata by affecting ALMT12 and guard cell ABA synthesis. Plant Physiology, 174(2), 798–814.

    Article  CAS  Google Scholar 

  • Manchester, L. C., Coto-Montes, A., Boga, J. A., Andersen, L. P. H., Zhou, Z., Galano, A., Vriend, J., Tan, D. X., & Reiter, R. J. (2015). Melatonin: An ancient molecule that makes oxygen metabolically tolerable. Journal of Pineal Research, 59(4), 403–419.

    Article  CAS  Google Scholar 

  • Martinez, V., Nieves-Cordones, M., Lopez-Delacalle, M., Rodenas, R., Mestre, T. C., Garcia-Sanchez, F., Rubio, F., Nortes, P. A., Mittler, R., & Rivero, R. M. (2018). Tolerance to stress combination in tomato plants: New insights in the protective role of melatonin. Molecules, 23(3), 535.

    Article  Google Scholar 

  • Matilla, A. J., Carrillo-Barral, N., & del Carmen, R.-G. M. (2015). An update on the role of NCED and CYP707A ABA metabolism genes in seed dormancy induction and the response to after-ripening and nitrate. Journal of Plant Growth Regulation, 34(2), 274–293.

    Article  CAS  Google Scholar 

  • Mittler, R., Vanderauwera, S., Suzuki, N., Miller, G., Tognetti, V. B., Vandepoele, K., Gollery, M., Shulaev, V., & Van Breusegem, F. (2011). ROS signaling: the new wave? Trends in Plant Science, 16(6), 300–309.

    Article  CAS  Google Scholar 

  • Mizoi, J., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2012). AP2/ERF family transcription factors in plant abiotic stress responses. Biochimica et Biophysica Acta (BBA): Gene Regulatory Mechanisms, 1819(2), 86–96.

    Article  CAS  Google Scholar 

  • Mohammadian, M. A., Largani, Z. K., & Sajedi, R. H. (2012). Quantitative and qualitative comparison of antioxidant activity in the flavedo tissue of three cultivars of citrus fruit under cold stress. Australian Journal of Crop Science, 6(3), 402–406.

    Google Scholar 

  • Muñoz, P., & Munné-Bosch, S. (2018). Photo-oxidative stress during leaf, flower and fruit development. Plant Physiology, 176(2), 1004–1014.

    Article  Google Scholar 

  • Munzuroglu, O., Obek, E., & Geckil, H. (2003). Effects of simulated acid rain on the pollen germination and pollen tube growth of apple (Malus sylvestris Miller cv. Golden). Acta Biologica Hungarica, 54(1), 95–103.

    Article  CAS  Google Scholar 

  • Murch, S. J., Alan, A. R., Cao, J., & Saxena, P. K. (2009). Melatonin and serotonin in flowers and fruits of Datura metel L. Journal of Pineal Research, 47(3), 277–283.

    Article  CAS  Google Scholar 

  • Murch, S. J., Hall, B. A., Le, C. H., & Saxena, P. K. (2010). Changes in the levels of indoleamine phytochemicals during véraison and ripening of wine grapes. Journal of Pineal Research, 49(1), 95–100.

    CAS  Google Scholar 

  • Nandlal, H. S., & Sachan, P. (2017). Simulated acid rain-induced alterations in flowering, leaf abscission and pollen germination in sunflower (Helianthus annuus L.). Journal of Applied Sciences and Environmental Management, 21(2), 290–296.

    Article  Google Scholar 

  • Nawaz, M. A., Huang, Y., Bie, Z., Ahmed, W., Reiter, R. J., Niu, M., & Hameed, S. (2016). Melatonin: Current status and future perspectives in plant science. Frontiers in Plant Science, 6, 1230.

    Article  Google Scholar 

  • Noctor, G., Mhamdi, A., Chaouch, S., Han, Y., Neukermans, J., Marquez-Garcia, B., Queval, G., & Foyer, C. H. (2012). Glutathione in plants: An integrated overview. Plant, Cell & Environment, 35(2), 454–484.

    Article  CAS  Google Scholar 

  • Noctor, G., Queval, G., Mhamdi, A., Chaouch, S., & Foyer, C. H. (2011). Glutathione. The Arabidopsis Book/American Society of Plant Biologists, 9, e0142.

    Google Scholar 

  • Nopparat, C., Porter, J. E., Ebadi, M., & Govitrapong, P. (2010). The mechanism for the neuroprotective effect of melatonin against methamphetamine-induced autophagy. Journal of Pineal Research, 49(4), 382–389.

