Skip to main content

Advertisement

Log in

The roles of acetotrophic and hydrogenotrophic methanogens during anaerobic conversion of biomass to methane: a review

  • Review Paper
  • Published:
Reviews in Environmental Science and Bio/Technology Aims and scope Submit manuscript

Abstract

Among different conversion processes for biomass, biological anaerobic digestion is one of the most economic ways to produce biogas from various biomass substrates. In addition to hydrolysis of polymeric substances, the activity and performance of the methanogenic bacteria is of paramount importance during methanogenesis. The aim of this paper is primarily to review the recent literature about the occurrence of both acetotrophic and hydrogenotrophic methanogens during anaerobic conversion of particulate biomass to methane (not wastewater treatment), while this review does not cover the activity of the acetate oxidizing bacteria. Both acetotrophic and hydrogenotrophic methanogens are essential for the last step of methanogenesis, but the reports about their roles during this phase of the process are very limited. Despite, some conclusions can still be drawn. At low concentrations of acetate, normally filamentous Methanosaeta species dominate, e.g., often observed in sewage sludge. Apparently, high concentrations of toxic ionic agents, like ammonia, hydrogen sulfide (H2S) and volatile fatty acids (VFA), inhibit preferably Methanosaetaceae and especially allow the growth of Methanosarcina species consisting of irregular cell clumps, e.g., in cattle manure. Thermophilic conditions can favour rod like or coccoid hydrogenotrophic methanogens. Thermophilic Methanosarcina species were also observed, but not thermophilic Methanosaetae. Other environmental factors could favour hydrogentrophic bacteria, e.g., short or low retention times in a biomass reactor. However, no general rules regarding process parameters could be derivated at the moment, which favours hydrogenotrophic methanogens. Presumably, it depends only on the hydrogen concentration, which is generally not mentioned in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alvarez R, Villca S, Liden G (2006) Biogas production from llama and cow manure at high altitude. Biomass Bioenergy 30(1):66–75

    CAS  Google Scholar 

  • Ahring BK (1995) Methanogenesis in thermophilic biogas reactors. Antoine van Leeuwenhoek 67:91–102

    CAS  Google Scholar 

  • Ahring BK, Ibrahim AA, Mladenovska Z (2001) Effect of temperature increase from 55 to 65°C on performance and microbial population dynamics of an anaerobic reactor treating cattle manure. Water Res 35(10):246–2452

    Google Scholar 

  • Angelidaki I, Ahring BK (1993) Thermophilic anaerobic digestion of livestock waste: the effect of ammonia. Appl Microb Biotechnol 38(4):560–564

    CAS  Google Scholar 

  • Angelidaki I, Boe K, Ellegaard L (2005) Effect of operating conditions and reactor configuration on efficiency of full-scale biogas plants. Water Sci Technol 52(1–2):189–194

    CAS  Google Scholar 

  • Angelidaki I, Heinfelt A, Ellegaard L (2006) Enhanced biogas recovery by applying post-digestion in large-scale centralized biogas plants. Water Sci Technol 54:237–244

    CAS  Google Scholar 

  • Angenent LT, Sung S, Raskin L (2002) Methanogenic population dynamics during start-up of a full-scale anaerobic sequencing batch reactor treating swine waste. Water Res 36:4648–4654

    CAS  Google Scholar 

  • Ariesyady HD, Ito T, Okabe S (2007a) Functional bacterial and archaeal community structures of major trophic groups in a full-scale anaerobic sludge digester. Water Res 41:1554–1568

    CAS  Google Scholar 

  • Ariesyady HD, Ito T, Yoshiguchi K, Okabe S (2007b) Phylogenetic and functional diversity of propionate-oxidizing bacteria in an anaerobic digester sludge. Appl Microbiol Biotechnol 75(3):673–683

    CAS  Google Scholar 

  • Atif AAY, Fakhru’l-Razi A, Ngan MA, Morimoto M, Iyuke SE, Veziroglu NT (2005) Fed batch production of hydrogen from palm oil mill effluent using anaerobic microflora. Int J Hydrogen Energy 30(13–14):1393–1397

    CAS  Google Scholar 

  • Bagi Z, Acs N, Balint B, Horvath L, Dobo K, Perei KR, Rakhely G, Kovacs KL (2007) Biotechnological intensification of biogas production. Appl Microbiol Biotechnol 76:473–482

