Skip to main content

Recalcitrance of Lignocellulosic Biomass and Pretreatment Technologies: A Comprehensive Insight

  • Chapter
  • First Online:
Thermochemical and Catalytic Conversion Technologies for Future Biorefineries

Part of the book series: Clean Energy Production Technologies ((CEPT))

Abstract

Plant biomass is an excellent lignocellulosic source that can produce renewable and environment-friendly biofuels. However, the natural physiochemical structure of plant lignocellulose has strong recalcitrance and heterogeneity, which results in low yields of biofuels, limiting its effective valorization in biorefineries. This rigidity of lignocellulose presents economic and technical challenges in biomass conversion processes. Various pretreatment methods are used separately and in combination to resolve this. Pretreatment methods change the structure and chemical composition of the plant biomass, which makes it more accessible to the conversion systems for biofuel production. This chapter will discuss the physical and chemical basis of lignocellulose recalcitrance and the biomass components contributing to it. This chapter will also explain the role of pretreatment strategies in biorefineries and their influence on the structure and composition of lignocellulosic biomass. The fundamental understanding of biomass recalcitrance and the role of pretreatment methods can aid in the efficient utilization of lignocellulosic biomass in biorefineries and the development of future pretreatment methodologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

[EMIMAc]:

1-Ethyl-3-methylimidazolium acetate

ASA:

Accessible surface area

BET:

Brunauer-Emmett-Teller

CSC:

Cellulose synthase complex

CESA:

Cellulose synthase A

CSL:

Cellulose synthase-like family

DES:

Deep eutectic solvents

DP:

Degree of polymerization

G:

Guaiacyl

Glu:

Glucopyranosyl

GT:

Glycosyltransferases

H:

p-hydroxyphenyl

IPCC:

Intergovernmental Panel on Climate Change

LCB:

Lignocellulosic biomass

LCC:

Lignin-carbohydrate complexes

NMMO:

N-methylmorpholine N-oxide

S:

Syringyl

T g :

Glass transition temperature

TSA:

Total surface area

UDP:

Uridine diphosphate

UTP:

Uridine triphosphate

X:

Xylopyranosyl

References

  • Adams GA, Castagne AE (1951) Hemicelluloses of wheat straw. Can J Chem 29:109–122

    Article  CAS  PubMed  Google Scholar 

  • Agrawal K, Verma P (2020) Production optimization of yellow laccase from Stropharia sp. ITCC 8422 and enzyme-mediated depolymerization and hydrolysis of lignocellulosic biomass for biorefinery application. Biomass Convers Biorefin:1–20

    Google Scholar 

  • Agrawal K, Bhardwaj N, Kumar B, Chaturvedi V, Verma P (2019) Process optimization, purification and characterization of alkaline stable white laccase from Myrothecium verrucaria ITCC-8447 and its application in delignification of agroresidues. Int J Biol Macromol 125:1042–1055

    Article  CAS  PubMed  Google Scholar 

  • Agrawal K, Bhatt A, Bhardwaj N, Kumar B, Verma P (2020) Algal biomass: potential renewable feedstock for biofuels production—Part I. In: Srivastava N, Srivastava M, Mishra P, Gupta V (eds) Biofuel production technologies: critical analysis for sustainability. Clean energy production technologies. Springer, Singapore, pp 203–237

    Chapter  Google Scholar 

  • Albenne C, Canut H, Jamet E (2013) Plant cell wall proteomics: the leadership of Arabidopsis thaliana. Front Plant Sci 4:111

    Article  PubMed  PubMed Central  Google Scholar 

  • Albertsson A-C, Edlund U, Varma IK (2011) Synthesis, chemistry and properties of hemicelluloses. In: Biopolymers–new materials for sustainable films and coatings. Wiley Online Library, pp 133–150

    Chapter  Google Scholar 

  • Alvarez-Barreto JF, Larrea F, Pinos MC, Benalcázar J, Oña D, Andino C, Viteri DA, Leon M, Almeida-Streitwieser D (n.d.) Chemical pretreatments on residual cocoa pod shell biomass for bioethanol production.

    Google Scholar 

  • Andersson S-I, Samuelson O (1985) Formation of soluble compounds during pretreatment of kraft pulp with nitrogen-dioxide. Svensk Papperstidning-Nordisk Cellulosa 88:R102–R104

    CAS  Google Scholar 

  • Aspinall GO (1959) Structural chemistry of the hemicelluloses. In: Advances in carbohydrate chemistry. Elsevier, pp 429–468

    Google Scholar 

  • Aspinall GO (1962) Chemistry of the carbohydrates. Annu Rev Biochem 31:79–102

    Article  CAS  PubMed  Google Scholar 

  • Atack D, Mi S (1978) Ultra high yield pulping of eastern black Spruce.