    Article  CAS  Google Scholar 

  • Nouchi, I. (1993). Acid precipitation in Japan and its impact on plants. 2. Effect of acid precipitation on growth or yield of crops and forest decline. JARQ.

    Google Scholar 

  • Odiyi, B. O., & Eniola, A. O. (2015). The effect of simulated acid rain on plant growth component of cowpea (Vigna unguiculata) L. Jordan Journal of Biological Sciences, 8(1), 51–54.

    Article  CAS  Google Scholar 

  • Ohta, H., Shibata, Y., Haseyama, Y., Yoshino, Y., Suzuki, T., Kagasawa, T., Kamei, A., Ikeuchi, M., & Enami, I. (2005). Identification of genes expressed in response to acid stress in Synechocystis sp. PCC 6803 using DNA microarrays. Photosynthesis Research, 84(1), 225–230.

    Article  CAS  Google Scholar 

  • Okazaki, M., & Ezura, H. (2009). Profiling of melatonin in the model tomato (Solanum lycopersicum L.) cultivar micro-tom. Journal of Pineal Research, 46(3), 338–343. https://doi.org/10.1111/j.1600-079X.2009.00668.x

    Article  CAS  Google Scholar 

  • Palmgren, M. G. (2001). Plant plasma membrane H+-ATPases: Powerhouses for nutrient uptake. Annual Review of Plant Biology, 52(1), 817–845.

    Article  CAS  Google Scholar 

  • Pandi-Perumal, S. R., Trakht, I., Srinivasan, V., Spence, D. W., Maestroni, G. J., Zisapel, N., & Cardinali, D. P. (2008). Physiological effects of melatonin: role of melatonin receptors and signal transduction pathways. Progress in Neurobiology, 85(3), 335–353.

    Article  CAS  Google Scholar 

  • Park, S., Lee, K., Kim, Y. S., & Back, K. (2012). Tryptamine 5-hydroxylase-deficient Sekiguchi rice induces synthesis of 5-hydroxytryptophan and N-acetyltryptamine but decreases melatonin biosynthesis during senescence process of detached leaves. Journal of Pineal Research, 52(2), 211–216.

    Article  CAS  Google Scholar 

  • Pham, H. T., Nguyen, A. T., Do, A. T. N., & Hens, L. (2021). Impacts of simulated acid rain on the growth and the yield of soybean (Glycine max (L.) Merr.) in the mountains of Northern Vietnam. Sustainability, 13(9), 4980.

    Article  CAS  Google Scholar 

  • Poeggeler, B., Balzer, I., Hardeland, R., & Lerchl, A. (1991). Pineal hormone melatonin oscillates also in the dinoflagellate Gonyaulax polyedra. Naturwissenschaften, 78(6), 268–269.

    Article  CAS  Google Scholar 

  • Polishchuk, O., Vodka, M., Belyavskaya, N., Khomochkin, A., & Zolotareva, E. (2016). The effect of acid rain on ultrastructure and functional parameters of photosynthetic apparatus in pea leaves. Cell and Tissue Biology, 10(3), 250–257.

    Article  Google Scholar 

  • Qiao, F., Zhang, X.-M., Liu, X., Chen, J., Hu, W.-J., Liu, T.-W., Liu, J.-Y., Zhu, C.-Q., Ghoto, K., & Zhu, X.-Y. (2018). Elevated nitrogen metabolism and nitric oxide production are involved in Arabidopsis resistance to acid rain. Plant Physiology and Biochemistry, 127, 238–247.

    Article  CAS  Google Scholar 

  • Quan, L. J., Zhang, B., Shi, W. W., & Li, H. Y. (2008). Hydrogen peroxide in plants: A versatile molecule of the reactive oxygen species network. Journal of Integrative Plant Biology, 50(1), 2–18.

    Article  CAS  Google Scholar 

  • Ramlall, C., Varghese, B., Ramdhani, S., Pammenter, N. W., Bhatt, A., & Berjak, P. (2015). Effects of simulated acid rain on germination, seedling growth and oxidative metabolism of recalcitrant-seeded Trichilia dregeana grown in its natural seed bank. Physiologia Plantarum, 153(1), 149–160.

    Article  CAS  Google Scholar 

  • Reiter, R. J., Tan, D.-X., Zhou, Z., Cruz, M. H. C., Fuentes-Broto, L., & Galano, A. (2015). Phytomelatonin: Assisting plants to survive and thrive. Molecules, 20(4), 7396–7437.

