Skip to main content

Enhancement of Hydrolysis

  • Chapter
  • First Online:
Biofuel Production Using Anaerobic Digestion

Part of the book series: Green Energy and Technology ((GREEN))

  • 244 Accesses

Abstract

The relationship between structural components of carbohydrate for a given biomass type reflects its complexity. Crystallinity and degree of polymerization of cellulose, the presence of an extracellular layer (EPS layer) in the sludge biomass, available surface area (or penetrability).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhao Y, Zhao Y, Zhang Z, Wei Y, Wang H, Lu Q, Li Y, Wei Z (2017) Effect of thermo-tolerant actinomycetes inoculation on cellulose degradation and the formation of humic substances during composting. Waste Manag 68:64–73

    Article  Google Scholar 

  2. Sharmila VG, Kumar MD, Pugazhendi A, Bajhaiya AK, Gugulothu P, Banu JR (2021) Biofuel production from Macroalgae: present scenario and future scope. Bioengineered 12:9216–9238

    Article  Google Scholar 

  3. André L, Pauss A, Ribeiro T (2018) Solid anaerobic digestion: state-of-art, scientific and technological hurdles. Bioresour Technol 247:1027–1037

    Article  Google Scholar 

  4. Monlau F, Sambusiti C, Ficara E, Aboulkas A, Barakat A, Carrère H (2015) New opportunities for agricultural digestate valorization: current situation and perspectives. Energy Environ Sci 8:2600–2621

    Article  Google Scholar 

  5. Banu JR, Sharmila VG, Devi MG, Kumar SA, Kumar G, Nguyen DD, Saratale GD (2019) Cost effective sludge reduction using synergetic effect of dark fenton and disperser treatment. J Clean Prod 207:261–270

    Article  Google Scholar 

  6. Degueurce A, Trémier A, Peu P (2016) Dynamic effect of leachate recirculation on batch mode solid state anaerobic digestion: Influence of recirculated volume, leachate to substrate ratio and recirculation periodicity. Bioresour Technol 216:553–561

    Article  Google Scholar 

  7. Banu JR, Sharmila VG, Kavitha S, Rajajothi R, Gunasekaran M, Angappane S, Kumar G (2020) TiO2—chitosan thin film induced solar photocatalytic deflocculation of sludge for profitable bacterial pretreatment and biofuel production. Fuel 273:117741

    Article  Google Scholar 

  8. Di Maria F, Barratta M, Bianconi F, Placidi P, Passeri D (2017) Solid anaerobic digestion batch with liquid digestate recirculation and wet anaerobic digestion of organic waste: comparison of system performances and identification of microbial guilds. Waste Manag 59:172–180

    Article  Google Scholar 

  9. Lin L, Li Y (2017) Sequential batch thermophilic solid-state anaerobic digestion of lignocellulosic biomass via recirculating digestate as inoculum—Part I: reactor performance. Bioresour Technol 236:186–193

    Article  Google Scholar 

  10. Jiang J, Liu X, Huang Y, Huang H (2015) Inoculation with nitrogen turnover bacterial agent appropriately increasing nitrogen and promoting maturity in pig manure composting. Waste Manag 39:78–85

    Article  Google Scholar 

  11. Sharmila VG, Kavitha S, Rajashankar K, Yeom IT, Banu JR (2015) Effects of titanium dioxide mediated dairy waste activated sludge deflocculation on the efficiency of bacterial disintegration and cost of sludge management. Bioresour Technol 197:64–71

    Article  Google Scholar 

  12. Zeng G, Yu M, Chen Y, Huang D, Zhang J, Huang H, Jiang R, Yu Z (2010) Effects of inoculation with Phanerochaete chrysosporium at various time points on enzyme activities during agricultural waste composting. Bioresour Technol 101:222–227