    CAS  Google Scholar 

  • Bertin L, Colao MC, Ruzzi M, Fava F (2004) Performances and microbial features of a granular activated carbon packed-bed biofilm reactor capable of an efficient anaerobic digestion of olive mill wastewaters. FEMS Microbiol Ecol 48(3):413–423

    CAS  Google Scholar 

  • Blotevogel KH, Fischer U, Mocha M, Jannsen S (1985) Methanobacterium thermoalcaliphilum spec. nov., a new moderately alkaliphic and thermophilic methanogen. Arch Microbiol 142:211–217

    CAS  Google Scholar 

  • Bohn I, Björnsson L, Mattiasson B (2005) Energy balance for pilot scale anaerobic digestion of crop residues at 13–30°C. In: Ahring BK, Hartmann H (eds) Proceedings of the 4th International symposium of anaerobic digestion of solid waste\`dAugust–September 2005. Kopenhagen, Denmark, pp 644–648

  • Boone DR, Whitman WB, Rouviere P (1993a) Diversity and taxonomy of methanogens. In: Ferry JG (ed) Methanogenesis ecology, physiology, biochemistry & genetics. Chapman & Hall, New York, pp 35–80

    Google Scholar 

  • Boone DR, Chynoweth DP, Mah RA, Smith PH, Wilkie AC (1993b) Ecology and microbiology of biogasification. Biomass Bioenergy 5(3–4):191–202

    CAS  Google Scholar 

  • Bouallagui H, Cheikh RB, Marouani L, Hamdi M (2003) Mesophilic biogas production from fruit and vegetable waste in a tubular digester. Biores Technol 86(1):85–89

    CAS  Google Scholar 

  • Bouallagui H, Torrijos M, Godon JJ, Moletta R, Cheikh RB, Touhami Y, Delgenes JP, Hamdi M (2004) Microbial monitoring by molecular tools of a two-phase anaerobic bioreactor treating fruit and vegetable wastes. Biotechnol Lett 26:857–862

    CAS  Google Scholar 

  • Brown K (2004) Producing renewable hydrogen from biomass. BioCycle 45(1):54–55

    Google Scholar 

  • Carpentier J, Platteau W, Vanwallaghem J, Steenhoudt D, Verstraete W (2005) Anaerobic digestion of solid slaughterhouse waste: potential of renewable energy for Belgium. In: Ahring BK, Hartmann H (eds) Proceedings of the 4th international symposium of anaerobic digestion of solid waste August–September 2005. Kopenhagen, Denmark, pp 649–655

  • Chachkiani M, Dabert P, Abzianidze T, Partskhaladze G, Tsiklauri L, Dudauri T, Godon JJ (2004) 16S rDNA characterization of bacterial and archaeal communities during start-up of anaerobic thermophilic digestion of cattle manure. Biores Technol 93(3):227–232

    Google Scholar 

  • Chanakya HN, Venkatsubramaniyam R, Modak J (1997) Fermentation and methanogenic characteristics of leafy biomass feedstocks in a solid phase biogas fermenter. Biores Technol 62(3):71–78

    CAS  Google Scholar 

  • Chen AC, Ueda K, Sekiguchi Y, Ohashi A, Harada H (2003a) Molecular detection and direct enumeration of methanogenic Archaea and methanotrophic Bacteria in domestic solid waste landfill soils. Biotechnol Lett 25(18):1563–1569

    CAS  Google Scholar 

  • Chen AC, Imachi H, Sekiguchi Y, Okashi A, Harada H (2003b) Archaeal community compositions at different depths (up to 30 m) of a municipal solid waste landfill in Taiwan as revealed by 16S rDNA cloning analyses. Biotechnol Lett 29(9):719–724

    Google Scholar 

  • Chynoweth DP (1996) Environmental impact of biomethanogenesis. Environ Monitoring Assessment 42:3–18

    Google Scholar 

  • Chynoweth DP, Owens JM, Legrand R (2001) Renewable methane from anaerobic digestion of biomass. Renewable Energy 22:1–8

    CAS  Google Scholar 

  • Claassen PAM, van Lier JB, Lopez Contreras AM, van Niel EWJ, Sijtsma L, Stams AJM, de Vries SS, Weusthuis RA (1999) Utilisation of biomass for the supply of energy carriers. Appl Microb Biotechnol 52:741–755