    Article  CAS  Google Scholar 

  • Ren, X., Zhu, J., Liu, H., Xu, X., & Liang, C. (2018). Response of antioxidative system in rice (Oryza sativa) leaves to simulated acid rain stress. Ecotoxicology and Environmental Safety, 148, 851–856.

    Article  CAS  Google Scholar 

  • Rodriguez-Naranjo, M. I., Moyá, M. L., Cantos-Villar, E., & Garcia-Parrilla, M. C. (2012). Comparative evaluation of the antioxidant activity of melatonin and related indoles. Journal of Food Composition and Analysis, 28(1), 16–22.

    Article  CAS  Google Scholar 

  • Romero-Puertas, M. C., Corpas, F. J., Sandalio, L. M., Leterrier, M., Rodríguez-Serrano, M., Del Río, L. A., & Palma, J. M. (2006). Glutathione reductase from pea leaves: Response to abiotic stress and characterization of the peroxisomal isozyme. New Phytologist, 170(1), 43–52.

    Article  CAS  Google Scholar 

  • Ruiz-Lozano, J. M., del Mar, A. M., Bárzana, G., Vernieri, P., & Aroca, R. (2009). Exogenous ABA accentuates the differences in root hydraulic properties between mycorrhizal and non mycorrhizal maize plants through regulation of PIP aquaporins. Plant Molecular Biology, 70(5), 565–579.

    Article  CAS  Google Scholar 

  • Sah, S. K., Reddy, K. R., & Li, J. (2016). Abscisic acid and abiotic stress tolerance in crop plants. Frontiers in Plant Science, 7, 571.

    Article  Google Scholar 

  • Saini, P., Gani, M., Kaur, J. J., Godara, L. C., Singh, C., Chauhan, S., Francies, R. M., Bhardwaj, A., Kumar, N. B., & Ghosh, M. (2018). Reactive oxygen species (ROS): A way to stress survival in plants. In Abiotic stress-mediated sensing and signaling in plants: An omics perspective (pp. 127–153). Springer.

    Chapter  Google Scholar 

  • Saleem, A., Ashraf, M., Akram, N., & Al-Qurainy, F. (2012). Salinity-induced changes in key anti-oxidant enzyme activities and in the levels of some anti-oxidants, osmo-protectants, inorganic ions, and chlorophyll pigments in okra fruit (Abelmoschus esculentus L.). The Journal of Horticultural Science and Biotechnology, 87(3), 271–277. https://doi.org/10.1080/14620316.2012.11512864

    Article  CAS  Google Scholar 

  • Satoh, K., Saji, S., Ito, S., Shimizu, H., Saji, H., & Kikuchi, S. (2014). Gene response in rice plants treated with continuous fog influenced by pH, was similar to that treated with biotic stress. Rice, 7(1), 1–11.

    Article  Google Scholar 

  • Schnaubelt, D., Queval, G., Dong, Y., Diaz-Vivancos, P., Hannah, M., & Foyer, C. (2013). Glutathione-dependent regulation of cell proliferation and root meristem development. BioTechnologia Journal of Biotechnology Computational Biology and Bionanotechnology, 94, 2.

    Google Scholar 

  • Seinfeld, J. H., & Pandis, S. N. (2012). Atmospheric chemistry and physics: From air pollution to climate change. John Wiley & Sons.

    Google Scholar 

  • Senser, M., Kloos, M., & Lütz, C. (1990). Influence of soil substrate and ozone plus acid mist on the pigment content and composition of needles from young Norway spruce trees. Environmental Pollution, 64(3-4), 295–312.

    Article  CAS  Google Scholar 

  • Sewelam, N., Jaspert, N., Van Der Kelen, K., Tognetti, V. B., Schmitz, J., Frerigmann, H., Stahl, E., Zeier, J., Van Breusegem, F., & Maurino, V. G. (2014). Spatial H2O2 signaling specificity: H2O2 from chloroplasts and peroxisomes modulates the plant transcriptome differentially. Molecular Plant, 7(7), 1191–1210.

    Article  CAS  Google Scholar 

  • Sewelam, N., Kazan, K., & Schenk, P. M. (2016). Global plant stress signaling: Reactive oxygen species at the cross-road. Frontiers in Plant Science, 7, 187.

    Article  Google Scholar 

  • Sharma, P., Jha, A. B., Dubey, R. S., & Pessarakli, M. (2012). Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany, 2012, 217037.