    Article  Google Scholar 

  13. Xi B, He X, Dang Q, Yang T, Li M, Wang X, Li D, Tang J (2015) Effect of multi-stage inoculation on the bacterial and fungal community structure during organic municipal solid wastes composting. Bioresour Technol 196:399–405

    Article  Google Scholar 

  14. Sung S, Liu T (2003) Ammonia inhibition on thermophilic anaerobic digestion. Chemosphere 53:43–52

    Article  Google Scholar 

  15. Shi J, Wang Z, Stiverson JA, Yu Z, Li Y (2013) Reactor performance and microbial community dynamics during solid-state anaerobic digestion of corn stover at mesophilic and thermophilic conditions. Bioresour Technol 136:574–581

    Article  Google Scholar 

  16. Keener HM, Ekinci K, Michel FC (2005) Composting process optimization—using on/off controls. Compost Sci Util 13:288–299

    Article  Google Scholar 

  17. Li Q, Wang XC, Zhang HH, Shi HL, Hu T, Ngo HH (2013) Characteristics of nitrogen transformation and microbial community in an aerobic composting reactor under two typical temperatures. Bioresour Technol 137:270–277

    Article  Google Scholar 

  18. Liang C, Das KC, McClendon RW (2003) The influence of temperature and moisture contents regimes on the aerobic microbial activity of a biosolids composting blend. Bioresour Technol 86:131–137

    Article  Google Scholar 

  19. Brown D, Shi J, Li Y (2012) Comparison of solid-state to liquid anaerobic digestion of lignocellulosic feedstocks for biogas production. Bioresour Technol 124:379–386

    Article  Google Scholar 

  20. Yang L, Li Y (2014) Anaerobic digestion of giant reed for methane production. Bioresour Technol 171:233–239

    Article  Google Scholar 

  21. Das KC (2008) Co-composting of alkaline tissue digester effluent with yard trimmings. Waste Manag 28:1785–1790

    Article  Google Scholar 

  22. Bhatia SK, Jagtap SS, Bedekar AA, Bhatia RK, Patel AK, Pant D, Banu JR, Rao CV, Kim Y-G, Yang Y-H (2020) Recent developments in pretreatment technologies on lignocellulosic biomass: effect of key parameters, technological improvements, and challenges. Bioresour Technol 300:122724

    Article  Google Scholar 

  23. Banu JR, Sokkanathan G, Sharmila VG, Tamilarasan K, Kumar SA, Jamal MT (2018) Combinative treatment of chocolaterie wastewater by a hybrid up-flow anaerobic sludge blanket reactor and solar photo Fenton process. Desalin Water Treat 121:343–350

    Google Scholar 

  24. Madigan MT, Martinko JM (2006) Brock biology of microorganisms, 11th edn. Prentice Hall, Pearson

    Google Scholar 

  25. Banu JR, Sharmila VG, Ushani U, Amudha V, Kumar G (2020) Impervious and influence in the liquid fuel production from municipal plastic waste through thermo-chemical biomass conversion technologies: a review. Sci Total Environ 718:137287

    Article  Google Scholar 

  26. Torres-Climent A, Martin-Mata J, Marhuenda-Egea F, Moral R, Barber X, Perez-Murcia MD, Paredes C (2015) Composting of the solid phase of digestate from biogas production: optimization of the moisture, C/N ratio, and pH conditions. Commun Soil Sci Plant Anal 46:197–207

    Article  Google Scholar 

  27. Xu F, Shi J, Lv W, Yu Z, Li Y (2013) Comparison of different liquid anaerobic digestion effluents as inocula and nitrogen sources for solid-state batch anaerobic digestion of corn stover. Waste Manag 33:26–32

    Article  Google Scholar 

  28. Sharmila VG, Gunasekaran M, Angappane S, Zhen G, Tae Yeom I, Banu JR (2019) Evaluation of photocatalytic thin film pretreatment on anaerobic degradability of exopolymer extracted biosolids for biofuel generation. Bioresour Technol 279:132–139

