Skip to main content
Log in

Hemicellulose biosynthesis

  • Review
  • Published:
Planta Aims and scope Submit manuscript

Abstract

One major component of plant cell walls is a diverse group of polysaccharides, the hemicelluloses. Hemicelluloses constitute roughly one-third of the wall biomass and encompass the heteromannans, xyloglucan, heteroxylans, and mixed-linkage glucan. The fine structure of these polysaccharides, particularly their substitution, varies depending on the plant species and tissue type. The hemicelluloses are used in numerous industrial applications such as food additives as well as in medicinal applications. Their abundance in lignocellulosic feedstocks should not be overlooked, if the utilization of this renewable resource for fuels and other commodity chemicals becomes a reality. Fortunately, our understanding of the biosynthesis of the various hemicelluloses in the plant has increased enormously in recent years mainly through genetic approaches. Taking advantage of this knowledge has led to plant mutants with altered hemicellulosic structures demonstrating the importance of the hemicelluloses in plant growth and development. However, while we are on a solid trajectory in identifying all necessary genes/proteins involved in hemicellulose biosynthesis, future research is required to combine these single components and assemble them to gain a holistic mechanistic understanding of the biosynthesis of this important class of plant cell wall polysaccharides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Albersheim P, Darvill A, Roberts K, Sederoff R, Staehelin A (2010) Plant cell walls: from chemistry to biology. Garland Science, New York

    Google Scholar 

  • Anders N, Wilkinson MD, Lovegrove A, Freeman J, Tryfona T, Pellny TK, Weimar T, Mortimer JC, Stott K, Baker JM, Defoin-Platel M, Shewry PR, Dupree P, Mitchell RA (2012) Glycosyl transferases in family 61 mediate arabinofuranosyl transfer onto xylan in grasses. Proc Natl Acad Sci USA 109:989–993

    CAS  PubMed  Google Scholar 

  • Anderson CT, Carroll A, Akhmetova L, Somerville C (2010) Real-time imaging of cellulose reorientation during cell wall expansion in Arabidopsis roots. Plant Physiol 152:787–796

    CAS  PubMed  Google Scholar 

  • Anderson CT, Wallace IS, Somerville CR (2012) Metabolic click-labeling with a fucose analog reveals pectin delivery, architecture, and dynamics in Arabidopsis cell walls. Proc Natl Acad Sci USA 109:1329–1334

    CAS  PubMed  Google Scholar 

  • Bar-Peled M, O’Neill MA (2011) Plant nucleotide sugar formation, interconversion, and salvage by sugar recycling. Annu Rev Plant Biol 62:127–155

    CAS  PubMed  Google Scholar 

  • Bauer WD, Talmadge KW, Keegstra K, Albersheim P (1973) The structure of plant cell walls: II. The hemicellulose of the walls of suspension-cultured sycamore cells. Plant Physiol 51:174–187

    CAS  PubMed  Google Scholar 

  • Baydoun EA, Waldron KW, Brett CT (1989) The interaction of xylosyltransferase and glucuronyltransferase involved in glucuronoxylan synthesis in pea (Pisum sativum) epicotyls. Biochem J 257:853–858

    CAS  PubMed  Google Scholar 

  • Benova-Kakosova A, Digonnet C, Goubet F, Ranocha P, Jauneau A, Pesquet E, Barbier O, Zhang Z, Capek P, Dupree P, Liskova D, Goffner D (2006) Galactoglucomannans increase cell population density and alter the protoxylem/metaxylem tracheary element ratio in xylogenic cultures of Zinnia. Plant Physiol 142:696–709

    CAS  PubMed  Google Scholar 

  • Bischoff V, Nita S, Neumetzler L, Schindelasch D, Urbain A, Eshed R, Persson S, Delmer D, Scheible WR (2010a) TRICHOME BIREFRINGENCE and its homolog AT5G01360 encode plant-specific DUF231 proteins required for cellulose biosynthesis in Arabidopsis. Plant Physiol 153:590–602

    CAS  PubMed  Google Scholar 

  • Bischoff V, Selbig J, Scheible WR (2010b) Involvement of TBL/DUF231 proteins into cell wall biology. Plant Signal Behav 5:1057–1059

    CAS  PubMed  Google Scholar 

  • Breton C, Mucha J, Jeanneau C (2001) Structural and functional features of glycosyltransferases. Biochimie 83:713–718

    CAS  PubMed  Google Scholar 

  • Breton C, Snajdrova L, Jeanneau C, Koca J, Imberty A (2006) Structures and mechanisms of glycosyltransferases. Glycobiology 16:29r–37r

    CAS  PubMed  Google Scholar 

  • Bromley JR, Busse-Wicher M, Tryfona T, Mortimer JC, Zhang Z, Brown DM, Dupree P (2013) GUX1 and GUX2 glucuronyltransferases decorate distinct domains of glucuronoxylan with different substitution patterns. Plant J 74:423–434

    CAS  PubMed  Google Scholar 

  • Brown DM, Goubet F, Wong VW, Goodacre R, Stephens E, Dupree P, Turner SR (2007) Comparison of five xylan synthesis mutants reveals new insight into the mechanisms of xylan synthesis. Plant J 52:1154–1168

    CAS  PubMed  Google Scholar 

  • Brown DM, Zhang Z, Stephens E, Dupree P, Turner SR (2009) Characterization of IRX10 and IRX10-like reveals an essential role in glucuronoxylan biosynthesis in Arabidopsis. Plant J 57:732–746

    CAS  PubMed  Google Scholar 

  • Brown D, Wightman R, Zhang Z, Gomez LD, Atanassov I, Bukowski JP, Tryfona T, McQueen-Mason SJ, Dupree P, Turner S (2011) Arabidopsis genes IRREGULAR XYLEM (IRX15) and IRX15L encode DUF579-containing proteins that are essential for normal xylan deposition in the secondary cell wall. Plant J 66:401–413

    CAS  PubMed  Google Scholar 

  • Buckeridge MS (2010) Seed cell wall storage polysaccharides: models to understand cell wall biosynthesis and degradation. Plant Physiol 154:1017–1023

    CAS  PubMed  Google Scholar 

  • Buckeridge MS, Crombie HJ, Mendes CJ, Reid JS, Gidley MJ, Vieira CC (1997) A new family of oligosaccharides from the xyloglucan of Hymenaea courbaril L. (Leguminosae) cotyledons. Carbohydr Res 303:233–237