    CAS  Google Scholar 

  • Clarens M, Moletta R (1990) Kinetic studies of acetate fermentation by Methanosarcina sp. MSTA-1. Appl Microb Biotechnol 33:239–244

    CAS  Google Scholar 

  • Clarens M, Bernet N, Delgenes JP, Moletta R (1998) Effects of nitrogen oxides and denitrification by Pseudomonas stutzeri on acetotrophic methanogenesis by Methanosarcina mazei. FEMS Microbiol Ecol 25:271–276

    CAS  Google Scholar 

  • Cooney M, Maynard N, Cannizzaro C, Benemann J (2007) Two-phase anaerobic digestion for production of hydrogen-methane mixtures. Biores Technol 98(14):2641–2651

    CAS  Google Scholar 

  • Delbes C, Moletta R, Godon JJ (2001) Bacterial and archaeal 16S rRNA dynamics during an acetate crisis in an anaerobic digestor ecosystem. FEMS Microbiol Ecol 35:19–26

    CAS  Google Scholar 

  • Demirel B, Scherer P (2008) Production of methane from sugar beet silage without manure addition by a single-stage anaerobic digestion process. Biomass Bioenergy (in press)

  • Derikx PJ, de Jong GA, Op den Camp HJ, von der Drift C, van Griensven LJ, Vogels GD (1989) Isolation and characterization of thermophilic methanogenic bacteria from mushroom compost. FEMS Microbiol Lett 62:251–258

    CAS  Google Scholar 

  • Dubach AC, Bachofen R (1985) Methanogens: a short taxonomic review. Experentia 41:441–446

    Google Scholar 

  • Dolfing J (1988) Acetogenesis In: Zehnder AJB (ed) Biology of anaerobic microorganisms. John Wiley & Sons, pp 418–468

  • El-Mashad HM, Zeeman G, van Loon WKP, Bot GPA, Lettinga G (2004) Effect of temperature and temperature fluctuation on thermophilic anaerobic digestion of cattle manure. Biores Technol 95(2):191–201

    CAS  Google Scholar 

  • Enright AM, Collins G, O’Flaherty V (2007) Temporal microbial diversity changes in solvent-degrading anaerobic granular sludge from low-temperature (15°C) wastewater treatment bioreactors. Syst Appl Microbiol 30(6):471–482

    CAS  Google Scholar 

  • Fan KS, Kan N, Lay J (2006) Effect of hydraulic retention time on anaerobic hydrogenesis in CSTR. Biores Technol 97(1):84–89

    CAS  Google Scholar 

  • Fang HHP (2000) Microbial distribution in UASB granules and its resulting effects. Water Sci Technol 42(12):201–208

    CAS  Google Scholar 

  • Fernandez N, Montalvo S, Fernandez-Polanco F, Guerrero L, Cortes I, Borja R, Sanchez E, Travieso L (2007a) Real evidence about zeolite as microorganisms immobilizer in anaerobic fluidized bed reactors. Process Biochem 42:721–728

    CAS  Google Scholar 

  • Fernandez N, Diaz EE, Amils R, Sanz JL (2007b) Analysis of microbial community during biofilm development in an anaerobic wastewater treatment reactor. Microb Ecol (in press)

  • Ferry JG (1992) Methane from acetate. J Bacteriol 174:5489–5495

    CAS  Google Scholar 

  • Garrity GM, Bell JA, Lilburn TG (2004) Taxonomic outline of the prokaryotes, Bergey’s manual® of systematic bacteriology, 2nd Edn. Springer, New York Berlin Heidelberg

    Google Scholar 

  • Gavala HN, Skiadas IV, Ahring BK (2006) Biological hydrogen production in suspended and attached growth anaerobic reactor systems. Int J Hydrogen Energy 31(9):1164–1175

    CAS  Google Scholar 

  • Ghosh S, Henry MP, Sajjad A, Mensinger MC, Arora JL (2000) Pilot-scale gasification of municipal solid wastes by high-rate and two-phase anaerobic digestion (TPAD). Water Sci Technol 41(3):101–110

    CAS  Google Scholar 

  • Gijzen HJ, Bernal E, Ferrer H (2000) Cyanide toxicity and cyanide degradation in anaerobic wastewater treatment. Water Res 34(9):2447–2454