    Article  Google Scholar 

  29. Wang K, Yin J, Shen D, Li N (2014) Anaerobic digestion of food waste for volatile fatty acids (VFAs) production with different types of inoculum: effect of pH. Bioresour Technol 161:395–401

    Article  Google Scholar 

  30. Demirel B, Scherer P (2008) The roles of acetotrophic and hydrogenotrophic methanogens during anaerobic conversion of biomass to methane: a review. Rev Environ Sci Biotechnol 7:173–190

    Article  Google Scholar 

  31. Xu S, Selvam A, Wong JWC (2014) Optimization of micro-aeration intensity in acidogenic reactor of a two-phase anaerobic digester treating food waste. Waste Manag 34:363–369

    Article  Google Scholar 

  32. Sharmila VG, Banu JR, Gunasekaran M, Angappane S, Yeom IT (2018) Nano-layered TiO2 for effective bacterial disintegration of waste activated sludge and biogas production: immobilized TiO2 mediated bacterial pretreatment of WAS for anaerobic digestion. J Chem Technol Biotechnol 93:2701–2709

    Article  Google Scholar 

  33. Fu S-F, Wang F, Shi X-S, Guo R-B (2016) Impacts of microaeration on the anaerobic digestion of corn straw and the microbial community structure. Chem Eng J 287:523–528

    Article  Google Scholar 

  34. Nghiem LD, Manassa P, Dawson M, Fitzgerald SK (2014) Oxidation reduction potential as a parameter to regulate micro-oxygen injection into anaerobic digester for reducing hydrogen sulphide concentration in biogas. Bioresour Technol 173:443–447

    Article  Google Scholar 

  35. Zhu M, Lü F, Hao L-P, He P-J, Shao L-M (2009) Regulating the hydrolysis of organic wastes by micro-aeration and effluent recirculation. Waste Manag 29:2042–2050

    Article  Google Scholar 

  36. Krayzelova L, Bartacek J, Díaz I, Jeison D, Volcke EIP, Jenicek P (2015) Microaeration for hydrogen sulfide removal during anaerobic treatment: a review. Rev Environ Sci Biotechnol 14:703–725

    Article  Google Scholar 

  37. Ahn HK, Richard TL, Choi HL (2007) Mass and thermal balance during composting of a poultry manure wood shavings mixture at different aeration rates. Process Biochem 42:215–223

    Article  Google Scholar 

  38. Yeom IT, Sharmila VG, Kannah RY, Sivashanmugam P, Banu JR (2018) Municipal waste management. In: Bryant B, Hall B (eds) Municipal and industrial waste: source, management practices and future challenges. Nova Science Publishers, Inc, pp 181–224

    Google Scholar 

  39. Doublet J, Francou C, Poitrenaud M, Houot S (2011) Influence of bulking agents on organic matter evolution during sewage sludge composting; consequences on compost organic matter stability and N availability. Bioresour Technol 102:1298–1307

    Article  Google Scholar 

  40. Chang JI, Chen YJ (2010) Effects of bulking agents on food waste composting. Bioresour Technol 101:5917–5924

    Article  Google Scholar 

  41. Preethi BJR, Sharmila VG, Kavitha S, Varjani S, Kumar G, Gunasekaran M (2021) Alkali activated persulfate mediated extracellular organic release on enzyme secreting bacterial pretreatment for efficient hydrogen production. Bioresour Technol 341:125810

    Article  Google Scholar 

  42. Eswari AP, Sharmila VG, Gunasekaran M, Banu JR (2020) New business and marketing concepts for cross-sector valorization of food waste. In: Food waste to valuable resources. Elsevier, pp 417–433

    Google Scholar 

  43. Puyuelo B, Gea T, Sánchez A (2010) A new control strategy for the composting process based on the oxygen uptake rate. Chem Eng J 165:161–169