    Google Scholar 

  • Bajpai P (2016) Structure of lignocellulosic biomass. In: Pretreatment of lignocellulosic biomass for biofuel production. Springer, pp 7–12

    Chapter  Google Scholar 

  • Baruah J, Nath BK, Sharma R, Kumar S, Deka RC, Baruah DC, Kalita E (2018) Recent trends in the pretreatment of lignocellulosic biomass for value-added products. Front Energy Res 6:141

    Article  Google Scholar 

  • Beecher JF, Hunt CG, Zhu JY (2009) Tools for the characterization of biomass at the nanometer scale. Nanosci Technol Renew Biomater:61–90

    Google Scholar 

  • Belgacem MN, Gandini A (2011) Monomers, polymers and composites from renewable resources. Elsevier

    Google Scholar 

  • Bensah EC, Mensah M (2013) Chemical pretreatment methods for the production of cellulosic ethanol: technologies and innovations. Int J Chem Eng 2013

    Google Scholar 

  • Bhardwaj N, Verma P (2020) Extraction of fungal xylanase using ATPS-PEG/sulphate and its application in hydrolysis of agricultural residues. In: Sadhukhan P, Premi S (eds) Biotechnological applications in human health. Springer, Singapore, pp 95–105

    Chapter  Google Scholar 

  • Bhardwaj N, Kumar B, Verma P (2020a) Microwave-assisted pretreatment using alkali metal salt in combination with orthophosphoric acid for generation of enhanced sugar and bioethanol. Biomass Convers Biorefin:1–8

    Google Scholar 

  • Bhardwaj N, Kumar B, Agrawal K, Verma P (2020b) Bioconversion of rice straw by synergistic effect of in-house produced ligno-hemicellulolytic enzymes for enhanced bioethanol production. Bioresour Technol Rep 10:100352

    Article  Google Scholar 

  • Bhardwaj N, Agrawal K, Kumar B, Verma P (2021) Role of enzymes in deconstruction of waste biomass for sustainable generation of value-added products. In: Thatoi H, Mohapatra S, Das SK (eds) Bioprospecting of enzymes in industry, healthcare and sustainable environment. Springer, Singapore, pp 219–250

    Chapter  Google Scholar 

  • Bjurhager I, Halonen H, Lindfors E-L, Iversen T, Almkvist G, Gamstedt EK, Berglund LA (2012) State of degradation in archeological oak from the 17th century Vasa ship: substantial strength loss correlates with reduction in (holo) cellulose molecular weight. Biomacromolecules 13:2521–2527

    Article  CAS  PubMed  Google Scholar 

  • Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546

    Article  CAS  PubMed  Google Scholar 

  • Bouxin FP, Jackson SD, Jarvis MC (2014) Organosolv pretreatment of Sitka spruce wood: conversion of hemicelluloses to ethyl glycosides. Bioresour Technol 151:441–444

    Article  CAS  PubMed  Google Scholar 

  • Brown RM Jr, Saxena IM (2000) Cellulose biosynthesis: a model for understanding the assembly of biopolymers. Plant Physiol Biochem 38:57–67

    Article  CAS  Google Scholar 

  • Bura R, Chandra R, Saddler J (2009) Influence of xylan on the enzymatic hydrolysis of steam-pretreated corn stover and hybrid poplar. Biotechnol Prog 25:315–322

    Article  CAS  PubMed  Google Scholar 

  • Cassab GI (1998) Plant cell wall proteins. Annu Rev Plant Biol 49:281–309

    Article  CAS  Google Scholar 

  • Chabannes M, Ruel K, Yoshinaga A, Chabbert B, Jauneau A, Joseleau J-P, Boudet A-M (2001) In situ analysis of lignins in transgenic tobacco reveals a differential impact of individual transformations on the spatial patterns of lignin deposition at the cellular and subcellular levels. Plant J 28:271–282

    Article  CAS  PubMed  Google Scholar 

  • Chandra RP, Bura R, Mabee WE, Berlin DA, Pan X, Saddler JN (2007) Substrate pretreatment: the key to effective enzymatic hydrolysis of lignocellulosics? Biofuels:67–93

    Google Scholar 

  • Chang VS, Holtzapple MT (2000) Fundamental factors affecting biomass enzymatic reactivity. In: Twenty-first symposium on biotechnology for fuels and chemicals. Springer, pp 5–37

    Chapter  Google Scholar 

  • Chang MM, Chou TY, Tsao GT (1981) Structure, pretreatment and hydrolysis of cellulose. In: Bioenergy. Springer, pp 15–42

    Google Scholar 

  • Chang VS, Burr B, Holtzapple MT (1997) Lime pretreatment of switchgrass. In: Biotechnology for fuels and chemicals. Springer, pp 3–19

    Chapter  Google Scholar 

  • Chen C, Boldor D, Aita G, Walker M (2012) Ethanol production from sorghum by a microwave-assisted dilute ammonia pretreatment. Bioresour Technol 110:190–197

    Article  CAS  PubMed  Google Scholar 

  • Chen H-W, Persson S, Grebe M, McFarlane HE (2018) Cellulose synthesis during cell plate assembly. Physiol Plant 164:17–26

    Article  CAS  PubMed  Google Scholar 

  • Chiaramonti D, Prussi M, Ferrero S, Oriani L, Ottonello P, Torre P, Cherchi F (2012) Review of pretreatment processes for lignocellulosic ethanol production, and development of an innovative method. Biomass Bioenergy 46:25–35

