Skip to main content
Log in

Enzymatic hydrolysis of high-moisture corn fiber pretreated by afex and recovery and recycling of the enzyme complex

  • Original Articles
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Corn fiber is a grain-processing residue containing significant amounts of cellulose, hemicellulose, and starch, which is collected in facilities where fuel ethanol is currently manufactured. Preliminary research has shown that corn fiber (30% moisture dry weight basis [dwb]) responds well to ammonia-fiber explosion (AFEX) pretreatment. However, an important AFEX pretreatment variable that has not been adequately explored for corn fiber is sample moisture. In the present investigation, we determined the best AFEX operating conditions for pretreatment of corn fiber at high moisture content (150% moisture dwb). The optimized AFEX treatment conditions are defined in terms of the moisture content, particle size, ammonia to biomass ratio, temperature, and residence time using the response of the pretreated biomass to enzymatic hydrolysis as an indicator. Approximate optimal-pretreatment conditions for unground corn fiber containing 150% (dwb) moisture were found to be: temperature, 90‡C; ammonia: dry corn fiber mass ratio, 1:1; and residence time 30 min (average reactor pressure under these conditions was 200 pounds per square inch [psig]). Enzymatic hydrolysis of the treated corn fiber was performed with three different enzyme combinations. More than 80% of the theoretical sugar yield was obtained during enzymatic hydrolysis using the best enzyme combination after pretreatment of corn fiber under the optimized conditions previously described. A simple process for enzyme recovery and reuse to hydrolyze multiple portions of AFEX-treated corn fiber by one portion of enzyme preparation is demonstrated. Using this process, five batches of fresh substrate (at a concentration of 5% w/v) were successfully hydrolyzed by repeated recovery and reuse of one portion of enzyme preparation, with the addition of a small portion of fresh enzyme in each subsequent recycling step.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bothast, R. J. (1994),Proc. Corn Utilization Conf. V, June 8–10, 1994, St. Louis, MO, National Corn Growers Association.

    Google Scholar 

  2. Wyman, C. E. (1994),Biores. Technol. 50, 3–16.

    Article  CAS  Google Scholar 

  3. Nguyen, Q. A. and Saddler, J. N. (1991),Biores. Technol. 35, 275–323.

    Article  CAS  Google Scholar 

  4. Bungay, H. R. (1985),Ann. N.Y. Acad. Sci. 434, 155–157.

    Article  Google Scholar 

  5. Dale, B. E. (1985),Ann. Repts. On Ferm. Process. 8, Chap. 11, 299–323.

    CAS  Google Scholar 

  6. Weil, J., Westgate, P., Kohlmann, K., and Ladisch, M. R. (1994),Enzyme Microb. Technol. 16, 1002–1004.

    Article  CAS  Google Scholar 

  7. Dale, B. E. and Moreira, M. J. (1983),Biotechnol. Bioeng. 12, 31–43.

    Google Scholar 

  8. Dale, B. E., Henk, L. L., and Shiang, M. (1985),Dev. Ind. Microbiol. 26, 233–233.

    Google Scholar 

  9. Holtzapple, M. T., Jun, J. H., Ashok, G., Patibandla, S. L., and Dale, B. E. (1991),Apple. Biochem. Biotech. 28/29, 59–74.

    Article  Google Scholar 

  10. Holtzapple, M. T., Lundeen, J. E., Sturgis, R., Lewis, J. E. and Dale, B. E. (1992),Appl. Biochem. Biotech. 34/35, 5–21.

    Article  Google Scholar 

  11. Tan, L. U. L., Yu, E. K. C, Mayers, P., and Saddler, J. N. (1987),Appl. Microbiol. Biotechnol. 26, 21–27.

    Article  CAS  Google Scholar 

  12. Ooshima, H., Burns, D. S., and Converse, A. O. (1990),Biotechnol. Bioeng. 36, 446–452.

    Article  CAS  Google Scholar 

  13. American Association of Cereal Chemists (1995), Approved Methods of the AACC, 9th ed., Section 76-20, Starch-Polarimetric Method, AACC, St. Paul, MN.