    Article  Google Scholar 

  44. Mejias L, Komilis D, Gea T, Sánchez A (2017) The effect of airflow rates and aeration mode on the respiration activity of four organic wastes: Implications on the composting process. Waste Manag 65:22–28

    Article  Google Scholar 

  45. Wei L, Shutao W, Jin Z, Tong X (2014) Biochar influences the microbial community structure during tomato stalk composting with chicken manure. Bioresour Technol 154:148–154

    Article  Google Scholar 

  46. Sánchez-García M, Alburquerque JA, Sánchez-Monedero MA, Roig A, Cayuela ML (2015) Biochar accelerates organic matter degradation and enhances N mineralisation during composting of poultry manure without a relevant impact on gas emissions. Bioresour Technol 192:272–279

    Article  Google Scholar 

  47. Ahmed B, Tyagi S, Banu R, Kazmi AA, Tyagi VK (2021) Carbon based conductive materials mediated recalcitrant toxicity mitigation during anaerobic digestion of thermo-chemically pre-treated organic fraction of municipal solid waste. Chemosphere 132682

    Google Scholar 

  48. Bhatia SK, Otari SV, Jeon J-M, Gurav R, Choi Y-K, Bhatia RK, Pugazhendhi A, Kumar V, Banu JR, Yoon J-J, Choi K-Y, Yang Y-H (2021) Biowaste-to-bioplastic (polyhydroxyalkanoates): conversion technologies, strategies, challenges, and perspective. Bioresour Technol 326:124733

    Article  Google Scholar 

  49. Bruno LB, Anbuganesan V, Karthik C, Tripti KA, Banu JR, Freitas H, Rajkumar M (2021) Enhanced phytoextraction of multi-metal contaminated soils under increased atmospheric temperature by bioaugmentation with plant growth promoting Bacillus cereus. J Environ Manage 289:112553

    Article  Google Scholar 

  50. Ginni K, Kannah RY, Bhatia SK, Kumar A, Rajkumar KG, Pugazhendhi A, Chi NTL, Banu R (2021) Valorization of agricultural residues: different biorefinery routes. J Environ Chem Eng 9:105435

    Article  Google Scholar 

  51. Gopikumar S, Banu JR, Robinson YH, Shanmuganathan V, Kadry S, Rho S (2021) Novel framework of GIS based automated monitoring process on environmental biodegradability and risk analysis using Internet of Things. Environ Res 194:110621

    Article  Google Scholar 

  52. Khan MJ, Singh N, Mishra S, Ahirwar A, Bast F, Varjani S, Schoefs B, Marchand J, Rajendran K, Banu JR, Saratale GD, Saratale RG, Vinayak V (2022) Impact of light on microalgal photosynthetic microbial fuel cells and removal of pollutants by nanoadsorbent biopolymers: updates, challenges and innovations. Chemosphere 288:132589

    Article  Google Scholar 

  53. Pugazhendi A, Alreeshi GG, Jamal MT, Karuppiah T, Jeyakumar RB (2021) Bioenergy production and treatment of aquaculture wastewater using saline anode microbial fuel cell under saline condition. Environ technol innov 21:101331

    Article  Google Scholar 

  54. Raj T, Chandrasekhar K, Banu R, Yoon J-J, Kumar G, Kim S-H (2021) Synthesis of γ-valerolactone (GVL) and their applications for lignocellulosic deconstruction for sustainable green biorefineries. Fuel 303:121333

    Article  Google Scholar 

  55. Sethupathy A, Kumar PS, Sivashanmugam P, Arun C, Banu JR, Ashokkumar M (2021) Evaluation of biohydrogen production potential of fragmented sugar industry biosludge using ultrasonication coupled with egtazic acid. Int J Hydrogen Energy 46:1705–1714

    Article  Google Scholar 

  56. Sethupathy A, Pathak PK, Sivashanmugam P, Arun C, Banu JR, Ashokkumar M (2021) Enrichment of hydrogen production from fruit waste biomass using ozonation assisted with citric acid. Waste Manag Res 734242X211010364