    Article  Google Scholar 

  • Shi, H., Chen, Y., Tan, D. X., Reiter, R. J., Chan, Z., & He, C. (2015). Melatonin induces nitric oxide and the potential mechanisms relate to innate immunity against bacterial pathogen infection in Arabidopsis. Journal of Pineal Research, 59(1), 102–108.

    Article  CAS  Google Scholar 

  • Shi, H., Jiang, C., Ye, T., Tan, D.-X., Reiter, R. J., Zhang, H., Liu, R., & Chan, Z. (2014). Comparative physiological, metabolomic, and transcriptomic analyses reveal mechanisms of improved abiotic stress resistance in bermudagrass [Cynodon dactylon (L). Pers.] by exogenous melatonin. Journal of Experimental Botany, 66(3), 681–694.

    Article  Google Scholar 

  • Shi, H., Tan, D. X., Reiter, R. J., Ye, T., Yang, F., & Chan, Z. (2015). Melatonin induces class A1 heat-shock factors (HSFA 1s) and their possible involvement of thermotolerance in Arabidopsis. Journal of Pineal Research, 58(3), 335–342.

    Article  CAS  Google Scholar 

  • Shiu, S. Y., Pang, B., Tam, C. W., & Yao, K. M. (2010). Signal transduction of receptor-mediated antiproliferative action of melatonin on human prostate epithelial cells involves dual activation of Gαs and Gαq proteins. Journal of Pineal Research, 49(3), 301–311.

    Article  CAS  Google Scholar 

  • Shripal, N., Pal, K., & Kumar, N. (2000). Effects of simulated acid rain on yield and carbohydrate contents of green pepper. Advances in Plant Sciences, 13, 85–88.

    Google Scholar 

  • Sierla, M., Waszczak, C., Vahisalu, T., & Kangasjärvi, J. (2016). Reactive oxygen species in the regulation of stomatal movements. Plant Physiology, 171(3), 1569–1580.

    Article  CAS  Google Scholar 

  • Singh, B., & Agrawal, M. (2004). Impact of simulated acid rain on growth and yield of two cultivars of wheat. Water, Air, and Soil Pollution, 152(1), 71–80.

    Article  CAS  Google Scholar 

  • Sripinyowanich, S., Klomsakul, P., Boonburapong, B., Bangyeekhun, T., Asami, T., Gu, H., Buaboocha, T., & Chadchawan, S. (2013). Exogenous ABA induces salt tolerance in indica rice (Oryza sativa L.): the role of OsP5CS1 and OsP5CR gene expression during salt stress. Environmental and Experimental Botany, 86, 94–105.

    Article  CAS  Google Scholar 

  • Steeves, T. A., & Sussex, I. M. (1989). Patterns in plant development. Cambridge University Press.

    Book  Google Scholar 

  • Sun, Q., Zhang, N., Wang, J., Zhang, H., Li, D., Shi, J., Li, R., Weeda, S., Zhao, B., & Ren, S. (2014). Melatonin promotes ripening and improves quality of tomato fruit during postharvest life. Journal of Experimental Botany, 66(3), 657–668. https://doi.org/10.1093/jxb/eru332

    Article  CAS  Google Scholar 

  • Sun, Z., Wang, L., Chen, M., Wang, L., Liang, C., Zhou, Q., & Huang, X. (2012). Interactive effects of cadmium and acid rain on photosynthetic light reaction in soybean seedlings. Ecotoxicology and Environmental Safety, 79, 62–68.

    Article  CAS  Google Scholar 

  • Takatsuka, H., & Umeda, M. (2014). Hormonal control of cell division and elongation along differentiation trajectories in roots. Journal of Experimental Botany, 65(10), 2633–2643.

    Article  CAS  Google Scholar 

  • Tan, D.-X. (2015). Melatonin and plants. Journal of Experimental Botany, 66(3), 625–626.

    Article  CAS  Google Scholar 

  • Tan, D.-X., Hardeland, R., Manchester, L. C., Korkmaz, A., Ma, S., Rosales-Corral, S., & Reiter, R. J. (2011). Functional roles of melatonin in plants, and perspectives in nutritional and agricultural science. Journal of Experimental Botany, 63(2), 577–597. https://doi.org/10.1093/jxb/err256

    Article  CAS  Google Scholar 

  • Tan, D. X., Hardeland, R., Manchester, L. C., Paredes, S. D., Korkmaz, A., Sainz, R. M., Mayo, J. C., Fuentes-Broto, L., & Reiter, R. J. (2010). The changing biological roles of melatonin during evolution: From an antioxidant to signals of darkness, sexual selection and fitness. Biological Reviews, 85(3), 607–623.