    CAS  PubMed  Google Scholar 

  • Burton RA, Fincher GB (2012) Current challenges in cell wall biology in the cereals and grasses. Front Plant Sci 3:130

    CAS  PubMed  Google Scholar 

  • Burton RA, Wilson SM, Hrmova M, Harvey AJ, Shirley NJ, Medhurst A, Stone BA, Newbigin EJ, Bacic A, Fincher GB (2006) Cellulose synthase-like CslF genes mediate the synthesis of cell wall (1,3;1,4)-beta-d-glucans. Science 311:1940–1942

    CAS  PubMed  Google Scholar 

  • Burton RA, Gidley MJ, Fincher GB (2010) Heterogeneity in the chemistry, structure and function of plant cell walls. Nat Chem Biol 6:724–732

    CAS  PubMed  Google Scholar 

  • Burton RA, Collins HM, Kibble NA, Smith JA, Shirley NJ, Jobling SA, Henderson M, Singh RR, Pettolino F, Wilson SM, Bird AR, Topping DL, Bacic A, Fincher GB (2011) Over-expression of specific HvCslF cellulose synthase-like genes in transgenic barley increases the levels of cell wall (1,3;1,4)-beta-d-glucans and alters their fine structure. Plant Biotechnol J 9:117–135

    CAS  PubMed  Google Scholar 

  • Carpita NC (1996) Structure and biogenesis of the cell walls of grasses. Annu Rev Plant Physiol Plant Mol Biol 47:445–476

    CAS  PubMed  Google Scholar 

  • Carpita NC, Gibeaut DM (1993) Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J 3:1–30

    CAS  PubMed  Google Scholar 

  • Carpita NC, McCann MC (2010) The maize mixed-linkage (1–>3), (1–>4)-beta-d-glucan polysaccharide is synthesized at the Golgi membrane. Plant Physiol 153:1362–1371

    CAS  PubMed  Google Scholar 

  • Cavalier DM, Keegstra K (2006) Two xyloglucan xylosyltransferases catalyze the addition of multiple xylosyl residues to cellohexaose. J Biol Chem 281:34197–34207

    CAS  PubMed  Google Scholar 

  • Cavalier DM, Lerouxel O, Neumetzler L, Yamauchi K, Reinecke A, Freshour G, Zabotina OA, Hahn MG, Burgert I, Pauly M, Raikhel NV, Keegstra K (2008) Disrupting two Arabidopsis thaliana xylosyltransferase genes results in plants deficient in xyloglucan, a major primary cell wall component. Plant Cell 20:1519–1537

    CAS  PubMed  Google Scholar 

  • Chiniquy D, Sharma V, Schultink A, Baidoo EE, Rautengarten C, Cheng K, Carroll A, Ulvskov P, Harholt J, Keasling JD, Pauly M, Scheller HV, Ronald PC (2012) XAX1 from glycosyltransferase family 61 mediates xylosyltransfer to rice xylan. Proc Natl Acad Sci USA 109:17117–17122

    CAS  PubMed  Google Scholar 

  • Chiniquy D, Varanasi P, Oh T, Harholt J, Katnelson J, Singh S, Auer M, Simmons B, Adams PD, Scheller HV, Ronald PC (2013) Three novel rice genes closely related to the Arabidopsis IRX9, IRX9L, and IRX14 genes and their roles in xylan biosynthesis. Front Plant Sci 4:83

    PubMed  Google Scholar 

  • Chou YH, Pogorelko G, Zabotina OA (2012) Xyloglucan xylosyltransferases XXT1, XXT2, and XXT5 and the glucan synthase CSLC4 form Golgi-localized multiprotein complexes. Plant Physiol 159:1355–1366

    CAS  PubMed  Google Scholar 

  • Cocuron JC, Lerouxel O, Drakakaki G, Alonso AP, Liepman AH, Keegstra K, Raikhel N, Wilkerson CG (2007) A gene from the cellulose synthase-like C family encodes a beta-1,4 glucan synthase. Proc Natl Acad Sci USA 104:8550–8555

    CAS  PubMed  Google Scholar 

  • Cosgrove DJ (1998) Cell wall loosening by expansins. Plant Physiol 118:333–339

    CAS  PubMed  Google Scholar 

  • Courtin CM, Delcour JA (2002) Arabinoxylans and endoxylanases in wheat flour bread-making. J Cereal Sci 35:225–243

    CAS  Google Scholar 

  • Cummings JH (1992) The effect of dietary fiber on fecal weight and composition. In: Spiller GA (ed) Dietary fibre in human nutrition. CRC Press, Boca Raton, pp 263–349

  • Davis J, Brandizzi F, Liepman AH, Keegstra K (2010) Arabidopsis mannan synthase CSLA9 and glucan synthase CSLC4 have opposite orientations in the Golgi membrane. Plant J 64:1028–1037

    CAS  PubMed  Google Scholar 

  • Dea ICM, Morrison A (1975) Chemistry and interactions of seed galactomannans. In: Tipson RS, Derek H (eds) Advances in carbohydrate chemistry and biochemistry, vol 31. Academic Press, London, pp 241–312. http://dx.doi.org/10.1016/S0065-2318(08)60298-X

  • Dhugga KS, Tiwari SC, Ray PM (1997) A reversibly glycosylated polypeptide (RGP1) possibly involved in plant cell wall synthesis: purification, gene cloning, and trans-Golgi localization. Proc Natl Acad Sci USA 94:7679–7684

    CAS  PubMed  Google Scholar 

  • Dhugga KS, Barreiro R, Whitten B, Stecca K, Hazebroek J, Randhawa GS, Dolan M, Kinney AJ, Tomes D, Nichols S, Anderson P (2004) Guar seed beta-mannan synthase is a member of the cellulose synthase super gene family. Science 303:363–366

    CAS  PubMed  Google Scholar 

  • Dikeman CL, Fahey GC Jr (2006) Viscosity as related to dietary fiber: a review. Crit Rev Food Sci Nutr 46:649–663

    CAS  PubMed  Google Scholar 

  • Doblin MS, Pettolino FA, Wilson SM, Campbell R, Burton RA, Fincher GB, Newbigin E, Bacic A (2009) A barley cellulose synthase-like CSLH gene mediates (1,3;1,4)-beta-d-glucan synthesis in transgenic Arabidopsis. Proc Natl Acad Sci USA 106:5996–6001