    Google Scholar 

  57. Sim Y-B, Jung J-H, Baik J-H, Park J-H, Kumar G, Banu JR, Kim S-H (2021) Dynamic membrane bioreactor for high rate continuous biohydrogen production from algal biomass. Bioresour Technol 340:125562

    Article  Google Scholar 

  58. Tyagi VK, Kapoor A, Arora P, Banu JR, Das S, Pipesh S, Kazmi AA (2021) Mechanical-biological treatment of municipal solid waste: case study of 100 TPD Goa plant, India. J Environ Manage 292:112741

    Article  Google Scholar 

  59. Yap JK, Sankaran R, Chew KW, Halimatul Munawaroh HS, Ho S-H, Banu JR, Show PL (2021) Advancement of green technologies: a comprehensive review on the potential application of microalgae biomass. Chemosphere 281:130886

    Article  Google Scholar 

  60. Jamal MT, Pugazhendi A, Banu JR (2020) Application of halophiles in air cathode MFC for seafood industrial wastewater treatment and energy production under high saline condition. Environ technol innov 20:101119

    Article  Google Scholar 

  61. Pugazhendi A, Al-Mutairi AE, Jamal MT, Banu JR, Palanisamy K (2020) Treatment of seafood industrial wastewater coupled with electricity production using air cathode microbial fuel cell under saline condition. Int J Energy Res 44:12535–12545

    Article  Google Scholar 

  62. Banu JR, Tamilarasan K, Chang SW, Nguyen DD, Ponnusamy VK, Kumar G (2020) Surfactant assisted microwave disintegration of green marine macroalgae for enhanced anaerobic biodegradability and biomethane recovery. Fuel (Lond) 281:118802

    Article  Google Scholar 

  63. Rani G, Nabi Z, Banu JR, Yogalakshmi KN (2020) Batch fed single chambered microbial electrolysis cell for the treatment of landfill leachate. Renew Energy 153:168–174

    Article  Google Scholar 

  64. Selvaraj D, Somanathan A, Banu JR, Kumar G (2020) Generation of electricity by the degradation of electro-Fenton pretreated latex wastewater using double chamber microbial fuel cell. Int J Energy Res 44:12496–12505

    Article  Google Scholar 

  65. Sethupathy A, Arunagiri A, Sivashanmugam P, Banu JR, Ashokkumar M (2020) Disperser coupled rhamnolipid disintegration of pulp and paper mill waste biosolid: characterisation, methane production, energy assessment and cost analysis. Bioresour Technol 297:122545

    Article  Google Scholar 

  66. Shahid MK, Kashif A, Rout PR, Aslam M, Fuwad A, Choi Y, Banu JR, Park JH, Kumar G (2020) A brief review of anaerobic membrane bioreactors emphasizing recent advancements, fouling issues and future perspectives. J Environ Manage 270:110909

    Article  Google Scholar 

  67. Banu JR, Kumar MD, Gunasekaran M, Kumar G (2019) Biopolymer production in bio electrochemical system: literature survey. Bioresour technol rep 7:100283

    Article  Google Scholar 

  68. Dinesh MD, Kaliappan S, Gopikumar S, Zhen G, Banu JR (2019) Synergetic pretreatment of algal biomass through H2O2 induced microwave in acidic condition for biohydrogen production. Fuel (Lond) 253:833–839

    Article  Google Scholar 

  69. Harinee S, Muthukumar K, Dahms H-U, Koperuncholan M, Vignesh S, Banu JR, Ashok M, James RA (2019) Biocompatible nanoparticles with enhanced photocatalytic and anti-microfouling potential. Int Biodeterior Biodegradation 145:104790

    Article  Google Scholar 

  70. Jeong SY, Chang SW, Ngo HH, Guo W, Nghiem LD, Banu JR, Jeon B-H, Nguyen DD (2019) Influence of thermal hydrolysis pretreatment on physicochemical properties and anaerobic biodegradability of waste activated sludge with different solids content. Waste Manag 85:214–221

