Skip to main content

Advertisement

Log in

Mathematical modelling of anaerobic digestion processes: applications and future needs

  • Review paper
  • Published:
Reviews in Environmental Science and Bio/Technology Aims and scope Submit manuscript

Abstract

Anaerobic process modelling is a mature and well-established field, largely guided by a mechanistic model structure that is defined by our understanding of underlying processes. This led to publication of the IWA ADM1, and strong supporting, analytical, and extension research in the 15 years since its publication. However, the field is rapidly expanding, in terms of new technology, new processes, and the need to consider anaerobic processes in a much broader context of the wastewater cycle as a whole. Within the area of technologies, new processes are emerging (including high-solids and domestic wastewater treatment). Challenges relating to these new processes, as well as the need to intensify and better operate existing processes have increased the need to consider spatial variance, and improve characterisation of inputs. Emerging microbial processes are challenging our understanding of the role of the central carbon catabolic metabolism in anaerobic digestion, with an increased importance of phosphorous, sulfur, and metals as electron source and sink, and consideration of hydrogen and methane as potential electron sources. The paradigm of anaerobic digestion is challenged by anoxygenic phototrophism, where energy is relatively cheap, but electron transfer is expensive. These new processes are commonly not compatible with the existing structure of anaerobic digestion models. These core issues extend to application of anaerobic digestion in domestic plant-wide modelling, with the need for improved characterisation, new technologies having an increased impact, and a key role for the linked phosphorous–sulfur–iron processes across the cycle. The review overall finds that anaerobic modelling is increasing in complexity and demands on the modeller, but the core principles of biochemical and physicochemical processes, metabolic conservation, and mechanistic understanding will serve well to address the new challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alvarado A, Vedantam S, Goethals P, Nopens I (2012) A compartmental model to describe hydraulics in a full-scale waste stabilization pond Water Research 46:521–530. doi:10.1016/j.watres.2011.11.038

    CAS  Google Scholar 

  • Angelidaki I, Ellegaard L, Ahring BK (1999) A comprehensive model of anaerobic bioconversion of complex substrates to biogas Biotech Bioeng 63:363–372

    CAS  Google Scholar 

  • Astals S, Batstone DJ, Mata-Alvarez J, Jensen PD (2014) Identification of synergistic impacts during anaerobic co-digestion of organic wastes. Bioresour Technol 169:421–427

    Article  CAS  Google Scholar 

  • Astals S, Batstone DJ, Tait S, Jensen PD (2015) Development and validation of a rapid test for anaerobic inhibition and toxicity. Water Res 81:208–215. doi:10.1016/j.watres.2015.05.063

    Article  CAS  Google Scholar 

  • Barber WP, Stuckey DC (1999) The use of the anaerobic baffled reactor (ABR) for wastewater treatment: a review. Water Res 33:1559–1578. doi:10.1016/S0043-1354(98)00371-6

    Article  CAS  Google Scholar 

  • Barrera EL, Spanjers H, Dewulf J, Romero O, Rosa E (2013) The sulfur chain in biogas production from sulfate-rich liquid substrates: a review on dynamic modeling with vinasse as model substrate. J Chem Technol Biotechnol 88:1405–1420. doi:10.1002/jctb.4071

    Article  CAS  Google Scholar 

  • Barrera EL, Spanjers H, Solon K, Amerlinck Y, Nopens I, Dewulf J (2015) Modeling the anaerobic digestion of cane-molasses vinasse: extension of the Anaerobic Digestion Model No. 1 (ADM1) with sulfate reduction for a very high strength and sulfate rich wastewater. Water Res 71:42–54. doi:10.1016/j.watres.2014.12.026

    Article  CAS  Google Scholar 

  • Batstone DJ et al (2002) Anaerobic Digestion Model No. 1 (ADM1), IWA task group for mathematical modelling of anaerobic digestion processes. IWA Scientific and Technical Reports. IWA Publishing, London

  • Batstone DJ (2006) Mathematical modelling of anaerobic reactors treating domestic wastewater: rational criteria for model use. Rev Environ Sci Biotechnol 5:57–71. doi:10.1007/s11157-005-7191-z

    Article  CAS  Google Scholar 

  • Batstone DJ, Rodriguez J (2015) Chapter 7: modelling anaerobic digestion processes. In: Fang HPP, Zhang T (eds) Anaerobic biotechnology: environmental protection and resource recovery. Imperial College Press, Singapore

    Google Scholar 

  • Batstone DJ, Virdis B (2014) The role of anaerobic digestion in the emerging energy economy. Curr Opin Biotechnol 27:142–149. doi:10.1016/j.copbio.2014.01.013

    Article  CAS  Google Scholar 

  • Batstone DJ, Hernandez JLA, Schmidt JE (2005) Hydraulics of laboratory and full-scale upflow anaerobic sludge blanket (UASB) reactors. Biotechnol Bioeng 91:387–391. doi:10.1002/bit.20483

    Article  CAS  Google Scholar 

  • Batstone DJ, Picioreanu C, van Loosdrecht MCM (2006) Multidimensional modelling to investigate interspecies hydrogen transfer in anaerobic biofilms. Water Res 40:3099–3108. doi:10.1016/j.watres.2006.06.014

    Article  CAS  Google Scholar 

  • Batstone DJ, Tait S, Starrenburg D (2009) Estimation of hydrolysis parameters in full-scale anerobic digesters. Biotechnol Bioeng 102:1513–1520

    Article  CAS  Google Scholar 

  • Batstone DJ et al (2012) Towards a generalized physicochemical framework. Water Sci Technol 66:1147–1161. doi:10.2166/wst.2012.300

    Article  CAS  Google Scholar 

  • Batstone DJ, Hülsen T, Mehta CM, Keller J (2015) Platforms for energy and nutrient recovery from domestic wastewater: a review. Chemosphere 140:2–11. doi:10.1016/j.chemosphere.2014.10.021

    Article  CAS  Google Scholar 

  • Benyahia B, Sari T, Cherki B, Harmand J (2013) Anaerobic membrane bioreactor modeling in the presence of soluble microbial products (SMP): the Anaerobic Model AM2b. Chem Eng J 228:1011–1022. doi:10.1016/j.cej.2013.05.073

    Article  CAS  Google Scholar 

  • Berger K, Melchior S, Miehlich G (1996) Suitability of hydrologic evaluation of landfill performance (HELP) model of the US Environmental Protection Agency for the simulation of the water balance of landfill cover systems. Environ Geol 28:181–189. doi:10.1007/s002540050092

    Article  CAS  Google Scholar 

  • Boyle-Gotla A, Jensen PD, Yap SD, Pidou M, Wang Y, Batstone DJ (2014) Dynamic multidimensional modelling of submerged membrane bioreactor fouling. J Membr Sci 467:153–161. doi:10.1016/j.memsci.2014.05.028

    Article  CAS  Google Scholar 

  • Brandl H, Gross RA, Lenz RW, Lloyd R, Fuller RC (1991) The accumulation of poly(3-hydroxyalkanoates) in Rhodobacter sphaeroides. Arch Microbiol 155:337–340

    Article  CAS  Google Scholar 

  • Bridge TA, White C, Gadd GM (1999) Extracellular metal-binding activity of the sulphate-reducing bacterium Desulfococcus multivorans. Microbiology 145(Pt 10):2987–2995

    Article  CAS  Google Scholar 

  • Buffiere P, Frederic S, Marty B, Delgenes JP (2008) A comprehensive method for organic matter characterization in solid wastes in view of assessing their anaerobic biodegradability, 58. doi:10.2166/wst.2008.517

  • Carrère H, Dumas C, Battimelli A, Batstone DJ, Delgenès JP, Steyer JP, Ferrer I (2010) Pretreatment methods to improve sludge anaerobic degradability: a review. J Hazard Mater 183:1–15

    Article  CAS  Google Scholar 

  • Carvajal-Arroyo JM, Puyol D, Li G, Sierra-Álvarez R, Field JA (2014a) The role of pH on the resistance of resting- and active anammox bacteria to NO2—inhibition. Biotechnol Bioeng 111:1949–1956. doi:10.1002/bit.25269

    Article  CAS  Google Scholar 

  • Carvajal-Arroyo JM, Puyol D, Li G, Swartwout A, Sierra-Álvarez R, Field JA (2014b) Starved anammox cells are less resistant to inhibition. Water Res 65:170–176. doi:10.1016/j.watres.2014.07.023

    Article  CAS  Google Scholar 

  • Chen XG, Zheng P, Qaisar M, Tang CJ (2012) Dynamic behavior and concentration distribution of granular sludge in a super-high-rate spiral anaerobic bioreactor. Bioresour Technol 111:134–140. doi:10.1016/j.biortech.2012.02.044

    Article  CAS  Google Scholar 

  • Chen X, Guo J, Shi Y, Hu S, Yuan Z, Ni B-J (2014) Modeling of simultaneous anaerobic methane and ammonium oxidation in a membrane biofilm reactor. Environ Sci Technol 48:9540–9547. doi:10.1021/es502608s

    Article  CAS  Google Scholar 

  • Chen Y, Tang Q, Senko JM, Zhang Newby B-M, Castaneda H, Ju L-K, Cheng G (2015) Long-term survival of Desulfovibrio vulgaris on carbon steel and associated pitting corrosion. Corros Sci 90:89–100. doi:10.1016/j.corsci.2014.09.016

    Article  CAS  Google Scholar 

  • Cheng S, Xing D, Call DF, Logan BE (2009) Direct biological conversion of electrical current into methane by electromethanogenesis. Environ Sci Technol 43:3953–3958. doi:10.1021/es803531g

    Article  CAS  Google Scholar 

  • Chitapornpan S, Chiemchaisri C, Chiemchaisri W, Honda R, Yamamoto K (2013) Organic carbon recovery and photosynthetic bacteria population in an anaerobic membrane photo-bioreactor treating food processing wastewater. Bioresour Technol 141:65–74. doi:10.1016/j.biortech.2013.02.048

    Article  CAS  Google Scholar 

  • Chugh S, Chynoweth DP, Clarke W, Pullammanappallil P, Rudolph V (1999) Degradation of unsorted municipal solid waste by a leach-bed process. Bioresour Technol 69:103–115. doi:10.1016/S0960-8524(98)00182-5

    Article  CAS  Google Scholar 

  • Costello DJ, Greenfield PF, Lee PL (1991a) Dynamic modelling of a single-stage high-rate anaerobic reactor-I. Model Deriv Water Res 25:847–858. doi:10.1016/0043-1354(91)90166-N

    CAS  Google Scholar 

  • Costello DJ, Greenfield PF, Lee PL (1991b) Dynamic modelling of a single-stage high-rate anaerobic reactor -I. Model Dev Wat Res 25:859–871

    Article  CAS  Google Scholar 

  • da Rocha D, Paetzold E, Kanswohl N (2013) The shrinking core model applied on anaerobic digestion. Chem Eng Process 70:294–300. doi:10.1016/j.cep.2013.05.003

    Article  CAS  Google Scholar 

  • De Gracia M, Huete E, Beltrán S, Grau P, Ayesa E (2011) Automatic characterisation of primary, secondary and mixed sludge inflow in terms of the mathematical generalised sludge digester model. Water Sci Technol 64:557–567. doi:10.2166/wst.2011.541

    Article  CAS  Google Scholar 

  • Dereli RK, Heffernan B, Grelot A, van der Zee FP, van Lier JB (2015) Influence of high lipid containing wastewater on filtration performance and fouling in AnMBRs operated at different solids retention times. Sep Purif Technol 139:43–52. doi:10.1016/j.seppur.2014.10.029

    Article  CAS  Google Scholar 

  • Diaz I, Fdz-Polanco M (2012) Robustness of the microaerobic removal of hydrogen sulfide from biogas. Water Sci Tech 65:1368–1374. doi:10.2166/wst.2012.013

    Article  CAS  Google Scholar 

  • Díaz I, Pérez C, Alfaro N, Fdz-Polanco F (2015) A feasibility study on the bioconversion of CO2 and H2 to biomethane by gas sparging through polymeric membranes. Bioresour Technol 185:246–253. doi:10.1016/j.biortech.2015.02.114

    Article  CAS  Google Scholar 

  • Donoso-Bravo A, Mailier J, Martin C, Rodríguez J, Aceves-Lara CA, Wouwer AV (2011) Model selection, identification and validation in anaerobic digestion: a review. Water Res 45:5347–5364

    Article  CAS  Google Scholar 

  • Donoso-Bravo A, Bandara WMKRTW, Satoh H, Ruiz-Filippi G (2013) Explicit temperature-based model for anaerobic digestion: application in domestic wastewater treatment in a UASB reactor. Bioresour Technol 133:437–442. doi:10.1016/j.biortech.2013.01.174

    Article  CAS  Google Scholar 

  • Dvorak SW (2012) Biosolids digester and process for biosolids production. PCT/US2010/058012

  • Ekama GA, Wentzel MC, Loewenthal RE (2006) Integrated chemical-physical processes kinetic modelling of multiple mineral precipitation problems, 53. doi:10.2166/wst.2006.407

  • Enning D, Garrelfs J (2014) Corrosion of iron by sulfate-reducing bacteria: new views of an old problem. Appl Environ Microbiol 80:1226–1236. doi:10.1128/aem.02848-13

    Article  CAS  Google Scholar 

  • Fang HHP, Liu H, Zhang T (2005) Phototrophic hydrogen production from acetate and butyrate in wastewater. Int J Hydrogen Energy 30:785–793. doi:10.1016/j.ijhydene.2004.12.010

    Article  CAS  Google Scholar 

  • Fedorovich V, Lens P, Kalyuzhnyi S (2003) Extension of anaerobic digestion model no. 1 with processes of sulfate reduction. Appl Biochem Biotechnol Part A Enzyme Eng Biotechnol 109:33–45

    Article  CAS  Google Scholar 

  • Flores-Alsina X, Kazadi-Mbamba C, Solon K, Vrecko D, Tait S, Batstone D, Jeppsson U, Gernaey KV (2015) A plant-wide aqueous phase chemistry module describing pH variations and ion speciation/pairing in wastewater treatment process models. Water res. doi: 10.1016/j.watres.2015.07.014

    Google Scholar 

  • Focardi S, Pepi M, Focardi SE (2013) Microbial reduction of hexavalent chromium as a mechanism of detoxification and possible bioremediation applications. In: Chamy R (ed) Biodegradation life of science. pp 321–348. doi:10.5772/56365

  • Frear C, Dvorak S (2013) Commercial demonstration of nutrient recovery of ammonium sulfate and phosphorus rich fines from AD effluent

  • Gaden D (2014) Modelling anaerobic digesters in three dimensions: integration of biochemistry with computational fluid dynamics. University of Manitoba, Manitoba

    Google Scholar 

  • García-Gen S, Rodríguez J, Lema JM (2015) Control strategy for maximum anaerobic co-digestion performance. Water Res 80:209–216. doi:10.1016/j.watres.2015.05.029

    Article  CAS  Google Scholar 

  • Ge H, Zhang L, Batstone D, Keller J, Yuan Z (2013) Impact of iron salt dosage to sewers on downstream anaerobic sludge digesters: sulfide control and methane production. J Environ Eng 139:594–601. doi:10.1061/(ASCE)EE.1943-7870.0000650

    Article  CAS  Google Scholar 

  • Gehring T et al (2015) Determination of methanogenic pathways through carbon isotope (δ13C) analysis for the two-stage anaerobic digestion of high-solids substrates. Environ Sci Technol 49:4705–4714. doi:10.1021/es505665z

    Article  CAS  Google Scholar 

  • Gernaey KV, Jeppsson U, Vanrolleghem PA, Copp JB (2014) Benchmarking of control strategies for wastewater treatment plants. IWA Publishing, London

    Google Scholar 

  • Girault R et al (2012) A waste characterisation procedure for ADM1 implementation based on degradation kinetics. Water Res 46:4099–4110. doi:10.1016/j.watres.2012.04.028

    Article  CAS  Google Scholar 

  • Godon J-J, Arcemisbéhère L, Escudié R, Harmand J, Miambi E, Steyer J-P (2013) Overview of the oldest existing set of substrate-optimized anaerobic processes: digestive tracts. Bioenerg Res 6:1063–1081. doi:10.1007/s12155-013-9339-y

    Article  Google Scholar 

  • Golomysova A, Gomelsky M, Ivanov PS (2010) Flux balance analysis of photoheterotrophic growth of purple nonsulfur bacteria relevant to biohydrogen production. Int J Hydrogen Energy 35:12751–12760. doi:10.1016/j.ijhydene.2010.08.133

    Article  CAS  Google Scholar 

  • González-Cabaleiro R, Lema JM, Rodríguez J (2015) Metabolic energy-based modelling explains product yielding in anaerobic mixed culture fermentations. PLoS ONE. doi:10.1371/journal.pone.0126739

    Google Scholar 

  • Gonzalez-Estrella J, Puyol D, Sierra-Alvarez R, Field JA (2015) Role of biogenic sulfide in attenuating zinc oxide and copper nanoparticle toxicity to acetoclastic methanogenesis. J Hazard Mater 283:755–763. doi:10.1016/j.jhazmat.2014.10.030

    Article  CAS  Google Scholar 

  • Gordon GC, McKinlay JB (2014) Calvin cycle mutants of photoheterotrophic purple nonsulfur bacteria fail to grow due to an electron imbalance rather than toxic metabolite accumulation. J Bacteriol 196:1231–1237. doi:10.1128/JB.01299-13

    Article  CAS  Google Scholar 

  • Gossett JM, Belser RL (1982) Anaerobic digestion of waste activated sludge. J Environ Eng ASCE 108:1101–1120

    CAS  Google Scholar 

  • Grau P, de Gracia M, Vanrolleghem PA, Ayesa E (2007) A new plant-wide modelling methodology for WWTPs. Water Research 41:4357–4372. doi:10.1016/j.watres.2007.06.019

    Article  CAS  Google Scholar 

  • Grau P, Copp J, Vanrolleghem PA, Takács I, Ayesa E (2009) A comparative analysis of different approaches for integrated WWTP modelling. Water Sci Technol 59:141–147

    Article  CAS  Google Scholar 

  • Hao TW et al (2014) A review of biological sulfate conversions in wastewater treatment. Water Res 65:1–21. doi:10.1016/j.watres.2014.06.043

    Article  CAS  Google Scholar 

  • He Z, Cai C, Geng S, Lou L, Xu X, Zheng P, Hu B (2013) Modeling a nitrite-dependent anaerobic methane oxidation process: parameters identification and model evaluation. Bioresour Technol 147:315–320. doi:10.1016/j.biortech.2013.08.001

    Article  CAS  Google Scholar 

  • Henze M, Gujer W, Mino T, van Loosdrecht M (2000) Activated sludge models ASM1, ASM2, ASM2d, and ASM3. IWA Scientific and Technical Report, London

    Google Scholar 

  • Hinken L, Huber M, Weichgrebe D, Rosenwinkel KH (2014) Modified ADM1 for modelling an UASB reactor laboratory plant treating starch wastewater and synthetic substrate load tests. Water Res 64:82–93. doi:10.1016/j.watres.2014.06.044

    Article  CAS  Google Scholar 

  • Ho D, Jensen P, Batstone D (2014) Effects of temperature and hydraulic retention time on acetotrophic pathways and performance in high-rate sludge digestion. Environ Sci Technol 48:6468–6476

    Article  CAS  Google Scholar 

  • Hoelzle RD, Virdis B, Batstone DJ (2014) Regulation mechanisms in mixed and pure culture microbial fermentation. Biotechnol Bioeng 111:2139–2154. doi:10.1002/bit.25321

    Article  CAS  Google Scholar 

  • Hülsen T, Batstone DJ, Keller J (2014) Phototrophic bacteria for nutrient recovery from domestic wastewater. Water Res 50:18–26

    Article  CAS  Google Scholar 

  • Hunter CN (2008) The purple phototrophic bacteria. Springer, Berlin

    Google Scholar 

  • Ikumi D, Brouckaert CJ, Ekama GA (2011) Modelling of struvite precipitation in anaerobic digestion. Paper presented at the WA Watermatex2011, San Sebastian, Spain, 20–22 June 2011

  • Jenicek P, Keclik F, Maca J, Bindzar J (2008) Use of microaerobic conditions for the improvement of anaerobic digestion of solid wastes. Water Sci Technol 58:1491–1496. doi:10.2166/wst.2008.493

    Article  CAS  Google Scholar 

  • Jensen PD, Ge H, Batstone DJ (2011) Assessing the role of biochemical methane potential tests in determining anaerobic degradability rate and extent. Water Sci Technol 64:880–886

    Article  CAS  Google Scholar 

  • Jensen PD, Astals S, Lu Y, Devadas M, Batstone DJ (2014a) Anaerobic codigestion of sewage sludge and glycerol, focusing on process kinetics, microbial dynamics and sludge dewaterability. Water Res 67:355–366

    Article  CAS  Google Scholar 

  • Jensen PD, Sullivan T, Carney C, Batstone DJ (2014b) Analysis of the potential to recover energy and nutrient resources from cattle slaughterhouses in Australia by employing anaerobic digestion. Appl Energy 136:23–31. doi:10.1016/j.apenergy.2014.09.009

    Article  Google Scholar 

  • Jimenez J, Gonidec E, Cacho Rivero JA, Latrille E, Vedrenne F, Steyer JP (2014) Prediction of anaerobic biodegradability and bioaccessibility of municipal sludge by coupling sequential extractions with fluorescence spectroscopy: towards ADM1 variables characterization. Water Res 50:359–372

    Article  CAS  Google Scholar 

  • Kalyuzhnyi S, Fedorovich V (1998a) Mathematical modelling of competition between sulphate reduction and methanogenesis in anaerobic reactors. Biores Tech 65:227–242

    Article  CAS  Google Scholar 

  • Kalyuzhnyi SV, Fedorovich VV (1998b) Mathematical modelling of competition between sulphate reduction and methanogenesis in anaerobic reactors. Bioresour Technol 65:227–242. doi:10.1016/S0960-8524(98)00019-4

    Article  CAS  Google Scholar 

  • Kazadi Mbamba C, Batstone DJ, Flores-Alsina X, Tait S (2015a) A generalised chemical precipitation modelling approach in wastewater treatment applied to calcite. Water Res 68:342–353. doi:10.1016/j.watres.2014.10.011

    Article  CAS  Google Scholar 

  • Kazadi Mbamba C, Tait S, Flores-Alsina X, Batstone DJ (2015b) A systematic study of minerals precipitation modelling in wastewater treatment processes. Water Res (in press)

  • Kim MK, Choi K-M, Yin C-R, Lee K-Y, Im W-T, Lim JH, Lee S-T (2004) Odorous swine wastewater treatment by purple non-sulfur bacteria, Rhodopseudomonas palustris, isolated from eutrophicated ponds. Biotechnol Lett 26:819–822

    Article  CAS  Google Scholar 

  • Kim SY, Tojo Y, Matsuto T (2007) Compartment model of aerobic and anaerobic biodegradation in a municipal solid waste landfill. Waste Manag Res, ISWA 25:524–537

    Article  CAS  Google Scholar 

  • Klamt S, Schuster S, Gilles ED (2002) Calculability analysis in underdetermined metabolic networks illustrated by a model of the central metabolism in purple nonsulfur bacteria. Biotechnol Bioeng 77:734–751

    Article  CAS  Google Scholar 

  • Kleerebezem R, van Loosdrecht MCM (2006) Critical analysis of some concepts proposed in ADM1 54. doi:10.2166/wst.2006.525

  • Klein G, Klipp W, Jahn A, Steinborn B, Oelze J (1991) The relationship of biomass, polysaccharide and H2 formation in the wild-type and nifA/nifB mutants of Rhodobacter capsulatus. Arch Microbiol 155:477–482. doi:10.1007/BF00244965

    Article  CAS  Google Scholar 

  • Koch G, Egli K, Van Der Meer JR, Siegrist H (2000) Mathematical modeling of autotrophic denitrification in a nitrifying biofilm of a rotating biological contactor. Water Sci Technol 41(4–5):191–198

    CAS  Google Scholar 

  • la Cour Jansen J (2011) Anaerobic digestion: technology. In: Christensen T (ed) Solid Waste Technol Manag, vol 2. Wiley, London, pp 601–617

    Google Scholar 

  • Lei Z, Zhang Z, Huang W, Cai W (2015) Recent progress on dry anaerobic digestion of organic solid wastes: achievements and challenges. Curr Org Chem 19:400–412

    Article  CAS  Google Scholar 

  • Li YF, Chen PH, Yu Z (2014) Spatial and temporal variations of microbial community in a mixed plug-flow loop reactor fed with dairy manure. Microb Biotechnol 7:332–346. doi:10.1111/1751-7915.12125

    Article  CAS  Google Scholar 

  • Liang C-M, Hung C-H, Hsu S-C, Yeh I-C (2010) Purple nonsulfur bacteria diversity in activated sludge and its potential phosphorus-accumulating ability under different cultivation conditions. Appl Microbiol Biotechnol 86:709–719. doi:10.1007/s00253-009-2348-2

    Article  CAS  Google Scholar 

  • Liao BQ, Kraemer JT, Bagley DM (2006) Anaerobic membrane bioreactors: applications and research directions. Crit Rev Environ Sci Technol 36:489–530. doi:10.1080/10643380600678146

    Article  CAS  Google Scholar 

  • Lieberman RL, Rosenzweig AC (2004) Biological methane oxidation: regulation, biochemistry, and active site structure of particulate methane monooxygenase. Crit Rev Biochem Mol Biol 39:147–164. doi:10.1080/10409230490475507

    Article  CAS  Google Scholar 

  • Linke B, Rodríguez-Abalde Á, Jost C, Krieg A (2015) Performance of a novel two-phase continuously fed leach bed reactor for demand-based biogas production from maize silage. Bioresour Technol 177:34–40. doi:10.1016/j.biortech.2014.11.070

    Article  CAS  Google Scholar 

  • Lizarralde I et al (2015) A new general methodology for incorporating physico-chemical transformations into multi-phase wastewater treatment process models. Water Research 74:239–256. doi:10.1016/j.watres.2015.01.031

    Article  CAS  Google Scholar 

  • Long JH, Aziz TN, Reyes FL III, Ducoste JJ (2012) Anaerobic co-digestion of fat, oil, and grease (FOG): a review of gas production and process limitations. Process Saf Environ Prot 90:231–245. doi:10.1016/j.psep.2011.10.001

    Article  CAS  Google Scholar 

  • Lopes F et al (2011) Biogeochemical modelling of anaerobic vs. aerobic methane oxidation in a meromictic crater lake (Lake Pavin, France). Appl Geochem 26:1919–1932. doi:10.1016/j.apgeochem.2011.06.021

    Article  CAS  Google Scholar 

  • Lovley DR, Stolz JF, Nord GL, Phillips EJP (1987) Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism. Nature 330:252–254

    Article  CAS  Google Scholar 

  • Lovley DR, Phillips EJP, Gorby YA, Landa ER (1991) Microbial reduction of uranium. Nature 350:413–416

    Article  CAS  Google Scholar 

  • Mata-Alvarez J, Dosta J, Macé S, Astals S (2011) Codigestion of solid wastes: a review of its uses and perspectives including modeling. Crit Rev Biotechnol 31:99–111. doi:10.3109/07388551.2010.525496

    Article  CAS  Google Scholar 

  • McCarty PL, Bae J, Kim J (2011) Domestic wastewater treatment as a net energy producer-can this be achieved? Environ Sci Technol 45:7100–7106. doi:10.1021/es2014264

    Article  CAS  Google Scholar 

  • McKinlay JB, Harwood CS (2010) Carbon dioxide fixation as a central redox cofactor recycling mechanism in bacteria. Proc Natl Acad Sci 107:11669–11675. doi:10.1073/pnas.1006175107

    Article  CAS  Google Scholar 

  • Melnicki MR, Eroglu E, Melis A (2009) Changes in hydrogen production and polymer accumulation upon sulfur-deprivation in purple photosynthetic bacteria. Int J Hydrogen Energy 34:6157–6170

    Article  CAS  Google Scholar 

  • Munoz R, Guieysse B (2006) Algal–bacterial processes for the treatment of hazardous contaminants: a review. Water Res 40:2799–2815

    Article  CAS  Google Scholar 

  • Muñoz-Tamayo R, Laroche B, Walter É, Doré J, Leclerc M (2010) Mathematical modelling of carbohydrate degradation by human colonic microbiota. J Theor Biol 266:189–201. doi:10.1016/j.jtbi.2010.05.040

    Article  CAS  Google Scholar 

  • Nopens I, Batstone DJ, Copp JB, Jeppsson U, Volcke E, Alex J, Vanrolleghem PA (2009) An ASM/ADM model interface for dynamic plant-wide simulation. Water Res 43:1913–1923

    Article  CAS  Google Scholar 

  • Nopharatana A, Pullammanappallil PC, Clarke WP (2003) A dynamic mathematical model for sequential leach bed anaerobic digestion of organic fraction of municipal solid waste. Biochem Eng J 13:21–33

    Article  CAS  Google Scholar 

  • Overmann J, Garcia-Pichel F (1998) The phototrophic way of life: The Prokaryotes: an evolving electronic resource for the microbiological community M Dworkin. Springer, New York

    Google Scholar 

  • Ozgun H, Dereli RK, Ersahin ME, Kinaci C, Spanjers H, van Lier JB (2013) A review of anaerobic membrane bioreactors for municipal wastewater treatment: integration options, limitations and expectations. Sep Purif Technol 118:89–104. doi:10.1016/j.seppur.2013.06.036

    Article  CAS  Google Scholar 

  • Pagés-Díaz J, Westman J, Taherzadeh MJ, Pereda-Reyes I, Sárvári Horváth I (2015) Semi-continuous co-digestion of solid cattle slaughterhouse wastes with other waste streams: Interactions within the mixtures and methanogenic community structure. Chem Eng J 273:28–36. doi:10.1016/j.cej.2015.03.049

    Article  CAS  Google Scholar 

  • Papadopoulos A, Parisopoulos G, Papadopoulos F, Karteris A (2003) Sludge accumulation pattern in an anaerobic pond under Mediterranean climatic conditions. Water Res 37:634–644. doi:10.1016/S0043-1354(02)00307-X

    Article  CAS  Google Scholar 

  • Pavlostathis SG, Gossett JM (1986) A kinetic model for anaerobic digestion of biological sludge. Biotech Bioeng 28:1519–1530

    Article  CAS  Google Scholar 

  • Peiris BRH, Rathnasiri PG, Johansen JE, Kuhn A, Bakke R (2006) ADM1 simulations of hydrogen production. 53. doi:10.2166/wst.2006.243

  • Penumathsa BKV, Premier GC, Kyazze G, Dinsdale R, Guwy AJ, Esteves S, Rodríguez J (2008) ADM1 can be applied to continuous bio-hydrogen production using a variable stoichiometry approach. Water Res 42:4379–4385. doi:10.1016/j.watres.2008.07.030

    Article  CAS  Google Scholar 

  • Pikaar I, Sharma KR, Hu S, Gernjak W, Keller J, Yuan Z (2014) Reducing sewer corrosion through integrated urban water management. Science 345:812–814

    Article  CAS  Google Scholar 

  • Pratt S, Liew D, Batstone DJ, Werker AG, Morgan-Sagastume F, Lant PA (2012) Inhibition by fatty acids during fermentation of pre-treated waste activated sludge. J Biotechnol 159:38–43. doi:10.1016/j.jbiotec.2012.02.001

    Article  CAS  Google Scholar 

  • Pullammanappallil PC, Svoronos SA, Chynoweth DP, Lyberatos G (1998) Expert system for control of anaerobic digesters. Biotechnol Bioeng 58:13–22. doi:10.1002/(SICI)1097-0290(19980405)58:1<13:AID-BIT2>3.0.CO;2-X

    Article  CAS  Google Scholar 

  • Puyol D, Carvajal-Arroyo J, Sierra-Alvarez R, Field J (2014) Nitrite (not free nitrous acid) is the main inhibitor of the anammox process at common pH conditions. Biotechnol Lett 36:547–551

    Article  CAS  Google Scholar 

  • Raghoebarsing AA et al. (2006) A microbial consortium couples anaerobic methane oxidation to denitrification. Nature 440:918–921. http://www.nature.com/nature/journal/v440/n7086/suppinfo/nature04617_S1.html

  • Razaviarani V, Buchanan ID (2015) Calibration of the Anaerobic Digestion Model No. 1 (ADM1) for steady-state anaerobic co-digestion of municipal wastewater sludge with restaurant grease trap waste. Chem Eng J 266:91–99. doi:10.1016/j.cej.2014.12.080

    Article  CAS  Google Scholar 

  • Ren T-T, Mu Y, Ni B-J, Yu H-Q (2009) Hydrodynamics of upflow anaerobic sludge blanket reactors. AIChE J 55:516–528. doi:10.1002/aic.11667

    Article  CAS  Google Scholar 

  • Rivera-Salvador V, López-Cruz IL, Espinosa-Solares T, Aranda-Barradas JS, Huber DH, Sharma D, Toledo JU (2014) Application of Anaerobic Digestion Model No. 1 to describe the syntrophic acetate oxidation of poultry litter in thermophilic anaerobic digestion. Bioresour Technol 167:495–502. doi:10.1016/j.biortech.2014.06.008

    Article  CAS  Google Scholar 

  • Robles A, Ruano MV, Ribes J, Ferrer J (2013a) Advanced control system for optimal filtration in submerged anaerobic MBRs (SAnMBRs). J Membr Sci 430:330–341. doi:10.1016/j.memsci.2012.11.078

    Article  CAS  Google Scholar 

  • Robles A, Ruano MV, Ribes J, Seco A, Ferrer J (2013b) A filtration model applied to submerged anaerobic MBRs (SAnMBRs). J Membr Sci 444:139–147. doi:10.1016/j.memsci.2013.05.021

    Article  CAS  Google Scholar 

  • Robles A, Ruano MV, Ribes J, Seco A, Ferrer J (2014) Model-based automatic tuning of a filtration control system for submerged anaerobic membrane bioreactors (AnMBR). J Membr Sci 465:14–26. doi:10.1016/j.memsci.2014.04.012

    Article  CAS  Google Scholar 

  • Rodriguez-Freire L, Sierra-Alvarez R, Root R, Chorover J, Field JA (2014) Biomineralization of arsenate to arsenic sulfides is greatly enhanced at mildly acidic conditions. Water Res 66:242–253

    Article  CAS  Google Scholar 

  • Rosen C, Vrecko D, Gernaey KV, Pons MN, Jeppsson U (2006) Implementing ADM1 for plant-wide benchmark simulations in Matlab/Simulink, vol 54

  • Saqqar MM, Pescod MB (1995) Modelling sludge accumulation in anaerobic wastewater stabilization ponds. Water Sci Technol 31:185–190. doi:10.1016/0273-1223(95)00505-H

    Article  CAS  Google Scholar 

  • Saravanan V, Sreekrishnan TR (2006) Modelling anaerobic biofilm reactors-A review. J Environ Manage 81:1–18. doi:10.1016/j.jenvman.2005.10.002

    Article  CAS  Google Scholar 

  • Saritpongteeraka K, Boonsawang P, Sung S, Chaiprapat S (2014) Co-fermentation of oil palm lignocellulosic residue with pig manure in anaerobic leach bed reactor for fatty acid production. Energy Convers Manag 84:354–362. doi:10.1016/j.enconman.2014.04.056

    Article  CAS  Google Scholar 

  • Shewani A, Horgue P, Pommier S, Debenest G, Lefebvre X, Gandon E, Paul E (2015) Assessment of percolation through a solid leach bed in dry batch anaerobic digestion processes. Bioresour Technol 178:209–216. doi:10.1016/j.biortech.2014.10.017

    Article  CAS  Google Scholar 

  • Shilton A, Harrison J (2003) Development of guidelines for improved hydraulic design of waste stabilisation ponds. Water Sci Technol 48:173–180

    CAS  Google Scholar 

  • Shin C, McCarty PL, Kim J, Bae J (2014) Pilot-scale temperate-climate treatment of domestic wastewater with a staged anaerobic fluidized membrane bioreactor (SAF-MBR). Bioresour Technol 159:95–103. doi:10.1016/j.biortech.2014.02.060

    Article  CAS  Google Scholar 

  • Siegrist H, Renggli D, Gujer W (1993) Mathematical modelling of anaerobic mesophilic sewage sludge treatment. Wat Sci Tech 27:25–36

    Article  CAS  Google Scholar 

  • Siegrist H, Vogt D, Garcia-Heras J, Gujer W (2002) Mathematical model for meso and thermophilic anaerobic sewage sludge digestion. Environ Sci Technol 36:1113–1123

    Article  CAS  Google Scholar 

  • Solon K et al (2015) Effects of ionic strength and ion pairing on (plant-wide) modelling of anaerobic digestion. Water Res 70:235–245. doi:10.1016/j.watres.2014.11.035

    Article  CAS  Google Scholar 

  • Spagni A, Ferraris M, Casu S (2015) Modelling wastewater treatment in a submerged anaerobic membrane bioreactor. J Environ Sci Health Part A 50:325–331. doi:10.1080/10934529.2015.981123

    Article  CAS  Google Scholar 

  • Stuckey DC (2012) Recent developments in anaerobic membrane reactors. Bioresour Technol 122:137–148. doi:10.1016/j.biortech.2012.05.138

    Article  CAS  Google Scholar 

  • Tang K, Baskaran V, Nemati M (2009) Bacteria of the sulphur cycle: an overview of microbiology, biokinetics and their role in petroleum and mining industries. Biochem Eng J 44:73–94. doi:10.1016/j.bej.2008.12.011

    Article  CAS  Google Scholar 

  • Thamsiriroj T, Nizami AS, Murphy JD (2012) Use of modeling to aid design of a two-phase grass digestion system. Bioresource Technology 110:379–389. doi:10.1016/j.biortech.2012.01.113

    Article  CAS  Google Scholar 

  • Tugtas AE, Tezel U, Pavlostathis SG (2010) A comprehensive model of simultaneous denitrification and methanogenic fermentation processes. Biotechnol Bioeng 105:98–108. doi:10.1002/bit.22443

    Article  CAS  Google Scholar 

  • Utgikar VP, Harmon SM, Chaudhary N, Tabak HH, Govind R, Haines JR (2002) Inhibition of sulfate-reducing bacteria by metal sulfide formation in bioremediation of acid mine drainage. Environ Toxicol 17:40–48. doi:10.1002/tox.10031

    Article  CAS  Google Scholar 

  • Van Hulle SWH, Vesvikar M, Poutiainen H, Nopens I (2014) Importance of scale and hydrodynamics for modeling anaerobic digester performance. Chem Eng J 255:71–77

    Article  CAS  Google Scholar 

  • van Niftrik L et al (2008a) Linking ultrastructure and function in four genera of anaerobic ammonium-oxidizing bacteria: cell plan, glycogen storage, and localization of cytochrome C proteins. J Bacteriol 190:708–717

    Article  CAS  Google Scholar 

  • van Niftrik L et al (2008b) Combined structural and chemical analysis of the anammoxosome: a membrane-bounded intracytoplasmic compartment in anammox bacteria. J Struct Biol 161:401–410. doi:10.1016/j.jsb.2007.05.005

    Article  CAS  Google Scholar 

  • Vavilin VA, Rytov SV, Lokshina LY (1996) A description of hydrolysis kinetics in anaerobic degradation of particulate organic matter. Biores Tech 56:229–237

    Article  CAS  Google Scholar 

  • Vavilin VA, Lokshina LY, Rytov SV, Kotsyurbenko OR, Nozhevnikova AN, Parshina SN (1997) Modelling methanogenesis during anaerobic conversion of complex organic matter at low temperatures. Wat Sci Tech 36:531–538

    Article  CAS  Google Scholar 

  • Volcke EIP, van Loosdrecht MCM, Vanrolleghem PA (2006) Continuity-based model interfacing for plant-wide simulation: a general approach. Water Res 40:2817–2828. doi:10.1016/j.watres.2006.05.011

    Article  CAS  Google Scholar 

  • Weijma J, Copini CFM, Buisman CJN, Schultz CE (2002) Biological recovery of metals, sulfur and water in the mining and metallurgical industry. IWA Publishing, London, pp 605–622

    Google Scholar 

  • Wett B, Takács I, Batstone D, Wilson C, Murthy S (2014) Anaerobic model for high-solids or high-temperature digestion—additional pathway of acetate oxidation. Water Sci Technol 69:1634–1640. doi:10.2166/wst.2014.047

    Article  CAS  Google Scholar 

  • Wu D et al (2013) A new biological phosphorus removal process in association with sulfur cycle. Water Res 47:3057–3069. doi:10.1016/j.watres.2013.03.009

    Article  CAS  Google Scholar 

  • Wu D et al (2014) Simultaneous nitrogen and phosphorus removal in the sulfur cycle-associated enhanced biological phosphorus removal (EBPR) process. Water Res 49:251–264. doi:10.1016/j.watres.2013.11.029

    Article  CAS  Google Scholar 

  • Zaher U, Buffiere P, Steyer JP, Chen S (2009) A procedure to estimate proximate analysis of mixed organic wastes. Water Environ Res 81:407–415. doi:10.2175/106143008X370548

    Article  CAS  Google Scholar 

  • Zhang F, Ding J, Zhang Y, Chen M, Ding Z-W, van Loosdrecht MCM, Zeng RJ (2013) Fatty acids production from hydrogen and carbon dioxide by mixed culture in the membrane biofilm reactor. Water Res 47:6122–6129. doi:10.1016/j.watres.2013.07.033

    Article  CAS  Google Scholar 

  • Zhu G, Zou R, Jha AK, Huang X, Liu L, Liu C (2015) Recent developments and future perspectives of anaerobic baffled bioreactor for wastewater treatment and energy recovery. Crit Rev Environ Sci Technol 45:1243–1276. doi:10.1080/10643389.2014.924182

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damien J. Batstone.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Batstone, D.J., Puyol, D., Flores-Alsina, X. et al. Mathematical modelling of anaerobic digestion processes: applications and future needs. Rev Environ Sci Biotechnol 14, 595–613 (2015). https://doi.org/10.1007/s11157-015-9376-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11157-015-9376-4

Keywords

Navigation