    CAS  PubMed  Google Scholar 

  • Doering A, Lathe R, Persson S (2012) An update on xylan synthesis. Mol Plant 5:769–771

    CAS  PubMed  Google Scholar 

  • Domozych DS, Ciancia M, Fangel JU, Mikkelsen MD, Ulvskov P, Willats WG (2012) The cell walls of green algae: a journey through evolution and diversity. Front Plant Sci 3:82

    CAS  PubMed  Google Scholar 

  • Dwivany FM, Yulia D, Burton RA, Shirley NJ, Wilson SM, Fincher GB, Bacic A, Newbigin E, Doblin MS (2009) The CELLULOSE-SYNTHASE LIKE C (CSLC) family of barley includes members that are integral membrane proteins targeted to the plasma membrane. Mol Plant 2:1025–1039

    CAS  PubMed  Google Scholar 

  • Ebringerová A (2005) Hemicellulose. Adv Polym Sci 186:1–67

  • Edwards M, Bowman YJ, Dea IC, Reid JS (1988) A beta-d-galactosidase from nasturtium (Tropaeolum majus L.) cotyledons. Purification, properties, and demonstration that xyloglucan is the natural substrate. J Biol Chem 263:4333–4337

    CAS  PubMed  Google Scholar 

  • Edwards M, Scott C, Gidley MJ, Reid JSG (1992) Control of mannose galactose ratio during galactomannan formation in developing legume seeds. Planta 187:67–74

    CAS  Google Scholar 

  • Edwards ME, Dickson CA, Chengappa S, Sidebottom C, Gidley MJ, Reid JSG (1999) Molecular characterisation of a membrane-bound galactosyltransferase of plant cell wall matrix polysaccharide biosynthesis. Plant J 19:691–697

    CAS  PubMed  Google Scholar 

  • Faik A (2010) Xylan biosynthesis: news from the grass. Plant Physiol 153:396–402

    CAS  PubMed  Google Scholar 

  • Faik A, Bar-Peled M, DeRocher AE, Zeng WQ, Perrin RM, Wilkerson C, Raikhel NV, Keegstra K (2000) Biochemical characterization and molecular cloning of an alpha-1,2-fucosyltransferase that catalyzes the last step of cell wall xyloglucan biosynthesis in pea. J Biol Chem 275:15082–15089

    CAS  PubMed  Google Scholar 

  • Faik A, Price NJ, Raikhel NV, Keegstra K (2002) An Arabidopsis gene encoding an alpha-xylosyltransferase involved in xyloglucan biosynthesis. Proc Natl Acad Sci USA 99:7797–7802

    CAS  PubMed  Google Scholar 

  • Fischer MH, Yu N, Gray GR, Ralph J, Anderson L, Marlett JA (2004) The gel-forming polysaccharide of psyllium husk (Plantago ovata Forsk). Carbohydr Res 339:2009–2017

    CAS  PubMed  Google Scholar 

  • Fooks LJ, Fuller R, Gibson GR (1999) Prebiotics, probiotics and human gut microbiology. Int Dairy J 9:53–61

    Google Scholar 

  • Fry SC (1989) The structure and functions of xyloglucan. J Exp Bot 40:1–11

    CAS  Google Scholar 

  • Fry SC, Janice GM (1989) Toward a working model of the growing plant cell wall. Plant cell wall polymers. American Chemical Society, Washington, DC, pp 33–46

    Google Scholar 

  • Fry SC, Mohler KE, Nesselrode BH, Frankova L (2008a) Mixed-linkage beta-glucan: xyloglucan endotransglucosylase, a novel wall-remodelling enzyme from Equisetum (horsetails) and charophytic algae. Plant J 55:240–252

    CAS  PubMed  Google Scholar 

  • Fry SC, Nesselrode BH, Miller JG, Mewburn BR (2008b) Mixed-linkage (1–>3,1–>4)-beta-d-glucan is a major hemicellulose of Equisetum (horsetail) cell walls. New Phytol 179:104–115

    CAS  PubMed  Google Scholar 

  • Ghelardi E, Tavanti A, Celandroni F, Lupetti A, Blandizzi C, Boldrini E, Campa M, Senesi S (2000) Effect of a novel mucoadhesive polysaccharide obtained from tamarind seeds on the intraocular penetration of gentamicin and ofloxacin in rabbits. J Antimicrob Chemother 46:831–834

    CAS  PubMed  Google Scholar 

  • Gibeaut DM, Pauly M, Bacic A, Fincher GB (2005) Changes in cell wall polysaccharides in developing barley (Hordeum vulgare) coleoptiles. Planta 221:729–738

    CAS  PubMed  Google Scholar 

  • Gille S, Pauly M (2012) O-acetylation of plant cell wall polysaccharides. Front Plant Sci 3:12

    CAS  PubMed  Google Scholar 

  • Gille S, Cheng K, Skinner ME, Liepman AH, Wilkerson CG, Pauly M (2011a) Deep sequencing of voodoo lily (Amorphophallus konjac): an approach to identify relevant genes involved in the synthesis of the hemicellulose glucomannan. Planta 234:515–526

    CAS  PubMed  Google Scholar 

  • Gille S, de Souza A, Xiong GY, Benz M, Cheng K, Schultink A, Reca IB, Pauly M (2011b) O-acetylation of arabidopsis hemicellulose xyloglucan requires AXY4 or AXY4L, proteins with a TBL and DUF231 domain. Plant Cell 23:4041–4053

    CAS  PubMed  Google Scholar 

  • Goubet F, Barton CJ, Mortimer JC, Yu XL, Zhang ZN, Miles GP, Richens J, Liepman AH, Seffen K, Dupree P (2009) Cell wall glucomannan in Arabidopsis is synthesised by CSLA glycosyltransferases, and influences the progression of embryogenesis. Plant J 60:527–538

    CAS  PubMed  Google Scholar 

  • Gunl M, Pauly M (2011) AXY3 encodes a alpha-xylosidase that impacts the structure and accessibility of the hemicellulose xyloglucan in Arabidopsis plant cell walls. Planta 233:707–719

    PubMed  Google Scholar 

  • Gunl M, Gille S, Pauly M (2010) OLIgo mass profiling (OLIMP) of extracellular polysaccharides. J Vis Exp. doi:10.3791/2046