    Article  Google Scholar 

  71. Kumar G, Ponnusamy VK, Bhosale RR, Shobana S, Yoon J-J, Bhatia SK, Banu JR, Kim S-H (2019) A review on the conversion of volatile fatty acids to polyhydroxyalkanoates using dark fermentative effluents from hydrogen production. Bioresour Technol 287:121427

    Article  Google Scholar 

  72. Nguyen DD, Jeon B-H, Jeung JH, Rene ER, Banu JR, Ravindran B, Vu CM, Ngo HH, Guo W, Chang SW (2019) Thermophilic anaerobic digestion of model organic wastes: evaluation of biomethane production and multiple kinetic models analysis. Bioresour Technol 280:269–276

    Article  Google Scholar 

  73. Nguyen XC, Chang SW, Tran TCP, Nguyen TTN, Hoang TQ, Banu JR, Al-Muhtaseb AH, La DD, Guo W, Ngo HH, Nguyen DD (2019) Comparative study about the performance of three types of modified natural treatment systems for rice noodle wastewater. Bioresour Technol 282:163–170

    Article  Google Scholar 

  74. Pan Y, Zhi Z, Zhen G, Lu X, Bakonyi P, Li Y-Y, Zhao Y, Banu JR (2019) Synergistic effect and biodegradation kinetics of sewage sludge and food waste mesophilic anaerobic co-digestion and the underlying stimulation mechanisms. Fuel 253:40–49

    Article  Google Scholar 

  75. Ponnusamy VK, Nguyen DD, Dharmaraja J, Shobana S, Banu JR, Saratale RG, Chang SW, Kumar G (2019) A review on lignin structure, pretreatments, fermentation reactions and biorefinery potential. Bioresour Technol 271:462–472

    Article  Google Scholar 

  76. Pugazhendhi A, Shobana S, Bakonyi P, Nemestóthy N, Xia A, Banu JR, Kumar G (2019) A review on chemical mechanism of microalgae flocculation via polymers. Biotechnol Rep 21:e00302

    Article  Google Scholar 

  77. Banu JR, Tamilarasan K, Rani RU, Gunasekaran M, Cho S-K, Al-Muhtaseb AH, Kumar G (2019) Dispersion aided tenside disintegration of seagrass Syringodium isoetifolium: towards biomethanation, kinetics, energy exploration and evaluation. Bioresour Technol 277:62–67

    Article  Google Scholar 

  78. Shanthi M, Banu JR, Sivashanmugam P (2019) Synergistic effect of combined pretreatment in solubilizing fruits and vegetable residue for biogas production: hydrolysis, energy assessment. Fuel 250:194–202

    Article  Google Scholar 

  79. Subha C, Kavitha S, Abisheka S, Tamilarasan K, Arulazhagan P, Banu JR (2019) Bioelectricity generation and effect studies from organic rich chocolaterie wastewater using continuous upflow anaerobic microbial fuel cell. Fuel 251:224–232

    Article  Google Scholar 

  80. Antonopoulou G, Alexandropoulou M, Lytras C, Lyberatos G (2015) Modeling of anaerobic digestion of food industry wastes in different bioreactor types. Waste Biomass Valorization 6:335–341

    Article  Google Scholar 

  81. Appels L, Baeyens J, Degrève J, Dewil R (2008) Principles and potential of the anaerobic digestion of waste-activated sludge. Prog Energy Combust Sci 34:755–781

    Article  Google Scholar 

  82. Arumugam T, Parthiban L, Rangasamy P (2015) Two-phase anaerobic digestion model of a tannery solid waste: experimental investigation and modeling with ANFIS. Arab J Sci Eng 40:279–288

    Article  Google Scholar 

  83. Batstone DJ (2006) Mathematical modelling of anaerobic reactors treating domestic wastewater: rational criteria for model use. Rev Environ Sci Biotechnol 5:57–71