    Google Scholar 

  • Tan, D.-X., Manchester, L. C., Esteban-Zubero, E., Zhou, Z., & Reiter, R. J. (2015). Melatonin as a potent and inducible endogenous antioxidant: Synthesis and metabolism. Molecules, 20(10), 18886–18906.

    Article  CAS  Google Scholar 

  • Tan, D. X., Manchester, L. C., Terron, M. P., Flores, L. J., & Reiter, R. J. (2007). One molecule, many derivatives: A never-ending interaction of melatonin with reactive oxygen and nitrogen species? Journal of Pineal Research, 42(1), 28–42.

    Article  CAS  Google Scholar 

  • Tan, D.-X., Zheng, X., Kong, J., Manchester, L. C., Hardeland, R., Kim, S. J., Xu, X., & Reiter, R. J. (2014). Fundamental issues related to the origin of melatonin and melatonin isomers during evolution: Relation to their biological functions. International Journal of Molecular Sciences, 15(9), 15858–15890.

    Article  CAS  Google Scholar 

  • Tuteja, N. (2007). Abscisic acid and abiotic stress signaling. Plant Signaling & Behavior, 2(3), 135–138.

    Article  Google Scholar 

  • Um, H. J., & Kwon, T. K. (2010). Protective effect of melatonin on oxaliplatin-induced apoptosis through sustained Mcl-1 expression and anti-oxidant action in Renal carcinoma Caki cells. Journal of Pineal Research, 49(3), 283–290.

    Article  CAS  Google Scholar 

  • Vantassel, D., Roberts, N., & Oenill, S. (1995). Melatonin from higher-plants-isolation and identification OF N-acetyl 5-methoxytryptamine. In Plant physiology (Vol. 2, pp. 101–101). American Society of Plant Biologists.

    Google Scholar 

  • Wang, L., Liu, J., Wang, W., & Sun, Y. (2016). Exogenous melatonin improves growth and photosynthetic capacity of cucumber under salinity-induced stress. Photosynthetica, 54(1), 19–27. https://doi.org/10.1007/s11099-015-0140-3

    Article  CAS  Google Scholar 

  • Wang, L., Zhao, Y., Reiter, R. J., He, C., Liu, G., Lei, Q., Zuo, B., Zheng, X. D., Li, Q., & Kong, J. (2014). Changes in melatonin levels in transgenic ‘Micro-Tom’tomato overexpressing ovine AANAT and ovine HIOMT genes. Journal of Pineal Research, 56(2), 134–142.

    Article  CAS  Google Scholar 

  • Wang, X., Liu, Z., Niu, L., & Fu, B. (2013). Long-term effects of simulated acid rain stress on a staple forest plant, Pinus massoniana Lamb: A proteomic analysis. Trees, 27(1), 297–309.

    Article  Google Scholar 

  • Wang, Y., Ma, F., Li, M., Liang, D., & Zou, J. (2011). Physiological responses of kiwifruit plants to exogenous ABA under drought conditions. Plant Growth Regulation, 64(1), 63–74.

    Article  CAS  Google Scholar 

  • Wang, K., Xing, Q., Ahammed, G. J., Zhou, J., & Chen, Q. (2022). Functions and prospects of melatonin in plant growth yield and quality. Journal of Experimental Botany, erac233. https://doi.org/10.1093/jxb/erac233

  • Wei, L.-X., Lv, B.-S., Wang, M.-M., Ma, H.-Y., Yang, H.-Y., Liu, X.-L., Jiang, C.-J., & Liang, Z.-W. (2015). Priming effect of abscisic acid on alkaline stress tolerance in rice (Oryza sativa L.) seedlings. Plant Physiology and Biochemistry, 90, 50–57.

    Article  CAS  Google Scholar 

  • Wen, K., Liang, C., Wang, L., Hu, G., & Zhou, Q. (2011). Combined effects of lanthanumion and acid rain on growth, photosynthesis and chloroplast ultrastructure in soybean seedlings. Chemosphere, 84(5), 601–608.

    Article  CAS  Google Scholar 

  • Wu, X., & Liang, C. (2017). Enhancing tolerance of rice (Oryza sativa) to simulated acid rain by exogenous abscisic acid. Environmental Science and Pollution Research, 24(5), 4860–4870.

    Article  CAS  Google Scholar 

  • Wyrwicka, A., & Skłodowska, M. (2006). Influence of repeated acid rain treatment on antioxidative enzyme activities and on lipid peroxidation in cucumber leaves. Environmental and Experimental Botany, 56(2), 198–204.

    Article  CAS  Google Scholar 

  • Xalxo, R., & Keshavkant, S. (2019). Melatonin, glutathione and thiourea attenuates lead and acid rain-induced deleterious responses by regulating gene expression of antioxidants in Trigonella foenum graecum L. Chemosphere, 221, 1–10.

    Article  CAS  Google Scholar 

  • Xalxo, R., & Sahu, K. (2017). Acid rain-induced oxidative stress regulated metabolic interventions and their amelioration mechanisms in plants. Biologia, 72(12), 1387–1393.

    Article  CAS  Google Scholar 

  • Xu, S. C., He, M. D., Zhong, M., Zhang, Y. W., Wang, Y., Yang, L., Yang, J., Yu, Z. P., & Zhou, Z. (2010). Melatonin protects against Nickel-induced neurotoxicity in vitro by reducing oxidative stress and maintaining mitochondrial function. Journal of Pineal Research, 49(1), 86–94.

    CAS  Google Scholar 

  • Yadu, B., Chandrakar, V., & Keshavkant, S. (2016). Responses of plants to fluoride: an overview of oxidative stress and defense mechanisms. Fluoride, 49(3), 293.

    CAS  Google Scholar 

  • Ye, J., Wang, S., Deng, X., Yin, L., Xiong, B., & Wang, X. (2016). Melatonin increased maize (Zea mays L.) seedling drought tolerance by alleviating drought-induced photosynthetic inhibition and oxidative damage. Acta Physiologiae Plantarum, 38(2), 48. https://doi.org/10.1007/s11738-015-2045-y

    Article  CAS  Google Scholar 

  • Zhang, B., Bu, J., & Liang, C. (2017). Regulation of nitrogen and phosphorus absorption by plasma membrane H+-ATPase in rice roots under simulated acid rain. International journal of Environmental Science and Technology, 14(1), 101–112.

    Article  CAS  Google Scholar 

  • Zhang, C., Yi, X., Gao, X., Wang, M., Shao, C., Lv, Z., Chen, J., Liu, Z., & Shen, C. (2020). Physiological and biochemical responses of tea seedlings (Camellia sinensis) to simulated acid rain conditions. Ecotoxicology and Environmental Safety, 192, 110315.

    Article  CAS  Google Scholar 

  • Zhang, J., Zhang, Q., Xing, J., Li, H., Miao, J., & Xu, B. (2021). Acetic acid mitigated salt stress by alleviating ionic and oxidative damages and regulating hormone metabolism in perennial ryegrass (Lolium perenne L.). Grass Research, 1(1), 1–10.

    Article  CAS  Google Scholar 

  • Zhang, N., Sun, Q., Li, H., Li, X., Cao, Y., Zhang, H., Li, S., Zhang, L., Qi, Y., & Ren, S. (2016). Melatonin improved anthocyanin accumulation by regulating gene expressions and resulted in high reactive oxygen species scavenging capacity in cabbage. Frontiers in Plant Science, 7, 197.

    Google Scholar 

  • Zhang, Y., Yu, S., Gong, H.-J., Zhao, H.-L., Li, H.-L., Hu, Y.-H., & Wang, Y.-C. (2018). Beneficial effects of silicon on photosynthesis of tomato seedlings under water stress. Journal of Integrative Agriculture, 17(10), 2151–2159.

    Article  CAS  Google Scholar 

  • Zhang, Y.-K., Zhu, D.-F., Zhang, Y.-P., Chen, H.-Z., Xiang, J., & Lin, X.-Q. (2015). Low pH-induced changes of antioxidant enzyme and ATPase activities in the roots of rice (Oryza sativa L.) seedlings. PLoS One, 10(2), e0116971.

    Article  Google Scholar 

  • Zushi, K., Ono, M., & Matsuzoe, N. (2014). Light intensity modulates antioxidant systems in salt-stressed tomato (Solanum lycopersicum L. cv. Micro-Tom) fruits. Scientia Horticulturae, 165, 384–391. https://doi.org/10.1016/j.scienta.2013.11.033

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Golam Jalal Ahammed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Debnath, B. et al. (2023). Role of Phytohormones in Plant Responses to Acid Rain. In: Ahammed, G.J., Yu, J. (eds) Plant Hormones and Climate Change. Springer, Singapore. https://doi.org/10.1007/978-981-19-4941-8_5

Download citation

Publish with us

Policies and ethics