  14. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randalt, R. J. (1951),J. Biol. Chem. 193, 265–275.

    CAS  Google Scholar 

  15. Miller, G. L. (1959),Anal. Chem. 31(3), 426–428.

    Article  CAS  Google Scholar 

  16. Hespell, R. B. and Cotta, M. A. (1995),Appl. Environ. Microbiol. 61, 3042–3050.

    CAS  Google Scholar 

  17. Mandels, M., Andreotti, R., and Roche, C. (1976),Biotechnol. Bioeng. Symp. 6, 21–33.

    CAS  Google Scholar 

  18. Chen, W. P. and Anderson, A. W. (1980),Biotechnol. Bioeng. 22, 519–531.

    Article  CAS  Google Scholar 

  19. Wright, J. D., Power, A. J., and Douglas, L. J. (1986),Biotechnol. Bioeng. Symp. No. 17, 285–301.

    CAS  Google Scholar 

  20. Gharpuray, M. M., Lee, Y. H., and Fan, L. T. (1983),Biotechnol. Bioeng. 25, 157–172.

    Article  CAS  Google Scholar 

  21. Brownell, H. H., Yu, E. K. C. and Saddler, J. N. (1986),Biotechnol. Bioeng.,28, 792–801.

    Article  CAS  Google Scholar 

  22. Barry, A. J., Peterson, F. C. and King, A. J. (1936),J. Am. Chem. Soc. 58, 333–337.

    Article  CAS  Google Scholar 

  23. Lewin, M. and Roldan, L. G. (1971),J. Polymer Sci. 36, 213–229.

    Google Scholar 

  24. Torkow, H. and Feist, W. C. (1969),Adv. Chem. Ser. 95, 197–218.

    Article  Google Scholar 

  25. Wang, P. Y., Bolker, H. I., and Purves, C. B. (1967),Tappi 50(3), 123–124.

    CAS  Google Scholar 

  26. Weimer, P. J., Chou, Y. C. T., Weston, W. M., and Chase, D. B. (1986),Biotechnol. Bioeng. Symp. 17, 5–18.

    CAS  Google Scholar 

  27. O’Conner, J. J. (1972),Tappi 55(3), 353–358.

    Google Scholar 

  28. Clesceri, L. S., Sinitsyn, A. P., Saunders, A. M., and Bungay, H. R. (1985),Appl. Biochem. Biotechnol. 11, 433–443.

    Article  CAS  Google Scholar 

  29. Singh, A., Kumar, P. K. R., and Schugerl, K. (1991),Biotechnol. 18, 205–212.

    Article  CAS  Google Scholar 

  30. Tanaka, M., Fukui, M., and Matsuno, R. (1988),Biotechnol. Bioeng. 32, 897–902.

    Article  CAS  Google Scholar 

  31. Sinitsyn, A. P., Bungay, M. L., Clesceri, L. S., and Bungay, H. R. (1983),Appl. Biochem. Biotechnol. 8, 25–29.

    Article  CAS  Google Scholar 

  32. Reese, E. T. (1980),J. Appl. Biochem. 2, 36–39.

    CAS  Google Scholar 

  33. Hogan, C. M. and Mes-Hartree, M. (1990),J. Ind. Microbio. 6, 253–262.

    Article  CAS  Google Scholar 

  34. Ramos, L. P., Breuil, C. and Saddler, J. N. (1993),Enzyme Microb. Technol. 15, 19–25.

    Article  CAS  Google Scholar 

  35. Wright, J. D., Power, A. J., and Douglas, L. J. (1986),Biotechnol. Bioeng. Symp. 17, 285–302.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Names are necessary to report factually on available data; however, the USDA neither guarantees nor warrants the standard of the product, and the use of the name by USDA implies no approval of the product to the exclusion of others that may also be suitable.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moniruzzaman, M., Dale, B.E., Hespell, R.B. et al. Enzymatic hydrolysis of high-moisture corn fiber pretreated by afex and recovery and recycling of the enzyme complex. Appl Biochem Biotechnol 67, 113–126 (1997). https://doi.org/10.1007/BF02787846

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02787846

Index Entries

Navigation