    Article  Google Scholar 

  84. Batstone DJ, Puyol D, Flores-Alsina X, Rodríguez J (2015) Mathematical modelling of anaerobic digestion processes: applications and future needs. Rev Environ Sci Biotechnol 14:595–613

    Article  Google Scholar 

  85. Behera SK, Meher SK, Park H-S (2015) Artificial neural network model for predicting methane percentage in biogas recovered from a landfill upon injection of liquid organic waste. Clean Technol Environ Policy 17:443–453

    Article  Google Scholar 

  86. Bernard O, Hadj-Sadok Z, Dochain D, Genovesi A, Steyer JP (2001) Dynamical model development and parameter identification for an anaerobic wastewater treatment process. Biotechnol Bioeng 75:424–438

    Article  Google Scholar 

  87. Blumensaat F, Keller J (2005) Modelling of two-stage anaerobic digestion using the IWA Anaerobic Digestion Model No. 1 (ADM1). Water Res 39:171–183

    Article  Google Scholar 

  88. Bravo AD, Mailier J, Martin C, Rodríguez J, Lara CAA, Wouwer AV (2011) Model selection, identification and validation in anaerobic digestion: a review. Water Res 45:5347–5364

    Article  Google Scholar 

  89. Bryers JD (1985) Structured modeling of the anaerobic digestion of biomass particulates. Biotechnol Bioeng 27:638–649

    Article  Google Scholar 

  90. Donoso-Bravo A, Pérez-Elvira SI, Fdz-Polanco F (2010) Application of simplified models for anaerobic biodegradability tests. Evaluation of pre-treatment processes. Chem Eng J 160:607–614

    Article  Google Scholar 

  91. Ebenezer AV, Arulazhagan P, Kumar SA, Yeom IT, Banu JR (2015) Effect of deflocculation on the efficiency of low-energy microwave pretreatment and anaerobic biodegradation of waste activated sludge. Appl Energy 145:104–110

    Article  Google Scholar 

  92. Raj SE, Banu JR, Kaliappan S, Yeom IT, Kumar SA (2013) Effects of side-stream, low temperature phosphorus recovery on the performance of anaerobic/anoxic/oxic systems integrated with sludge pretreatment. Bioresour Technol 140:376–384

    Article  Google Scholar 

  93. Fedorovich V, Lens P, Kalyuzhnyi S (2003) Extension of anaerobic digestion model no. 1 with processes of sulfate reduction. Appl Biochem Biotechnol 109:33–45

    Article  Google Scholar 

  94. Feng Y, Behrendt J, Wendland C, Otterpohl R (2006) Parameter analysis of the IWA anaerobic digestion model no. 1 for the anaerobic digestion of blackwater with kitchen refuse. Water Sci Technol 54:139–214

    Article  Google Scholar 

  95. Ganidi N, Tyrrel S, Cartmell E (2009) Anaerobic digestion foaming causes–a review. Bioresour Technol 100:5546–5554

    Article  Google Scholar 

  96. Gavala HN, Angelidaki I, Ahring BK (2003) Kinetics and modeling of anaerobic digestion process. Adv Biochem Eng Biotechnol 81:57–93

    Google Scholar 

  97. Grant WD, Lawrence TM (2014) A simplified method for the design and sizing of anaerobic digestion systems for smaller farms. Environ Dev Sustain 16:345–360

    Article  Google Scholar 

  98. Hill DT (1982) A comprehensive dynamic model for animal waste methanogenesis. Trans ASAE 25:1374–1380

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaliappan Sudalyandi .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sudalyandi, K., Jeyakumar, R. (2022). Enhancement of Hydrolysis. In: Biofuel Production Using Anaerobic Digestion. Green Energy and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-19-3743-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-3743-9_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-3742-2

  • Online ISBN: 978-981-19-3743-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics