Skip to main content

Advertisement

Log in

Antioxidant response of soybean seedlings to joint stress of lanthanum and acid rain

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Excess of rare earth elements in soil can be a serious environmental stress on plants, in particular when acid rain coexists. To understand how such a stress affects plants, we studied antioxidant response of soybean leaves and roots exposed to lanthanum (0.06, 0.18, and 0.85 mmol L−1) under acid rain conditions (pH 4.5 and 3.0). We found that low concentration of La3+ (0.06 mmol L−1) did not affect the activity of antioxidant enzymes (catalase and peroxidase) whereas high concentration of La3+ (≥0.18 mmol L−1) did. Compared to treatment with acid rain (pH 4.5 and pH 3.0) or La3+ alone, joint stress of La3+ and acid rain affected more severely the activity of catalase and peroxidase, and induced more H2O2 accumulation and lipid peroxidation. When treated with high level of La3+ (0.85 mmol L−1) alone or with acid rain (pH 4.5 and 3.0), roots were more affected than leaves regarding the inhibition of antioxidant enzymes, physiological function, and growth. The severity of oxidative damage and inhibition of growth caused by the joint stress associated positively with La3+ concentration and soil acidity. These results will help us understand plant response to joint stress, recognize the adverse environmental impact of rare earth elements in acidic soil, and develop measures to eliminate damage caused by such joint stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andonova L (2007) Acid rain in a wider Europe: the post-communist transition and the future European acid rain policies. In: Visgillio GR, Whitelaw DM (eds) Acid in the Environment. Springer, New York, pp 151–173

    Chapter  Google Scholar 

  • Appenroth KJ (2010) What are “heavy metals” in plant sciences? Acta Physiol Plant 32(4):615–619. doi:10.1007/s11738-009-0455-4

    Article  CAS  Google Scholar 

  • Averbuch-Pouchot MT, Durif A (1996) Topics in phosphate chemistry. World Scientific, Singapore

    Book  Google Scholar 

  • Beers RF, Sizer IW (1952) A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem 195(1):133–140

    CAS  Google Scholar 

  • Chen XY, Mulder J (2007) Atmospheric deposition of nitrogen at five subtropical forested sites in South China. Sci Total Environ 378(3):317–330. doi:10.1016/j.scitotenv.2007.02.028

    Article  CAS  Google Scholar 

  • Chen ZY (2004) The biological hormesis-effects of rare earths and potential effects of application of rare earths on agricultural eco-environment. Rural Eco-environ 20(4):1–8

    Google Scholar 

  • Comas LH, Eissenstat DM, Lakso AN (2000) Assessing root death and root system dynamics in a study of grape canopy pruning. New Phytol 147(1):171–178. doi:10.1046/j.1469-8137.2000.00679.x

    Article  CAS  Google Scholar 

  • d’Aquino L, Morgana M, Carboni MA, Staiano M, Antisari MV, Re M, Lorito M, Vinale F, Abadi KM, Woo SL (2009) Effect of some rare earth elements on the growth and lanthanide accumulation in different Trichoderma strains. Soil Biol Biochem 41(12):2406–2413. doi:10.1016/j.soilbio.2009.08.012

    Article  Google Scholar 

  • Dai AH, Nie YX, Yu B, Li Q, Lu LY, Bai JG (2012) Cinnamic acid pretreatment enhances heat tolerance of cucumber leaves through modulating antioxidant enzyme activity. Environ Exp Bot 79:1–10. doi:10.1016/j.envexpbot.2012.01.003

    Article  CAS  Google Scholar 

  • Diatloff E, Smith FW, Asher CJ (2008) Effects of lanthanum and cerium on the growth and mineral nutrition of corn and mungbean. Ann Bot 101(7):971–982. doi:10.1093/aob/mcn021

    Article  CAS  Google Scholar 

  • Douglas H (2008) Science, hormesis and regulation. Hum Exp Toxicol 27(8):603–607. doi:10.1177/0960327108098493

    Article  CAS  Google Scholar 

  • Emmanuel ESC, Anandkumar B, Natesan M, Maruthamuthu S (2010) Efficacy of rare earth elements on the physiological and biochemical characteristics of Zea mays L. Aust J Crop Sci 4(4):289–294

    Google Scholar 

  • Hafsi C, Romero-Puertas MC, del Rio LA, Sandalio LM, Abdelly C (2010) Differential antioxidative response in barley leaves subjected to the interactive effects of salinity and potassium deprivation. Plant Soil 334(1–2):449–460. doi:10.1007/s11104-010-0395-1

    Article  CAS  Google Scholar 

  • Ham YS, Kobori H, Kang JH, Kim JH (2010) Ammonium nitrogen deposition as a dominant source of nitrogen in a forested watershed experiencing acid rain in central Japan. Water Air Soil Poll 212(1–4):337–344. doi:10.1007/s11270-010-0347-7

    Article  CAS  Google Scholar 

  • Hammerschmidt R, Nuckles E, Kuc J (1982) Association of enhanced peroxidase activity with induced systemic resistance of cucumber to Colletotrichum lagenarium. Physiol Plant Pathol 20(1):73–76

    Article  CAS  Google Scholar 

  • Han F, Shan XQ, Zhang J, Xie YN, Pei ZG, Zhang SZ, Zhu YG, Wen B (2005) Organic acids promote the uptake of lanthanum by barley roots. New Phytol 165(2):481–492. doi:10.1111/j.1469-8137.2004.01256.x

    Article  CAS  Google Scholar 

  • Hu ZY, Haneklaus S, Sparovek G, Schnug E (2006) Rare earth elements in soils. Commun Soil Sci Plan Anal 37(9–10):1381–1420. doi:10.1080/00103620600628680

    Article  CAS  Google Scholar 

  • Hu ZY, Richter H, Sparovek G, Schnug E (2004) Physiological and biochemical effects of rare earth elements on plants and their agricultural significance: a review. J Plant Nutr 27(1):183–220. doi:10.1081/pln-120027555

    Article  CAS  Google Scholar 

  • Huang XH, Zhou Q (2006) Alleviation effect of lanthanum on cadmium stress in seedling hydroponic culture of kidney bean and corn. J Rare Earth 24(2):248–252. doi:10.1016/s1002-0721(06)60103-8

    Article  Google Scholar 

  • Jambunathan N (2010) Determination and detection of reactive oxygen species (ROS), lipid peroxidation, and electrolyte leakage in plants. In: Sunkar R (ed) Plant stress tolerance: methods and protocol. Springer, New York, pp 291–297

    Chapter  Google Scholar 

  • Ke L, Wong T, Wong A, Wong Y, Tam N (2003) Negative effects of humic acid addition on phytoremediation of pyrene-contaminated sediments by mangrove seedlings. Chemosphere 52(9):1581–1591. doi:10.1016/S0045-6535(03)00498-3

    Article  CAS  Google Scholar 

  • Kim I (2007) Environmental cooperation of Northeast Asia: transboundary air pollution. In: Breslin S, Higgott R (eds) International relations of the Asia-Pacific, Vol. 7. Sage, London, pp 439–462

    Google Scholar 

  • Koricheva J, Roy S, Vranjic JA, Haukioja E, Hughes PR, Hanninen O (1997) Antioxidant responses to simulated acid rain and heavy metal deposition in birch seedlings. Environ Pollut 95(2):249–258. doi:10.1016/s0269-7491(96)00071-1

    Article  CAS  Google Scholar 

  • Liang CJ, Huang XH, Tao WY, Zhou Q (2006) Effects of cerium on growth and physiological mechanism in plants under enhanced ultraviolet-B radiation. J Environ Sci-China 18(1):125–129

    CAS  Google Scholar 

  • Liang CJ, Huang XH, Tao WY, Zhou Q (2005a) Responses of antioxidant enzyme and photosynthesis in rape seedling to the combined stresses of acid rain and ultraviolet-B radiation. J Environ Sci-China 17(6):1038–1041

    CAS  Google Scholar 

  • Liang CJ, Huang XH, Zhou Q (2005b) Effect of rare earths on plant under supplementary ultraviolet-B radiation: I Effect of cerium on growth and photosynthesis in rape seedlings exposed to supplementary ultraviolet-B radiation. J Rare Earth 23(5):569–575

    Google Scholar 

  • Liang CJ, Pan DY, Xu QR, Zhou Q (2010) Combined injured effects of acid rain and lanthanum on growth of soybean seedling. J Environ Sci-China 31(7):1652–1656

    Google Scholar 

  • Liang CJ, Zhang GS, Zhou Q (2011) Effect of cerium on photosynthetic pigments and photochemical reaction activity in soybean seedling under ultraviolet-B radiation stress. Biol Trace Elem Res 142(3):796–806. doi:10.1007/s12011-010-8786-y