    Article  CAS  Google Scholar 

  • Choi IS, Kim J-H, Wi SG, Kim KH, Bae H-J (2013) Bioethanol production from mandarin (Citrus unshiu) peel waste using popping pretreatment. Appl Energy 102:204–210

    Article  CAS  Google Scholar 

  • Christensen JH, Baucher M, O’Connell A, Van Montagu M, Boerjan W (2000) Control of lignin biosynthesis. In: Molecular biology of woody plants. Springer, pp 227–267

    Chapter  Google Scholar 

  • Chundawat SP, Bellesia G, Uppugundla N, da Costa Sousa L, Gao D, Cheh AM, Agarwal UP, Bianchetti CM, Phillips GN Jr, Langan P (2011) Restructuring the crystalline cellulose hydrogen bond network enhances its depolymerization rate. J Am Chem Soc 133:11163–11174

    Article  CAS  PubMed  Google Scholar 

  • Cui SW, Wang Q (2009) Cell wall polysaccharides in cereals: chemical structures and functional properties. Struct Chem 20:291–297

    Article  CAS  Google Scholar 

  • de Moraes Rocha GJ, Martin C, Soares IB, Maior AMS, Baudel HM, De Abreu CAM (2011) Dilute mixed-acid pretreatment of sugarcane bagasse for ethanol production. Biomass Bioenergy 35:663–670

    Article  CAS  Google Scholar 

  • de Souza Lima MM, Borsali R (2004) Rodlike cellulose microcrystals: structure, properties, and applications. Macromol Rapid Commun 25:771–787

    Article  CAS  Google Scholar 

  • DemirbaÅŸ A (2005) Estimating of structural composition of wood and non-wood biomass samples. Energy Source 27:761–767

    Article  CAS  Google Scholar 

  • Duff SJ, Murray WD (1996) Bioconversion of forest products industry waste cellulosics to fuel ethanol: a review. Bioresour Technol 55:1–33

    Article  CAS  Google Scholar 

  • Dumitriu S (2004) Polysaccharides: structural diversity and functional versatility. CRC Press

    Book  Google Scholar 

  • Ebner G, Schiehser S, Potthast A, Rosenau T (2008) Side reaction of cellulose with common 1-alkyl-3-methylimidazolium-based ionic liquids. Tetrahedron Lett 49:7322–7324

    Article  CAS  Google Scholar 

  • Ebringerová A, Heinze T (2000) Xylan and xylan derivatives–biopolymers with valuable properties, 1. Naturally occurring xylans structures, isolation procedures and properties. Macromol Rapid Commun 21:542–556

    Article  Google Scholar 

  • Endler A, Persson S (2011) Cellulose synthases and synthesis in Arabidopsis. Mol Plant 4:199–211

    Article  CAS  PubMed  Google Scholar 

  • Foston M, Ragauskas AJ (2012) Biomass characterization: recent progress in understanding biomass recalcitrance. Indl Biotechnol 8:191–208

    Article  CAS  Google Scholar 

  • Fry SC (1989) The structure and functions of xyloglucan. J Exp Bot 40:1–11

    Article  CAS  Google Scholar 

  • Gardiner ES, Sarko A (1985) Packing analysis of carbohydrates and polysaccharides. 16. The crystal structures of celluloses IVI and IVII. Can J Chem 63:173–180

    Article  CAS  Google Scholar 

  • Gardner KH, Blackwell J (1974) The structure of native cellulose. Biopolym: Original Res Biomol 13:1975–2001

    Article  CAS  Google Scholar 

  • Garlock RJ, Balan V, Dale BE (2012) Optimization of AFEXTM pretreatment conditions and enzyme mixtures to maximize sugar release from upland and lowland switchgrass. Bioresour Technol 104:757–768

    Article  CAS  PubMed  Google Scholar 

  • Gerhartz W (1988) Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH

    Google Scholar 

  • Ghali Y, Youssef A, Mobdy EA (1974) Structure of hemicelluloses isolated from Canavalia ensiformis and Triticum aestivum straws. Phytochemistry 13:605–610

    Article  CAS  Google Scholar 

  • González JJ (1978) Sequential analysis by cooperative reactions on copolymers. 4. The structure of locust bean gum and guaran. Macromolecules 11:1074–1085

    Article  Google Scholar 

  • Goswami RK, Agrawal K, Verma P (2021) Microalgae-based biofuel-integrated biorefinery approach as sustainable feedstock for resolving energy crisis. In: Srivastava M, Srivastava N, Singh R (eds) Bioenergy research: commercial opportunities & challenges . Clean energy production technologies. Springer, Singapore, pp 267–293

    Chapter  Google Scholar 

  • Grohmann K, Mitchell DJ, Himmel ME, Dale BE, Schroeder HA (1989) The role of ester groups in resistance of plant cell wall polysaccharides to enzymatic hydrolysis. Appl Biochem Biotechnol 20:45–61

    Article  Google Scholar 

  • Guerriero G, Fugelstad J, Bulone V (2010) What do we really know about cellulose biosynthesis in higher plants? J Integr Plant Biol 52:161–175

    Article  CAS  PubMed  Google Scholar 

  • Gurgel LVA, Pimenta MTB, da Silva Curvelo AA (2014) Enhancing liquid hot water (LHW) pretreatment of sugarcane bagasse by high pressure carbon dioxide (HP-CO2). Ind Crop Prod 57:141–149

    Article  CAS  Google Scholar 

  • Habibi Y (2014) Key advances in the chemical modification of nanocelluloses. Chem Soc Rev 43:1519–1542

    Article  CAS  PubMed  Google Scholar 

  • Han Y, Chen H (2007) Plant cell wall proteins & enzymatic hydrolysis of lignocellulose. Progr Chem 19:1153

    CAS  Google Scholar 

  • Harmsen PF, Huijgen W, Bermudez L, Bakker R (2010) Literature review of physical and chemical pretreatment processes for lignocellulosic biomass. Wageningen UR-Food & Biobased Research

    Google Scholar 

  • Harun S, Geok SK (2016) Effect of sodium hydroxide pretreatment on rice straw composition. Indian J Sci Technol 9:1–9

    Article  CAS  Google Scholar 

  • Hatakeyama, H., 1972. Thermal analysis of lignin by differential scanning calorimetry.

    Google Scholar 

  • Hatakeyama H, Hatakeyama T (2009) Lignin structure, properties, and applications. Biopolymers:1–63

    Google Scholar 

  • Hatfield RD, Grabber J, Ralph J (1997) A potential role of sinapyl p-coumarate in grass lignin formation. In: Proceedings of the Annual Meeting of the American Society of Plant Physiologists. Vol Plant Physiol

    Google Scholar 

  • Hauru LK, Hummel M, Nieminen K, Michud A, Sixta H (2016) Cellulose regeneration and spinnability from ionic liquids. Soft Matter 12:1487–1495

    Article  CAS  PubMed  Google Scholar 

  • Heinze T, Liebert T (2001) Unconventional methods in cellulose functionalization. Prog Polym Sci 26:1689–1762

    Article  CAS  Google Scholar 

  • Heinze T, Liebert T (2012) Polymer science: a comprehensive reference. Cell Polyoses/Hemicell 10:83–152

    CAS  Google Scholar 

  • Hernández-Beltrán JU, Lira H-D, Omar I, Cruz-Santos MM, Saucedo-Luevanos A, Hernández-Terán F, Balagurusamy N (2019) Insight into pretreatment methods of lignocellulosic biomass to increase biogas yield: current state, challenges, and opportunities. Appl Sci 9:3721

    Article  CAS  Google Scholar 

  • Himmel ME, Ding S-Y, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804–807

    Article  CAS  PubMed  Google Scholar 

  • Hon DN-S (2017) Cellulose and its derivatives: structures, reactions, and medical uses. In: Polysaccharides in medicinal applications. Routledge, pp 87–105

    Chapter  Google Scholar 

  • Hu L, Fang X, Du M, Luo F, Guo S (2020) Hemicellulose-based polymers processing and application. Am J Plant Sci 11:2066–2079

    Article  CAS  Google Scholar 

  • Huang R, Su R, Qi W, He Z (2010) Understanding the key factors for enzymatic conversion of pretreated lignocellulose by partial least square analysis. Biotechnol Prog 26:384–392

    CAS  PubMed  Google Scholar 

  • Huang J, Fu S, Gan L (2019) Lignin chemistry and applications. Elsevier

    Google Scholar 

  • Huang H, Yu Y, Qing Y, Zhang X, Cui J, Wang H (2020) Ultralight industrial bamboo residue-derived holocellulose thermal insulation aerogels with hydrophobic and fire resistant properties. Materials 13:477

    Article  CAS  PubMed Central  Google Scholar 

  • Huisheng L, Miaomiao REN, Zhang M, Ying C (2013) Pretreatment of corn stover using supercritical CO2 with water-ethanol as co-solvent. Chin J Chem Eng 21:551–557

    Article  CAS  Google Scholar 

  • Ioelovich M (2008) Cellulose as a nanostructured polymer: a short review. BioResources 3:1403–1418

    Article  Google Scholar 

  • IPCC report 9 Aug 2021

    Google Scholar 

  • Izydorczyk MS, Macri LJ, MacGregor AW (1998) Structure and physicochemical properties of barley non-starch polysaccharides—I. Water-extractable-glucans and arabinoxylans. Carbohydr Polym 35:249–258

    Article  CAS  Google Scholar 

  • Jeoh T, Ishizawa CI, Davis MF, Himmel ME, Adney WS, Johnson DK (2007) Cellulase digestibility of pretreated biomass is limited by cellulose accessibility. Biotechnol Bioeng 98:112–122

    Article  CAS  PubMed  Google Scholar 

  • Kamm B (2014) Biorefineries–their scenarios and challenges. Pure Appl Chem 86:821–831

    Article  CAS  Google Scholar 

  • Kapanji KK, Haigh KF, Görgens JF (2019) Techno-economic analysis of chemically catalysed lignocellulose biorefineries at a typical sugar mill: Sorbitol or glucaric acid and electricity co-production. Bioresour Technol 289:121635

    Article  CAS  PubMed  Google Scholar 

  • Kirk TK (2018) Lignin biodegradation: microbiology, chemistry, and potential applications, vol I. CRC Press

    Book  Google Scholar 

  • Klemm D, Heublein B, Fink H-P, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393

    Article  CAS  Google Scholar 

  • Kondo T (1997) The relationship between intramolecular hydrogen bonds and certain physical properties of regioselectively substituted cellulose derivatives. J Polym Sci B 35:717–723

    Article  CAS  Google Scholar 

  • Krässig H (1993) Cellulose: structure, accessibility, and reactivity Gordon and Breach Sci. Publishers, Switzerland

    Google Scholar 

  • Kumar B, Verma P (2019) Optimization of microwave-assisted pretreatment of Rice Straw with FeCl3 in combination with H3PO4 for improving enzymatic hydrolysis. In: Kundu R, Narula R (eds) Advances in plant & microbial biotechnology. Springer, Singapore, pp 41–48

    Chapter  Google Scholar 

  • Kumar B, Verma P (2020a) Application of hydrolytic enzymes in biorefinery and its future prospects. In: Srivastava N, Srivastava M, Mishra PK, Gupta VK (eds) Microbial strategies for techno-economic biofuel production. Clean energy production technologies. Springer, Singapore, pp 59–83

    Chapter  Google Scholar 

  • Kumar B, Verma P (2020b) Enzyme mediated multi-product process: a concept of bio-based refinery. Ind Crop Prod 154:112607

    Article  CAS  Google Scholar 

  • Kumar B, Verma P (2021) Biomass-based biorefineries: an important architype towards a circular economy. Fuel 288:119622

    Article  CAS  Google Scholar 

  • Kumar B, Bhardwaj N, Alam A, Agrawal K, Prasad H, Verma P (2018) Production, purification and characterization of an acid/alkali and thermo tolerant cellulase from Schizophyllum commune NAIMCC-F-03379 and its application in hydrolysis of lignocellulosic wastes. AMB Express 8(1):1–16

    Article  CAS  Google Scholar 

  • Kumar B, Bhardwaj N, Agrawal K, Chaturvedi V, Verma P (2020) Current perspective on pretreatment technologies using lignocellulosic biomass: an emerging biorefinery concept. Fuel Process Technol 199:106244

    Article  CAS  Google Scholar 

  • Kumari D, Singh R (2018) Pretreatment of lignocellulosic wastes for biofuel production: a critical review. Renew Sustain Energy Rev 90:877–891

    Article  CAS  Google Scholar 

  • Lagaert S, Beliën T, Volckaert G (2009) Plant cell walls: protecting the barrier from degradation by microbial enzymes. In: Seminars in cell & developmental biology. Elsevier, pp 1064–1073

    Google Scholar 

  • Laureano-Perez L, Teymouri F, Alizadeh H, Dale BE (2005) Understanding factors that limit enzymatic hydrolysis of biomass. Appl Biochem Biotechnol 124:1081–1099

    Article  Google Scholar 

  • Lebo Jr SE, Gargulak JD, McNally TJ (2002) Lignin. Encyclopedia of Polymer Science and Technology 3.

    Google Scholar 

  • Liebert T (2008) Innovative concepts for the shaping and modification of cellulose. In: Macromolecular symposia. Wiley Online Library, pp 28–38

    Google Scholar 

  • Mamedes-Rodrigues TC, Batista DS, Napoleão TA, Cruz ACF, Fortini EA, Nogueira FTS, Romanel E, Otoni WC (2018) Lignin and cellulose synthesis and antioxidative defense mechanisms are affected by light quality in Brachypodium distachyon. Plant Cell Tissue Org Culture 133:1–14

    Article  CAS  Google Scholar 

  • Mansfield SD, de Jong E, Stephens RS, Saddler JN (1997) Physical characterization of enzymatically modified kraft pulp fibers. J Biotechnol 57:205–216

    Article  CAS  Google Scholar 

  • Mansfield SD, Mooney C, Saddler JN (1999) Substrate and enzyme characteristics that limit cellulose hydrolysis. Biotechnol Prog 15:804–816

    Article  CAS  PubMed  Google Scholar 

  • McFarlane HE, Döring A, Persson S (2014) The cell biology of cellulose synthesis. Annu Rev Plant Biol 65:69–94

    Article  CAS  PubMed  Google Scholar 

  • McMillan, J.D., 1994. Pretreatment of lignocellulosic biomass.

    Book  Google Scholar 

  • Melro E, Alves L, Antunes FE, Medronho B (2018) A brief overview on lignin dissolution. J Mol Liq 265:578–584

    Article  CAS  Google Scholar 

  • Meng X, Wells T, Sun Q, Huang F, Ragauskas A (2015) Insights into the effect of dilute acid, hot water or alkaline pretreatment on the cellulose accessible surface area and the overall porosity of Populus. Green Chem 17:4239–4246

    Article  CAS  Google Scholar 

  • Mohanty AK, Misra M, Hinrichsen GI (2000) Biofibres, biodegradable polymers and biocomposites: an overview. Macromol Mater Eng 276:1–24

    Article  Google Scholar 

  • Moniruzzaman M, Dale BE, Hespell RB, Bothast RJ (1997) Enzymatic hydrolysis of high-moisture corn fiber pretreated by AFEX and recovery and recycling of the enzyme complex. Appl Biochem Biotechnol 67:113–126

    Article  CAS  Google Scholar 

  • Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994

    Article  CAS  PubMed  Google Scholar 

  • Mussatto SI (2016) Biomass fractionation technologies for a lignocellulosic feedstock based biorefinery. Elsevier

    Google Scholar 

  • Nakagame S, Chandra RP, Saddler JN (2011) The influence of lignin on the enzymatic hydrolysis of pretreated biomass substrates. Sustainable production of fuels, chemicals, and fibers from forest biomass, pp. 145–167.

    Google Scholar 

  • Nazhad MM, Ramos LP, Paszner L, Saddler JN (1995) Structural constraints affecting the initial enzymatic hydrolysis of recycled paper. Enzyme Microb Technol 17:68–74

    Article  CAS  Google Scholar 

  • Ng DK, Ng KS, Ng RT (2017) Integrated biorefineries. In: Encyclopedia of sustainable technologies. Elsevier, pp 299–314

    Chapter  Google Scholar 

  • Ng RT, Fasahati P, Huang K, Maravelias CT (2019) Utilizing stillage in the biorefinery: economic, technological and energetic analysis. Appl Energy 241:491–503

    Article  Google Scholar 

  • Onnerud H, Zhang L, Gellerstedt G, Henriksson G (2002) Polymerization of monolignols by redox shuttle–mediated enzymatic oxidation: a new model in lignin biosynthesis I. Plant Cell 14:1953–1962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan X (2008) Role of functional groups in lignin inhibition of enzymatic hydrolysis of cellulose to glucose. J Biobaased Mater Bioenergy 2:25–32

    Article  Google Scholar 

  • Pan X, Gilkes N, Saddler JN (2006). Effect of acetyl groups on enzymatic hydrolysis of cellulosic substrates.

    Google Scholar 

  • Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:1–10

    Article  CAS  Google Scholar 

  • Park C-W, Han S-Y, Choi S-K, Lee S-H (2017) Preparation and properties of holocellulose nanofibrils with different hemicellulose content. BioResources 12:6298–6308

    Article  CAS  Google Scholar 

  • Pauly M, Gille S, Liu L, Mansoori N, de Souza A, Schultink A, Xiong G (2013) Hemicellulose biosynthesis. Planta 238:627–642

    Article  CAS  PubMed  Google Scholar 

  • Peng F, Ren JL, Xu F, Sun R-C (2011) Sustainable production of fuels, chemicals, and fibers from forest biomass. Chem Hemicell: Rev 1067:219–259

    CAS  Google Scholar 

  • Poma AB, Chwastyk M, Cieplak M (2016) Coarse-grained model of the native cellulose Iα Iα and the transformation pathways to the Iβ Iβ allomorph. Cellulose 23:1573–1591

    Article  CAS  Google Scholar 

  • Ponnusamy VK, Nguyen DD, Dharmaraja J, Shobana S, Banu JR, Saratale RG, Chang SW, Kumar G (2019) A review on lignin structure, pretreatments, fermentation reactions and biorefinery potential. Bioresour Technol 271:462–472

    Article  CAS  PubMed  Google Scholar 

  • Poornejad N, Karimi K, Behzad T (2014) Ionic liquid pretreatment of rice straw to enhance saccharification and bioethanol production. J Biomass Biofuel 1:8–15

    Google Scholar 

  • Popescu C-M, Singurel G, Popescu M-C, Vasile C, Argyropoulos DS, Willför S (2009) Vibrational spectroscopy and X-ray diffraction methods to establish the differences between hardwood and softwood. Carbohydr Polym 77:851–857

    Article  CAS  Google Scholar 

  • Puls J (1997) Chemistry and biochemistry of hemicelluloses: relationship between hemicellulose structure and enzymes required for hydrolysis. In: Macromolecular symposia. Wiley Online Library, pp 183–196

    Google Scholar 

  • Qiu Z, Aita GM, Walker MS (2012) Effect of ionic liquid pretreatment on the chemical composition, structure and enzymatic hydrolysis of energy cane bagasse. Bioresour Technol 117:251–256

    Article  CAS  PubMed  Google Scholar 

  • Rajput AA, Visvanathan C (2018) Effect of thermal pretreatment on chemical composition, physical structure and biogas production kinetics of wheat straw. J Environ Manage 221:45–52

    Article  CAS  PubMed  Google Scholar 

  • Ramos LP, Suota MJ, Pavaneli G, Corazza ML (2019) The role of biomass pretreatment for sustainable biorefineries. Bulg Chem Commun 51:62–68

    Google Scholar 

  • Rao VSR, Sundararajan PR, Ramakrishnan C, Ramachandran GN (1967) Conformational studies of amylose. In: Conformation of biopolymers. Elsevier, pp 721–737

    Chapter  Google Scholar 

  • Ritter SK (2008) Lignocellulose: a complex biomaterial. Plant Biochem 86:15

    Google Scholar 

  • Rollin JA, Zhu Z, Sathitsuksanoh N, Zhang Y-HP (2011) Increasing cellulose accessibility is more important than removing lignin: a comparison of cellulose solvent-based lignocellulose fractionation and soaking in aqueous ammonia. Biotechnol Bioeng 108:22–30

    Article  CAS  PubMed  Google Scholar 

  • Rowell RM, Pettersen R, Han JS, Rowell JS, Tshabalala MA (2005) Cell wall chemistry. In: Handbook of wood chemistry and wood composites, vol 2. CRC Press

    Chapter  Google Scholar 

  • Rytioja J, Hildén K, Yuzon J, Hatakka A, De Vries RP, Mäkelä MR (2014) Plant-polysaccharide-degrading enzymes from basidiomycetes. Microbiol Mol Biol Rev 78:614–649

    Article  PubMed  PubMed Central  Google Scholar 

  • Sánchez C (2009) Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnol Adv 27:185–194

    Article  PubMed  CAS  Google Scholar 

  • Sathitsuksanoh N, Holtman KM, Yelle DJ, Morgan T, Stavila V, Pelton J, Blanch H, Simmons BA, George A (2014) Lignin fate and characterization during ionic liquid biomass pretreatment for renewable chemicals and fuels production. Green Chem 16:1236–1247

    Article  CAS  Google Scholar 

  • Scheller HV, Ulvskov P (2010) Hemicelluloses. Annu Rev Plant Biol 61:263–289

    Article  CAS  PubMed  Google Scholar 

  • Schuerch C (1975) Past and present challenges of lignin chemistry. Japan Tappi J 29:215–222

    Article  Google Scholar 

  • Shin S-J, Sung YJ (2008) Improving enzymatic hydrolysis of industrial hemp (Cannabis sativa L.) by electron beam irradiation. Radiat Phys Chem 77:1034–1038

    Article  CAS  Google Scholar 

  • Soltanian S, Aghbashlo M, Almasi F, Hosseinzadeh-Bandbafha H, Nizami A-S, Ok YS, Lam SS, Tabatabaei M (2020) A critical review of the effects of pretreatment methods on the exergetic aspects of lignocellulosic biofuels. Energ Conver Manage 212:112792

    Article  CAS  Google Scholar 

  • Steeves V, Förster H, Pommer U, Savidge R (2001) Coniferyl alcohol metabolism in conifers—I. Glucosidic turnover of cinnamyl aldehydes by UDPG: coniferyl alcohol glucosyltransferase from pine cambium. Phytochemistry 57:1085–1093

    Article  CAS  PubMed  Google Scholar 

  • Sutcliffe R (1986) The role of lignin in the adsorption of cellulases during enzymatic treatment of lignocellulose material. In: Biotechnology and bioengineering symposium, vol 17, pp 749–762

    Google Scholar 

  • Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) Dissolution of cellose with ionic liquids. J Am Chem Soc 124:4974–4975

    Article  CAS  PubMed  Google Scholar 

  • Takahama U, Oniki T (1994) Effects of ascorbate on the oxidation of derivatives of hydroxycinnamic acid and the mechanism of oxidation of sinapic acid by cell wall-bound peroxidases. Plant Cell Physiol 35:593–600

    Article  CAS  Google Scholar 

  • Takkellapati S, Li T, Gonzalez MA (2018) An overview of biorefinery-derived platform chemicals from a cellulose and hemicellulose biorefinery. Clean Technol Environ Policy 20:1615–1630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka M, Ikesaka M, Matsuno R, Converse AO (1988) Effect of pore size in substrate and diffusion of enzyme on hydrolysis of cellulosic materials with cellulases. Biotechnol Bioeng 32:698–706

    Article  CAS  PubMed  Google Scholar 

  • Tarasov D, Leitch M, Fatehi P (2018) Lignin–carbohydrate complexes: properties, applications, analyses, and methods of extraction: a review. Biotechnol Biofuels 11:1–28

    Article  CAS  Google Scholar 

  • Teleman A, Lundqvist J, Tjerneld F, StÃ¥lbrand H, Dahlman O (2000) Characterization of acetylated 4-O-methylglucuronoxylan isolated from aspen employing 1H and 13C NMR spectroscopy. Carbohydr Res 329:807–815

    Article  CAS  PubMed  Google Scholar 

  • Timell TE (1967) Recent progress in the chemistry of wood hemicelluloses. Wood Sci Technol 1:45–70

    Article  CAS  Google Scholar 

  • Turner S, Kumar M (2018) Cellulose synthase complex organization and cellulose microfibril structure. Philos Trans Royal Soc A: Math Phys Eng Sci 376:20170048

    Article  CAS  Google Scholar 

  • Vanholme R, Demedts B, Morreel K, Ralph J, Boerjan W (2010) Lignin biosynthesis and structure. Plant Physiol 153:895–905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wada M, Heux L, Isogai A, Nishiyama Y, Chanzy H, Sugiyama J (2001) Improved structural data of cellulose IIII prepared in supercritical ammonia. Macromolecules 34:1237–1243

    Article  CAS  Google Scholar 

  • Wagner AO, Lackner N, Mutschlechner M, Prem EM, Markt R, Illmer P (2018) Biological pretreatment strategies for second-generation lignocellulosic resources to enhance biogas production. Energies 11:1797

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang QQ, He Z, Zhu Z, Zhang Y-H, Ni Y, Luo XL, Zhu JY (2012) Evaluations of cellulose accessibilities of lignocelluloses by solute exclusion and protein adsorption techniques. Biotechnol Bioeng 109:381–389

    Article  CAS  PubMed  Google Scholar 

  • Wen Z, Liao W, Chen S (2004) Hydrolysis of animal manure lignocellulosics for reducing sugar production. Bioresour Technol 91:31–39

    Article  CAS  PubMed  Google Scholar 

  • Whetten R, Sederoff R (1995) Lignin biosynthesis. Plant Cell 7:1001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yapo BM, Koffi KL (2008) The polysaccharide composition of yellow passion fruit rind cell wall: chemical and macromolecular features of extracted pectins and hemicellulosic polysaccharides. J Sci Food Agric 88:2125–2133

    Article  CAS  Google Scholar 

  • Yeh A-I, Huang Y-C, Chen SH (2010) Effect of particle size on the rate of enzymatic hydrolysis of cellulose. Carbohydr Polym 79:192–199

    Article  CAS  Google Scholar 

  • Yoshida M, Liu Y, Uchida S, Kawarada K, Ukagami Y, Ichinose H, Kaneko S, Fukuda K (2008) Effects of cellulose crystallinity, hemicellulose, and lignin on the enzymatic hydrolysis of Miscanthus sinensis to monosaccharides. Biosci Biotechnol Biochem 72:805–810

    Article  CAS  PubMed  Google Scholar 

  • Yuan L, Peng H, Hu L, Yu R, Peng W, Ruan R, Xia Q, Zhang Y, Liu A (2019) Dissolution of bamboo hemicellulose in 1-butyl-3-methylimidazolium halide-based ionic liquids. BioResources 14:2097–2112

    Article  CAS  Google Scholar 

  • Zhang Y-HP, Lynd LR (2004) Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol Bioeng 88:797–824

    Article  CAS  PubMed  Google Scholar 

  • Zhao X-B, Wang L, Liu D-H (2008) Peracetic acid pretreatment of sugarcane bagasse for enzymatic hydrolysis: a continued work. J Chem Technol Biotechnol: Int Res Process Environ Clean Technol 83:950–956

    Article  CAS  Google Scholar 

  • Zhao X, Zhang L, Liu D (2012a) Biomass recalcitrance. Part I: The chemical compositions and physical structures affecting the enzymatic hydrolysis of lignocellulose. Biofuels Bioprod Biorefin 6:465–482

    Article  CAS  Google Scholar 

  • Zhao X, Zhang L, Liu D (2012b) Biomass recalcitrance. Part II: Fundamentals of different pre-treatments to increase the enzymatic digestibility of lignocellulose. Biofuels Bioprod Biorefin 6:561–579

    Article  CAS  Google Scholar 

  • Zhao Y, Shakeel U, Rehman MSU, Li H, Xu X, Xu J (2020) Lignin-carbohydrate complexes (LCCs) and its role in biorefinery. J Clean Prod 253:120076

    Article  CAS  Google Scholar 

  • Zheng Y, Pan Z, Zhang R (2009) Overview of biomass pretreatment for cellulosic ethanol production. Int J Agric Biol Eng 2:51–68

    CAS  Google Scholar 

  • Zhu L (2005) Fundamental study of structural features affecting enzymatic hydrolysis of lignocellulosic biomass. Texas A&M University

    Google Scholar 

  • Zhu JY (2011) Physical pretreatment- woody biomass size reduction- for forest biorefinery. In: Sustainable production of fuels, chemicals, and fibers from forest biomass. ACS Publications, pp 89–107

    Chapter  Google Scholar 

  • Zhu JY, Pan XJ (2010) Woody biomass pretreatment for cellulosic ethanol production: technology and energy consumption evaluation. Bioresour Technol 101:4992–5002

    Article  CAS  PubMed  Google Scholar 

  • Zhu JY, Pan X, Zalesny RS (2010) Pretreatment of woody biomass for biofuel production: energy efficiency, technologies, and recalcitrance. Appl Microbiol Biotechnol 87:847–857

    Article  CAS  PubMed  Google Scholar 

  • Zugenmaier P (2001) Conformation and packing of various crystalline cellulose fibers. Prog Polym Sci 26:1341–1417

    Article  CAS  Google Scholar 

Download references

Acknowledgment

R.R is thankful for the junior research fellowship from Department of Biotechnology, Govt. of India (DBTHRDPMU/JRF/BET-20/I/2020/AL/07). P.D. is grateful for the Ramalingaswami fellowship and the research grant obtained from the Department of Biotechnology, Govt. of India (BT/HRD/35/02/2006). The authors are grateful to School of Biochemical engineering, Indian Institute of Technology (IIT-BHU), Varanasi for their kind support which made this work possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prodyut Dhar .

Editor information

Editors and Affiliations

Ethics declarations

All the authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rai, R., Kumar, V., Dhar, P. (2022). Recalcitrance of Lignocellulosic Biomass and Pretreatment Technologies: A Comprehensive Insight. In: Verma, P. (eds) Thermochemical and Catalytic Conversion Technologies for Future Biorefineries. Clean Energy Production Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-19-4312-6_2

Download citation

Publish with us

Policies and ethics