    PubMed  Google Scholar 

  • Gunl M, Neumetzler L, Kraemer F, de Souza A, Schultink A, Pena M, York WS, Pauly M (2011) AXY8 encodes an alpha-fucosidase, underscoring the importance of apoplastic metabolism on the fine structure of Arabidopsis cell wall polysaccharides. Plant Cell 23:4025–4040

    CAS  PubMed  Google Scholar 

  • Ha MA, Apperley DC, Jarvis MC (1997) Molecular rigidity in dry and hydrated onion cell walls. Plant Physiol 115:593–598

    CAS  PubMed  Google Scholar 

  • Hantus S, Pauly M, Darvill AG, Albersheim P, York WS (1997) Structural characterization of novel l-galactose-containing oligosaccharide subunits of jojoba seed xyloglucans. Carbohydr Res 304:11–20

    CAS  PubMed  Google Scholar 

  • Harris P, Trethewey JK (2010) The distribution of ester-linked ferulic acid in the cell walls of angiosperms. Phytochem Rev 9:19–33

    CAS  Google Scholar 

  • Hayashi T (1989) Xyloglucans in the primary-cell wall. Annu Rev Plant Physiol Plant Molec Biol 40:139–168

    CAS  Google Scholar 

  • Hazen SP, Scott-Craig JS, Walton JD (2002) Cellulose synthase-like genes of rice. Plant Physiol 128:336–340

    CAS  PubMed  Google Scholar 

  • Hoffman M, Jia Z, Pena MJ, Cash M, Harper A, Blackburn AR 2nd, Darvill A, York WS (2005) Structural analysis of xyloglucans in the primary cell walls of plants in the subclass Asteridae. Carbohydr Res 340:1826–1840

    CAS  PubMed  Google Scholar 

  • Hornblad E, Ulfstedt M, Ronne H, Marchant A (2013) Partial functional conservation of IRX10 homologs in physcomitrella patens and Arabidopsis thaliana indicates an evolutionary step contributing to vascular formation in land plants. BMC Plant Biol 13:3

    PubMed  Google Scholar 

  • Hrmova M, Fincher GB (2001) Structure-function relationships of beta-d-glucan endo- and exohydrolases from higher plants. Plant Mol Biol 47:73–91

    CAS  PubMed  Google Scholar 

  • Hsieh YS, Harris PJ (2009) Xyloglucans of monocotyledons have diverse structures. Mol Plant 2:943–965

    CAS  PubMed  Google Scholar 

  • Iglesias N, Abelenda JA, Rodino M, Sampedro J, Revilla G, Zarra I (2006) Apoplastic glycosidases active against xyloglucan oligosaccharides of Arabidopsis thaliana. Plant Cell Physiol 47:55–63

    CAS  PubMed  Google Scholar 

  • Jensen JK, Kim H, Cocuron JC, Orler R, Ralph J, Wilkerson CG (2011) The DUF579 domain containing proteins IRX15 and IRX15-L affect xylan synthesis in Arabidopsis. Plant J 66:387–400

    CAS  PubMed  Google Scholar 

  • Jensen JK, Schultink A, Keegstra K, Wilkerson CG, Pauly M (2012) RNA-Seq analysis of developing nasturtium seeds (Tropaeolum majus): identification and characterization of an additional galactosyltransferase involved in xyloglucan biosynthesis. Mol Plant 5:984–992

    CAS  PubMed  Google Scholar 

  • Jia Z, Qin Q, Darvill AG, York WS (2003) Structure of the xyloglucan produced by suspension-cultured tomato cells. Carbohydr Res 338:1197–1208

    CAS  PubMed  Google Scholar 

  • Jia Z, Cash M, Darvill AG, York WS (2005) NMR characterization of endogenously O-acetylated oligosaccharides isolated from tomato (Lycopersicon esculentum) xyloglucan. Carbohydr Res 340:1818–1825

    CAS  PubMed  Google Scholar 

  • Johansson MH, Samuelson O (1977) Reducing end groups in birch xylan and their alkaline-degradation. Wood Sci Technol 11:251–263

    CAS  Google Scholar 

  • Kato Y, Matsuda K (1981) Occurrence of a soluble and low-molecular weight xyloglucan and its origin in etiolated mung bean hypocotyls. Agr Biol Chem Tokyo 45:1–8

    CAS  Google Scholar 

  • Kato Y, Ito J, Mitsuishi Y (2004) Further structural study of the barley and bamboo shoot xyloglucans by xyloglucanase. J Appl Glycosci 51:327–333

    CAS  Google Scholar 

  • Keegstra K, David C (2010) Glycosyltransferases of the GT34 and GT37 families. Annu Plant Rev Plant Polysacch Biosynth Bioeng 41:235–249

    Google Scholar 

  • Keegstra K, Talmadge KW, Bauer WD, Albersheim P (1973) The structure of plant cell walls: III. A model of the walls of suspension-cultured sycamore cells based on the interconnections of the macromolecular components. Plant Physiol 51:188–197

    CAS  PubMed  Google Scholar 

  • Keppler BD, Showalter AM (2010) IRX14 and IRX14-LIKE, two glycosyl transferases involved in glucuronoxylan biosynthesis and drought tolerance in Arabidopsis. Mol Plant 3:834–841

    CAS  PubMed  Google Scholar 

  • Kiefer LL, York WS, Darvill AG, Albersheim P (1989) Xyloglucan isolated from suspension-cultured sycamore cell walls is O-acetylated. Phytochemistry 28:2105–2107

    CAS  Google Scholar 

  • Kim JB, Olek AT, Carpita NC (2000) Cell wall and membrane-associated exo-beta-d-glucanases from developing maize seedlings. Plant Physiol 123:471–486

    CAS  PubMed  Google Scholar 

  • Kong Y, Zhou G, Avci U, Gu X, Jones C, Yin Y, Xu Y, Hahn MG (2009) Two poplar glycosyltransferase genes, PdGATL1.1 and PdGATL1.2, are functional orthologs to PARVUS/AtGATL1 in Arabidopsis. Mol Plant 2:1040–1050

    CAS  PubMed  Google Scholar 

  • Kooiman P (1961) The constitution of tamarindus-amyloid. Recl Trav Chim Pay B 80:849–865

    Google Scholar 

  • Lee C, O’Neill MA, Tsumuraya Y, Darvill AG, Ye ZH (2007a) The irregular xylem9 mutant is deficient in xylan xylosyltransferase activity. Plant Cell Physiol 48:1624–1634

    CAS  PubMed  Google Scholar 

  • Lee C, Zhong R, Richardson EA, Himmelsbach DS, McPhail BT, Ye ZH (2007b) The PARVUS gene is expressed in cells undergoing secondary wall thickening and is essential for glucuronoxylan biosynthesis. Plant Cell Physiol 48:1659–1672

    CAS  PubMed  Google Scholar 

  • Lee C, Teng Q, Huang W, Zhong R, Ye ZH (2009a) The poplar GT8E and GT8F glycosyltransferases are functional orthologs of Arabidopsis PARVUS involved in glucuronoxylan biosynthesis. Plant Cell Physiol 50:1982–1987

    CAS  PubMed  Google Scholar 

  • Lee CH, Teng Q, Huang WL, Zhong RQ, Ye ZH (2009b) The F8H glycosyltransferase is a functional paralog of FRA8 involved in glucuronoxylan biosynthesis in Arabidopsis. Plant Cell Physiol 50:812–827

    CAS  PubMed  Google Scholar 

  • Lee C, Teng Q, Huang W, Zhong R, Ye ZH (2010) The Arabidopsis family GT43 glycosyltransferases form two functionally nonredundant groups essential for the elongation of glucuronoxylan backbone. Plant Physiol 153:526–541

    CAS  PubMed  Google Scholar 

  • Lee C, Teng Q, Zhong R, Ye ZH (2012a) Arabidopsis GUX proteins are glucuronyltransferases responsible for the addition of glucuronic acid side chains onto xylan. Plant Cell Physiol 53:1204–1216

    CAS  PubMed  Google Scholar 

  • Lee C, Teng Q, Zhong R, Yuan Y, Haghighat M, Ye ZH (2012b) Three Arabidopsis DUF579 domain-containing GXM proteins are methyltransferases catalyzing 4-O-methylation of glucuronic acid on xylan. Plant Cell Physiol 53:1934–1949

    CAS  PubMed  Google Scholar 

  • Lee C, Zhong R, Ye ZH (2012c) Arabidopsis family GT43 members are xylan xylosyltransferases required for the elongation of the xylan backbone. Plant Cell Physiol 53:135–143

    PubMed  Google Scholar 

  • Lee C, Zhong R, Ye ZH (2012d) Biochemical characterization of xylan xylosyltransferases involved in wood formation in poplar. Plant Signal Behav 7:332–337

    CAS  PubMed  Google Scholar 

  • Leonard R, Pabst M, Bondili JS, Chambat G, Veit C, Strasser R, Altmann F (2008) Identification of an Arabidopsis gene encoding a GH95 alpha1,2-fucosidase active on xyloglucan oligo- and polysaccharides. Phytochemistry 69:1983–1988

    CAS  PubMed  Google Scholar 

  • Liepman AH, Wilkerson CG, Keegstra K (2005) Expression of cellulose synthase-like (Csl) genes in insect cells reveals that CslA family members encode mannan synthases. Proc Natl Acad Sci USA 102:2221–2226

    CAS  PubMed  Google Scholar 

  • Liepman AH, Nairn CJ, Willats WGT, Sorensen I, Roberts AW, Keegstra K (2007) Functional genomic analysis supports conservation of function among cellulose synthase-like a gene family members and suggests diverse roles of mannans in plants. Plant Physiol 143:1881–1893

    CAS  PubMed  Google Scholar 

  • Liwanag AJ, Ebert B, Verhertbruggen Y, Rennie EA, Rautengarten C, Oikawa A, Andersen MC, Clausen MH, Scheller HV (2012) Pectin biosynthesis: GALS1 in Arabidopsis thaliana is a beta-1,4-galactan beta-1,4-galactosyltransferase. Plant Cell 24:5024–5036

    CAS  PubMed  Google Scholar 

  • Madson M, Dunand C, Li X, Verma R, Vanzin GF, Caplan J, Shoue DA, Carpita NC, Reiter WD (2003) The MUR3 gene of Arabidopsis encodes a xyloglucan galactosyltransferase that is evolutionarily related to animal exostosins. Plant Cell 15:1662–1670

    CAS  PubMed  Google Scholar 

  • Manna S, Mcanalley BH (1993) Determination of the position of the O-acetyl group in a beta-(1–>4)-mannan (acemannan) from Aloe-barbardensis Miller. Carbohydr Res 241:317–319

    CAS  PubMed  Google Scholar 

  • McCann MC, Roberts K (1991) Architecture of the primary cell wall. In: Lloyd CW (ed) The cytoskeletal basis of plant growth and form. Academic Press, London, pp 109–129

    Google Scholar 

  • Meier H, Reid JSG (1982) Reserve polysaccharides other than starch in higher plants. In: Loewus F, Tanner W (eds) Plant carbohydrates I, vol 13/A. Encyclopedia of plant physiology. Springer, Berlin, pp 418–471. doi:10.1007/978-3-642-68275-9_11

  • Meikle PJ, Hoogenraad NJ, Bonig I, Clarke AE, Stone BA (1994) A (1–>3,1–>4)-beta-glucan-specific monoclonal antibody and its use in the quantitation and immunocytochemical location of (1–>3,1–>4)-beta-glucans. Plant J 5:1–9

    CAS  PubMed  Google Scholar 

  • Mishra MU, Khandare JN (2007) Tamarind seed polysaccharides: biodegradable polymer for colonic drug delivery. In: Second International Conference and Indo-Canadian Satellite symposium on pharmaceutical science, technology, practice and natural products, conference chronicle, DDS

  • Mishra A, Malhotra AV (2009) Tamarind xyloglucan: a polysaccharide with versatile application potential. J Mater Chem 19:8528–8536

    CAS  Google Scholar 

  • Moore P, Staehelin LA (1988) Immunogold localization of the cell-wall-matrix polysaccharides rhamnogalacturonan I and xyloglucan during cell expansion and cytokinesis in Trifolium pratense L.; implication for secretory pathways. Planta 174:433–445