    Article  CAS  Google Scholar 

  • Liang T, Ding SM, Song WC, Chong ZY, Zhang CS, Li HT (2008) A review of fractionations of rare earth elements in plants. J Rare Earth 26(1):7–15. doi:10.1016/s1002-0721(08)60027-7

    Article  Google Scholar 

  • Liu D, Wang X, Lin Y, Chen Z, Xu H, Wang L (2012) The effects of cerium on the growth and some antioxidant metabolisms in rice seedlings. Environ Sci Pollut Res Int 19(8):3282–3291. doi:10.1007/s11356-012-0844-x

    Article  CAS  Google Scholar 

  • Ma YH, Kuang LL, He X, Bai W, Ding YY, Zhang ZY, Zhao YL, Chai ZF (2010) Effects of rare earth oxide nanoparticles on root elongation of plants. Chemosphere 78(3):273–279. doi:10.1016/j.chemosphere.2009.10.050

    Article  CAS  Google Scholar 

  • Menon M, Hermle S, Gunthardt-Goerg MS, Schulin R (2007) Effects of heavy metal soil pollution and acid rain on growth and water use efficiency of a young model forest ecosystem. Plant Soil 297(1–2):171–183. doi:10.1007/s11104-007-9331-4

    Article  CAS  Google Scholar 

  • Pang X, Li D, Peng A (2002) Application of rare-earth elements in the agriculture of China and its environmental behavior in soil. Environ Sci Pollut Res 9(2):143–148. doi:10.1007/BF02987462

    Article  CAS  Google Scholar 

  • Polle A, Eiblmeier M, Sheppard L, Murray M (1997) Responses of antioxidative enzymes to elevated CO2 in leaves of beech (Fagus sylvatica L.) seedlings grown under a range of nutrient regimes. Plant Cell Environ 20(10):1317–1321. doi:10.1046/j.1365-3040.1997.d01-23.x

    Article  CAS  Google Scholar 

  • Ruíz-Herrera LF, Sánchez-Calderón L, Herrera-Estrella L, López-Bucio J (2012) Rare earth elements lanthanum and gadolinium induce phosphate-deficiency responses in Arabidopsis thaliana seedlings. Plant Soil 353(1–2):231–247. doi:10.1007/s11104-011-1026-1

    Article  Google Scholar 

  • Rusak G, Piantanida I, Bretschneider S, Ludwig-Muller J (2009) Complex formation of quercetin with lanthanum enhances binding to plant viral satellite double stranded RNA. J Inorg Biochem 103(12):1597–1601. doi:10.1016/j.jinorgbio.2009.08.008

    Article  CAS  Google Scholar 

  • Sako A, Mills AJ, Roychoudhury AN (2009) Rare earth and trace element geochemistry of termite mounds in central and northeastern Namibia: mechanisms for micro-nutrient accumulation. Geoderma 153(1):217–230

    Article  CAS  Google Scholar 

  • Sanchez-Pardo B, Fernandez-Pascual M, Zornoza P (2012) Copper microlocalisation, ultrastructural alterations and antioxidant responses in the nodules of white lupin and soybean plants grown under conditions of copper excess. Environ Exp Bot 84:52–60. doi:10.1016/j.envexpbot.2012.04.017

    Article  CAS  Google Scholar 

  • Shi SY, Wang G, Wang YD, Zhang LG, Zhang LX (2005) Protective effect of nitric oxide against oxidative stress under ultraviolet-B radiation. Nitric Oxide-Biol Chem 13(1):1–9. doi:10.1016/j.niox.2005.04.006

    Article  CAS  Google Scholar 

  • Shu X, Yin L, Zhang Q, Wang W (2012) Effect of Pb toxicity on leaf growth, antioxidant enzyme activities, and photosynthesis in cuttings and seedlings of Jatropha curcas L. Environ Sci Pollut Res 19(3):893–902. doi:10.1007/s11356-011-0625-y

    Article  CAS  Google Scholar 

  • Turra C, Fernandes E, Bacchi M (2011) Evaluation on rare earth elements of Brazilian agricultural supplies. J Environ Chem Ecotoxic 3(4):86–92

    CAS  Google Scholar 

  • Tyler G (2004) Rare earth elements in soil and plant systems—a review. Plant Soil 267(1–2):191–206. doi:10.1007/s11104-005-4888-2

    Article  CAS  Google Scholar 

  • Velikova V, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Sci 151(1):59–66

    Article  CAS  Google Scholar 

  • von Tucher S, Schmidhalter U (2005) Lanthanum uptake from soil and nutrient solution and its effects on plant growth. J Plant Nutr Soil Sci 168(4):574–580. doi:10.1002/jpln.200520506

    Article  Google Scholar 

  • Wang LH, Huang XH, Zhou Q (2009) Protective effect of rare earth against oxidative stress under ultraviolet-B radiation. Biol Trace Elem Res 128(1):82–93. doi:10.1007/s12011-008-8250-4

    Article  CAS  Google Scholar 

  • Wang LH, Lu AH, Lu TH, Ding XL, Huang XH (2010a) Interaction between lanthanum ion and horseradish peroxidase in vitro. Biochimie 92(1):41–50. doi:10.1016/j.biochi.2009.09.006

    Article  CAS  Google Scholar 

  • Wang LH, Zhou Q, Lu TH, Ding XL, Huang XH (2010b) Molecular and cellular mechanism of the effect of La(III) on horseradish peroxidase. J Biol Inorg Chem 15(7):1063–1069. doi:10.1007/s00775-010-0665-7

    Article  CAS  Google Scholar 

  • Wang X, Shi GX, Xu QS, Xu BJ, Zhao J (2007) Lanthanum- and cerium-induced oxidative stress in submerged Hydrilla verticillata plants. Russ J Plant Physl 54(5):693–697. doi:10.1134/s1021443707050184

    Article  CAS  Google Scholar 

  • Wen KJ, Liang CJ, Wang LH, Hu G, Zhou Q (2011) Combined effects of lanthanum and acid rain on growth, photosynthesis and chloroplast ultrastructure in soybean seedlings. Chemosphere 84(5):601–608. doi:10.1016/j.chemosphere.2011.03.054

    Article  CAS  Google Scholar 

  • Xu Q, Fu Y, Min H, Cai S, Sha S, Cheng G (2012) Laboratory assessment of uptake and toxicity of lanthanum (La) in the leaves of Hydrocharis dubia (Bl.) Backer. Environ Sci Pollut Res Int 19(9):3950–3958. doi:10.1007/s11356-012-0982-1

    Article  CAS  Google Scholar 

  • Xu QM, Chen H (2011) Antioxidant responses of rice seedling to Ce(4+) under hydroponic cultures. Ecotox Environ Safety 74(6):1693–1699. doi:10.1016/j.ecoenv.2011.04.005

    Article  CAS  Google Scholar 

  • Xu XK, Wang ZJ (2007) Phosphorus uptake and translocation in field-grown maize after application of rare earth-containing fertilizer. J Plant Nutr 30(4–6):557–568. doi:10.1080/01904160701209287

    Article  CAS  Google Scholar 

  • Xu XK, Zhu WZ, Wang ZJ, Witkamp GJ (2003) Accumulation of rare earth elements in maize plants (Zea mays L.) after application of mixtures of rare earth elements and lanthanum. Plant Soil 252(2):267–277. doi:10.1023/a:1024715523670

    Article  CAS  Google Scholar 

  • Ye YX, Wang LH, Huang XH, Lu TH, Ding XL, Zhou Q, Guo SF (2008) Subcellular location of horseradish peroxidase in horseradish leaves treated with La(III), Ce(III) and Tb(III). Ecotox Environ Safety 71(3):677–684. doi:10.1016/j.ecoenv.2007.11.020

    Article  CAS  Google Scholar 

  • Yusuf M, Fariduddin Q, Varshney P, Ahmad A (2012) Salicylic acid minimizes nickel and/or salinity-induced toxicity in Indian mustard (Brassica juncea) through an improved antioxidant system. Environ Sci Pollut Res 19(1):8–18. doi:10.1007/s11356-011-0531-3

    Article  CAS  Google Scholar 

  • Zhang Y, Dai L, Wang X, Du B (2003) Changes in form of rare earth elements after acid rain leaching through soil column. Bull Environ Contam Toxicol 70(1):46–53. doi:10.1007/s00128-002-0154-y

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support from the National Natural Science Foundation of China for Youths (31000245) and the technical assistance from Yujuan Yang and Danyao Xu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chanjuan Liang.

Additional information

Responsible editor: Elena Maestri

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, C., Wang, W. Antioxidant response of soybean seedlings to joint stress of lanthanum and acid rain. Environ Sci Pollut Res 20, 8182–8191 (2013). https://doi.org/10.1007/s11356-013-1776-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-013-1776-9

Keywords

Navigation