    CAS  Google Scholar 

  • Goel B, Pant DC, Kishore VVN (2001) Two-phase anaerobic digestion of spent tea leaves for biogas and manure generation. Biores Technol 80(2):153–156

    CAS  Google Scholar 

  • Gong ML, Ren NQ, Xing DF (2005) Start-up of bio-hydrogen production reactor seeded with sewage sludge and its microbial community analysis. Water Sci Technol 52(1–2):115–121

    CAS  Google Scholar 

  • Gonzalez-Gil G, Lens PNL, Van Aelst A, Van As H, Versprille AI, Lettinga G (2001) Cluster structure of anaerobic aggregates of an expanded granular sludge bed reactor. Appl Environ Microbiol 67(8):3683–3692

    CAS  Google Scholar 

  • Griffin ME, McMahon KD, Mackie RI, Raskin L (2000) Methanogenic population dynamics during start-up of anaerobic digesters treating municipal solid waste and biosolids. Biotechnol Bioeng 57(3):342–355

    Google Scholar 

  • Gunaseelan VN (1997) Anaerobic digestion of biomass for methane production: a review. Biomass Bioenergy 13(1–2):83–114

    CAS  Google Scholar 

  • Guyot JP, Gutierrez G, Rojas MG (1993) Anaerobic microbial counts of different potential anaerobic inocula. Appl Microb Biotechnol 40(1):139–142

    CAS  Google Scholar 

  • Hai-Lou X, Jing-Yuan W, Joo-Hwa T (2002) A hybrid anaerobic solid-liquid bioreactor for food waste digestion. Biotechnol Lett 24:757–761

    Google Scholar 

  • Hansen KH, Ahring BK, Raskin L (1999) Quantification of syntrophic fatty acid-oxidizing bacteria in a mesophilic biogas reactor by oligonucleotide probe hybridization. Appl Environ Microbiol 65(11):4767–4774

    CAS  Google Scholar 

  • Hawkes FR, Dinsdale R, Hawkes DL, Hussy I (2002) Sustainable fermentative hydrogen production: challenges for process optimisation. Int J Hydrogen Energy 27(11–12):1339–1347

    CAS  Google Scholar 

  • Hedrick DB, White T, Guckert JB, Jewell WJ, White DC (1992) Microbial biomass and community structure of a phase-separated methanogenic reactor determined by lipid analysis. J Ind Microbiol Biotechnol 9(3–4):193–199

    CAS  Google Scholar 

  • Hori T, Haruta S, Ueno Y, Ishii M, Igarashi Y (2006) Dynamic transition of a methanogenic population in response to the concentration of volatile fatty acids in a thermophilic anaerobic digester. Appl Environ Microbiol 72(2):1623–1630

    CAS  Google Scholar 

  • Huang LN, Chen YQ, Zhou H, Luo S, Lan CY, Qu LH (2003) Characterization of methanogenic Archaea in the leachate of a closed municipal solid waste landfill. FEMS Microbiol Ecol 46:171–177

    CAS  Google Scholar 

  • Imachi H, Sekiguchi Y, Kamagata Y, Ohashi A, Harada H (2000) Cultivation and in situ detection of a thermophilic bacterium capable of oxidizing propionate in syntrophic association with hydrogenotrophic methanogens in a thermophilic methanogenic granular sludge. Appl Environ Microbiol 66(8):3608–3615

    CAS  Google Scholar 

  • Jackel U, Thummes K, Kampfer P (2005) Thermophilic methane production and oxidation in compost. FEMS Microbiol Ecol 52:175–184

    Google Scholar 

  • Jarvis A, Nordberg A, Mathisen B, Svensson BH (1995) Stimulation of conversion rates and bacterial activity in a silage-fed two-phase biogas process by initiating liquid recirculation. Antoine van Leeuwenhoek 68(4):317–327

    CAS  Google Scholar 

  • Jetten MSM, Stams AJM, Zehnder AJB (1990) Acetate threshold values and acetate activating enzymes in methanogenic bacteria. FEMS Microbiol Ecol 73:339–344

    CAS  Google Scholar 

  • Karakashev D, Batstone DJ, Angelidaki I (2005) Influence of environmental conditions on methanogenic compositions in anaerobic biogas reactors. Appl Environ Microbiol 71(1):331–338