    CAS  Google Scholar 

  • Mortimer JC, Miles GP, Brown DM, Zhang Z, Segura MP, Weimar T, Yu X, Seffen KA, Stephens E, Turner SR, Dupree P (2010) Absence of branches from xylan in Arabidopsis gux mutants reveals potential for simplification of lignocellulosic biomass. Proc Natl Acad Sci USA 107:17409–17414

    CAS  PubMed  Google Scholar 

  • Naran R, Chen G, Carpita NC (2008) Novel rhamnogalacturonan I and arabinoxylan polysaccharides of flax seed mucilage. Plant Physiol 148:132–141

    CAS  PubMed  Google Scholar 

  • Nishitani K (1992) Endo-xyloglucan transferase, a novel enzyme which mediates transglycosylation reaction between xyloglucan molecules (chapter). In: Plant cell walls as biopolymers with physiological functions. pp 263–268

  • Nishitani K, Tominaga R (1992) Endo-xyloglucan transferase, a novel class of glycosyltransferase that catalyzes transfer of a segment of xyloglucan molecule to another xyloglucan molecule. J Biol Chem 267:21058–21064

    CAS  PubMed  Google Scholar 

  • Park YB, Cosgrove DJ (2012a) Changes in cell wall biomechanical properties in the xyloglucan-deficient xxt1/xxt2 mutant of Arabidopsis. Plant Physiol 158:465–475

    CAS  PubMed  Google Scholar 

  • Park YB, Cosgrove DJ (2012b) A revised architecture of primary cell walls based on biomechanical changes induced by substrate-specific endoglucanases. Plant Physiol 158:1933–1943

    CAS  PubMed  Google Scholar 

  • Pauly M, Keegstra K (2008) Cell-wall carbohydrates and their modification as a resource for biofuels. Plant J 54:559–568

    PubMed  Google Scholar 

  • Pauly M, Keegstra K (2010) Plant cell wall polymers as precursors for biofuels. Curr Opin Plant Biol 13:305–312

    CAS  PubMed  Google Scholar 

  • Pauly M, Albersheim P, Darvill A, York WS (1999a) Molecular domains of the cellulose/xyloglucan network in the cell walls of higher plants. Plant J 20:629–639

    CAS  PubMed  Google Scholar 

  • Pauly M, Andersen LN, Kauppinen S, Kofod LV, York WS, Albersheim P, Darvill A (1999b) A xyloglucan-specific endo-beta-1,4-glucanase from Aspergillus aculeatus: expression cloning in yeast, purification and characterization of the recombinant enzyme. Glycobiology 9:93–100

    CAS  PubMed  Google Scholar 

  • Pauly M, Eberhard S, Albersheim P, Darvill A, York WS (2001a) Effects of the mur1 mutation on xyloglucans produced by suspension-cultured Arabidopsis thaliana cells. Planta 214:67–74

    CAS  PubMed  Google Scholar 

  • Pauly M, Qin Q, Greene H, Albersheim P, Darvill A, York WS (2001b) Changes in the structure of xyloglucan during cell elongation. Planta 212:842–850

    CAS  PubMed  Google Scholar 

  • Pena MJ, Zhong R, Zhou GK, Richardson EA, O’Neill MA, Darvill AG, York WS, Ye ZH (2007) Arabidopsis irregular xylem8 and irregular xylem9: implications for the complexity of glucuronoxylan biosynthesis. Plant Cell 19:549–563

    CAS  PubMed  Google Scholar 

  • Pena MJ, Darvill AG, Eberhard S, York WS, O’Neill MA (2008) Moss and liverwort xyloglucans contain galacturonic acid and are structurally distinct from the xyloglucans synthesized by hornworts and vascular plants. Glycobiology 18:891–904

    CAS  PubMed  Google Scholar 

  • Pena MJ, Kong Y, York WS, O’Neill MA (2012) A galacturonic acid-containing xyloglucan is involved in Arabidopsis root hair tip growth. Plant Cell 24:4511–4524

    CAS  PubMed  Google Scholar 

  • Perrin RM, DeRocher AE, Bar-Peled M, Zeng WQ, Norambuena L, Orellana A, Raikhel NV, Keegstra K (1999) Xyloglucan fucosyltransferase, an enzyme involved in plant cell wall biosynthesis. Science 284:1976–1979

    CAS  PubMed  Google Scholar 

  • Perrin RM, Jia Z, Wagner TA, O’Neill MA, Sarria R, York WS, Raikhel NV, Keegstra K (2003) Analysis of xyloglucan fucosylation in Arabidopsis. Plant Physiol 132:768–778

    CAS  PubMed  Google Scholar 

  • Persson S, Caffall KH, Freshour G, Hilley MT, Bauer S, Poindexter P, Hahn MG, Mohnen D, Somerville C (2007) The Arabidopsis irregular xylem8 mutant is deficient in glucuronoxylan and homogalacturonan, which are essential for secondary cell wall integrity. Plant Cell 19:237–255

    CAS  PubMed  Google Scholar 

  • Popper ZA, Fry SC (2003) Primary cell wall composition of bryophytes and charophytes. Ann Bot 91:1–12

    CAS  PubMed  Google Scholar 

  • Popper ZA, Fry SC (2008) Xyloglucan-pectin linkages are formed intra-protoplasmically, contribute to wall-assembly, and remain stable in the cell wall. Planta 227:781–794

    CAS  PubMed  Google Scholar 

  • Popper ZA, Michel G, Herve C, Domozych DS, Willats WG, Tuohy MG, Kloareg B, Stengel DB (2011) Evolution and diversity of plant cell walls: from algae to flowering plants. Annu Rev Plant Biol 62:567–590

    CAS  PubMed  Google Scholar 

  • Rao PS, Srivastava HC (1973) Tamarind in industrial gums, 2nd edn. In: Whistler RL (ed) Academic Press, New York, pp 369–411

  • Ray B, Loutelier-Bourhis C, Lange C, Condamine E, Driouich A, Lerouge P (2004) Structural investigation of hemicellulosic polysaccharides from Argania spinosa: characterisation of a novel xyloglucan motif. Carbohydr Res 339:201–208

    CAS  PubMed  Google Scholar 

  • Reiter WD, Chapple C, Somerville CR (1997) Mutants of Arabidopsis thaliana with altered cell wall polysaccharide composition. Plant J 12:335–345

    CAS  PubMed  Google Scholar 

  • Rennie EA, Hansen SF, Baidoo EE, Hadi MZ, Keasling JD, Scheller HV (2012) Three members of the Arabidopsis glycosyltransferase family 8 are xylan glucuronosyltransferases. Plant Physiol 159:1408–1417

    CAS  PubMed  Google Scholar 

  • Rodriguez-Gacio MDC, Iglesias-Fernandez R, Carbonero P, Matilla AJ (2012) Softening-up mannan-rich cell walls. J Exp Bot 63:3975–3988

    Google Scholar 

  • Rolando M, Valente C (2007) Establishing the tolerability and performance of tamarind seed polysaccharide (TSP) in treating dry eye syndrome: results of a clinical study. BMC Ophthalmol 7:5

    PubMed  Google Scholar 

  • Rose JK, Braam J, Fry SC, Nishitani K (2002) The XTH family of enzymes involved in xyloglucan endotransglucosylation and endohydrolysis: current perspectives and a new unifying nomenclature. Plant Cell Physiol 43:1421–1435

    CAS  PubMed  Google Scholar 

  • Sampedro J, Sieiro C, Revilla G, Gonzalez-Villa T, Zarra I (2001) Cloning and expression pattern of a gene encoding an alpha-xylosidase active against xyloglucan oligosaccharides from Arabidopsis. Plant Physiol 126:910–920

    CAS  PubMed  Google Scholar 

  • Sampedro J, Gianzo C, Iglesias N, Guitian E, Revilla G, Zarra I (2012) AtBGAL10 is the main xyloglucan beta-galactosidase in Arabidopsis, and its absence results in unusual xyloglucan subunits and growth defects. Plant Physiol 158:1146–1157

    CAS  PubMed  Google Scholar 

  • Sarossy Z, Blomfeldt TOJ, Hedenqvist MS, Koch CB, Ray SS, Plackett D (2012) Composite films of arabinoxylan and fibrous sepiolite: morphological, mechanical, and Baffler properties. Acs Appl Mater Inter 4:3378–3386

    CAS  Google Scholar 

  • Scheller HV, Ulvskov P (2010) Hemicelluloses. Annu Rev Plant Biol 61:263–289

    CAS  PubMed  Google Scholar 

  • Schroder R, Wegrzyn TF, Bolitho KM, Redgwell RJ (2004) Mannan transglycosylase: a novel enzyme activity in cell walls of higher plants. Planta 219:590–600

    PubMed  Google Scholar 

  • Seeberger PH, Werz DB (2007) Synthesis and medical applications of oligosaccharides. Nature 446:1046–1051

    CAS  PubMed  Google Scholar 

  • Shimizu K, Ishihara M (1983) Hemicellulases of brown rotting fungus, Tyromyces-Palustris. 5. Isolation and characterization of oligosaccharides from the hydrolyzate of larch wood glucomannan with endo-beta-d-mannanase. Agr Biol Chem Tokyo 47:949–955

    CAS  Google Scholar 

  • Sims IM, Munro SL, Currie G, Craik D, Bacic A (1996) Structural characterisation of xyloglucan secreted by suspension-cultured cells of Nicotiana plumbaginifolia. Carbohydr Res 293:147–172

    CAS  PubMed  Google Scholar 

  • Smith RC, Fry SC (1991) Endotransglycosylation of xyloglucans in plant cell suspension cultures. Biochem J 279(Pt 2):529–535

    CAS  PubMed  Google Scholar 

  • Somerville C, Bauer S, Brininstool G, Facette M, Hamann T, Milne J, Osborne E, Paredez A, Persson S, Raab T, Vorwerk S, Youngs H (2004) Toward a systems approach to understanding plant cell walls. Science 306:2206–2211

    CAS  PubMed  Google Scholar 

  • Sorensen I, Pettolino FA, Wilson SM, Doblin MS, Johansen B, Bacic A, Willats WG (2008) Mixed-linkage (1–>3), (1–>4)-beta-d-glucan is not unique to the Poales and is an abundant component of Equisetum arvense cell walls. Plant J 54:510–521

    PubMed  Google Scholar 

  • Sterling JD, Atmodjo MA, Inwood SE, Kumar Kolli VS, Quigley HF, Hahn MG, Mohnen D (2006) Functional identification of an Arabidopsis pectin biosynthetic homogalacturonan galacturonosyltransferase. Proc Natl Acad Sci USA 103:5236–5241

    CAS  PubMed  Google Scholar 

  • Strasser R, Mucha J, Mach L, Altmann F, Wilson IB, Glossl J, Steinkellner H (2000) Molecular cloning and functional expression of beta1, 2-xylosyltransferase cDNA from Arabidopsis thaliana. FEBS Lett 472:105–108

    CAS  PubMed  Google Scholar 

  • Suzuki S, Li LG, Sun YH, Chiang VL (2006) The cellulose synthase gene superfamily and biochemical functions of xylem-specific cellulose synthase-like genes in Populus trichocarpa. Plant Physiol 142:1233–1245

    CAS  PubMed  Google Scholar 

  • Takeda T, Furuta Y, Awano T, Mizuno K, Mitsuishi Y, Hayashi T (2002) Suppression and acceleration of cell elongation by integration of xyloglucans in pea stem segments. Proc Natl Acad Sci USA 99:9055–9060

    CAS  PubMed  Google Scholar 

  • Taketa S, Yuo T, Tonooka T, Tsumuraya Y, Inagaki Y, Haruyama N, Larroque O, Jobling SA (2012) Functional characterization of barley betaglucanless mutants demonstrates a unique role for CslF6 in (1,3;1,4)-beta-d-glucan biosynthesis. J Exp Bot 63:381–392

    CAS  PubMed  Google Scholar 

  • Talbott LD, Ray PM (1992) Molecular size and separability features of pea cell wall polysaccharides: implications for models of primary wall structure. Plant Physiol 98:357–368

    CAS  PubMed  Google Scholar 

  • Tan L, Eberhard S, Pattathil S, Warder C, Glushka J, Yuan C, Hao Z, Zhu X, Avci U, Miller JS, Baldwin D, Pham C, Orlando R, Darvill A, Hahn MG, Kieliszewski MJ, Mohnen D (2013) An Arabidopsis cell wall proteoglycan consists of pectin and arabinoxylan covalently linked to an arabinogalactan protein. Plant Cell 25:270–287

    CAS  PubMed  Google Scholar 

  • Thompson DS (2005) How do cell walls regulate plant growth? J Exp Bot 56:2275–2285

    CAS  PubMed  Google Scholar 

  • Truswell AS (2002) Cereal grains and coronary heart disease. Eur J Clin Nutr 56:1–14

    CAS  PubMed  Google Scholar 

  • Urbanowicz BR, Pena MJ, Ratnaparkhe S, Avci U, Backe J, Steet HF, Foston M, Li H, O’Neill MA, Ragauskas AJ, Darvill AG, Wyman C, Gilbert HJ, York WS (2012) 4-O-methylation of glucuronic acid in Arabidopsis glucuronoxylan is catalyzed by a domain of unknown function family 579 protein. Proc Natl Acad Sci USA 109:14253–14258

    CAS  PubMed  Google Scholar 

  • Valent BS, Albersheim P (1974) The structure of plant cell walls: v. On the binding of xyloglucan to cellulose fibers. Plant Physiol 54:105–108

    CAS  PubMed  Google Scholar 

  • Vanzin GF, Madson M, Carpita NC, Raikhel NV, Keegstra K, Reiter WD (2002) The mur2 mutant of Arabidopsis thaliana lacks fucosylated xyloglucan because of a lesion in fucosyltransferase AtFUT1. Proc Natl Acad Sci USA 99:3340–3345

    CAS  PubMed  Google Scholar 

  • Vega-Sanchez ME, Verhertbruggen Y, Christensen U, Chen X, Sharma V, Varanasi P, Jobling SA, Talbot M, White RG, Joo M, Singh S, Auer M, Scheller HV, Ronald PC (2012) Loss of Cellulose synthase-like F6 function affects mixed-linkage glucan deposition, cell wall mechanical properties, and defense responses in vegetative tissues of rice. Plant Physiol 159:56–69

    CAS  PubMed  Google Scholar 

  • Vega-Sanchez M, Verhertbruggen Y, Scheller HV, Ronald P (2013) Abundance of mixed linkage glucan in mature tissues and secondary cell walls of grasses. Plant Signal Behav 8:e23143

    PubMed  Google Scholar 

  • Verhertbruggen Y, Yin L, Oikawa A, Scheller HV (2011) Mannan synthase activity in the CSLD family. Plant Signal Behav 6:1620–1623

    CAS  PubMed  Google Scholar 

  • Vuttipongchaikij S, Brocklehurst D, Steele-King C, Ashford DA, Gomez LD, McQueen-Mason SJ (2012) Arabidopsis GT34 family contains five xyloglucan alpha-1,6-xylosyltransferases. New Phytol 195:585–595

    CAS  PubMed  Google Scholar 

  • Wang Y, Alonso AP, Wilkerson CG, Keegstra K (2012) Deep EST profiling of developing fenugreek endosperm to investigate galactomannan biosynthesis and its regulation. Plant Mol Biol 79:243–258

    CAS  PubMed  Google Scholar 

  • Wang Y, Mortimer JC, Davis J, Dupree P, Keegstra K (2013) Identification of an additional protein involved in mannan biosynthesis. Plant J 73:105–117

    CAS  Google Scholar 

  • Williams MAK, Foster TJ, Martin DR, Norton IT, Yoshimura M, Nishinari K (2000) A molecular description of the gelation mechanism of konjac mannan. Biomacromolecules 1:440–450

    CAS  PubMed  Google Scholar 

  • Wu AM, Rihouey C, Seveno M, Hornblad E, Singh SK, Matsunaga T, Ishii T, Lerouge P, Marchant A (2009) The Arabidopsis IRX10 and IRX10-LIKE glycosyltransferases are critical for glucuronoxylan biosynthesis during secondary cell wall formation. Plant J 57:718–731

    CAS  PubMed  Google Scholar 

  • Wu AM, Hornblad E, Voxeur A, Gerber L, Rihouey C, Lerouge P, Marchant A (2010) Analysis of the Arabidopsis IRX9/IRX9-L and IRX14/IRX14-L pairs of glycosyltransferase genes reveals critical contributions to biosynthesis of the hemicellulose glucuronoxylan. Plant Physiol 153:542–554

    CAS  PubMed  Google Scholar 

  • Xiong G, Cheng K, Pauly M (2013) Xylan O-acetylation impacts xylem development and enzymatic recalcitrance as indicated by the Arabidopsis mutant tbl29. Mol Plant. doi:10.1093/mp/sst014

    Google Scholar 

  • York WS, O’Neill MA (2008) Biochemical control of xylan biosynthesis—which end is up? Curr Opin Plant Biol 11:258–265

    CAS  PubMed  Google Scholar 

  • York WS, Oates JE, van Halbeek H, Darvill AG, Albersheim P, Tiller PR, Dell A (1988) Location of the O-acetyl substituents on a nonasaccharide repeating unit of sycamore extracellular xyloglucan. Carbohydr Res 173:113–132

    CAS  PubMed  Google Scholar 

  • Zabotina OA, van de Ven WTG, Freshour G, Drakakaki G, Cavalier D, Mouille G, Hahn MG, Keegstra K, Raikhel NV (2008) Arabidopsis XXT5 gene encodes a putative alpha-1,6-xylosyltransferase that is involved in xyloglucan biosynthesis. Plant J 56:101–115

    CAS  PubMed  Google Scholar 

  • Zabotina OA, Avci U, Cavalier D, Pattathil S, Chou YH, Eberhard S, Danhof L, Keegstra K, Hahn MG (2012) Mutations in multiple XXT genes of Arabidopsis reveal the complexity of xyloglucan biosynthesis. Plant Physiol 159:1367–1384

    CAS  PubMed  Google Scholar 

  • Zeng W, Jiang N, Nadella R, Killen TL, Nadella V, Faik A (2010) A glucurono(arabino)xylan synthase complex from wheat contains members of the GT43, GT47, and GT75 families and functions cooperatively. Plant Physiol 154:78–97

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to mention the funding sources that supported the authors. S.G., G.X., A. de S., N.M. were supported by a grant from the Energy Biosciences Institute; A.S. by the Dickinsen Chair for wood science and technology for M.P.; L.L. by the Department of Energy grant: ER65037-1036816.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Pauly.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pauly, M., Gille, S., Liu, L. et al. Hemicellulose biosynthesis. Planta 238, 627–642 (2013). https://doi.org/10.1007/s00425-013-1921-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-013-1921-1

Keywords

Navigation