    CAS  Google Scholar 

  • Karakashev D, Batstone DJ, Trably E, Angelidaki I (2006) Acetate oxidation is the dominant pathway from acetate in the absence of Methanosaetaceae. Appl Environ Microbiol 72:5138–5141

    CAS  Google Scholar 

  • Karpenstein-Machan M (2001) Sustainable cultivation concepts for domestic energy production from biomass. C Rev Plant Sci 20(1):1–14

    Google Scholar 

  • Kawagoshi Y, Hino N, Fujimoto A, Nakao M, Fujita Y, Sugimura S, Furukawa K (2005) Effect of inoculum conditioning on hydrogen fermentation and pH effect on bacterial community relevant to hydrogen production. J Biosci Bioeng 100(5):524–530

    CAS  Google Scholar 

  • Klass DL (1998) Biomass for renewable energy, fuels, and chemicals. Academic Press, USA

    Google Scholar 

  • Klocke M, Mähnert P, Mundt K, Souidi K, Linke B (2007) Microbial community analysis of a biogas-producing completely stirred tank reactor fed continuously with fodder beet silage as mono-substrate. Syst Appl Microbiol 30:139–151

    CAS  Google Scholar 

  • Kim SH, Han SK, Shin HS (2004) Feasibility of biohydrogen production by anaerobic co-digestion of food waste and sewage sludge. Int J Hydrogen Energy 29(15):1607–1616

    CAS  Google Scholar 

  • Koster IW, Koomen E (1988) Ammonia inhibition of the maximum growth rate (μm) of hydrogenotrophic methanogens at various pH-levels and temperatures. Appl Microb Biotechnol 28:500–505

    CAS  Google Scholar 

  • Labat M, Garcia JL (1986) Study on the development of methanogenic microflora during anaerobic digestion of sugar beet pulp. Appl Microb Biotechnol 25:163–168

    Article  CAS  Google Scholar 

  • Lastella G, Testa C, Cornacchia G, Notornicola M, Voltasio F, Sharma VK (2002) Anaerobic digestion of semi-solid organic waste: biogas production and its purification. Energy Conserv Manage 43(1):63–75

    CAS  Google Scholar 

  • Lay JJ, Tsai CJ, Huang CC, Chang JJ, Chou CH, Fan KS, Chang JI, Hsu PC (2005) Influences of pH and hydraulic retention time on anaerobes converting beer processing wastes into hydrogen. Water Sci Technol 52(1–2):123–129

    CAS  Google Scholar 

  • Leybo AI, Netrusov AI, Conrad R (2006) Effect of hydrogen concentration on the community structure of hydrogenotrophic methanogens studied by T-RELP analysis of 16S rRNA gene amplicons. Microbiology 75(6):683–688

    CAS  Google Scholar 

  • Li YY, Noike T, Mizuno O, Funaishi K (2005) A new two-phase process for waterless methane fermentation treating the organic fraction of MSW. In: Ahring BK, Hartmann H (eds) Proceedings of the 4th International symposium of anaerobic digestion of solid waste August–September 2005. Kopenhagen, Denmark, pp 545–550

  • Linke B (2006) Kinetic study of thermophilic anaerobic digestion of solid wastes from potato processing. Biomass Bioenergy 30:892–896

    CAS  Google Scholar 

  • Lundbäck KMO, Klasson KT, Clausen EC, Gaddy JL (1990) Kinetics of growth and hydrogen uptake by Methanobacterium Formicicum. Biotechnol Lett 12(11):857–860

    Google Scholar 

  • Mah RA, Smith MR (1981) The methanogenic bacteria. In: Star M, Stolp H, Trüper HG, Balows A, Schlegel HG (eds) The prokaryotes. Springer-Verlag, Berlin Heidelberg New York, USA, pp 948–977

    Google Scholar 

  • McHugh S, Carton Collins G, O’Flaherty V (2004) Reactor performance and microbial community dynamics during anaerobic biological treatment of wastewaters at 16–37°C. FEMS Microbiol Ecol 48:369–378

    CAS  Google Scholar 

  • McInerney MJ (1988) Anaerobic hydrolysis and fermentation of fats and proteins. In: Zehnder AJB (Ed) Biology of anaerobic microorganisms. Wiley, New York, pp 373–415

    Google Scholar 

  • McKendry P (2002) Energy production from biomass (part 1): overview of biomass. Biores Technol 83(1):37–46

    CAS  Google Scholar 

  • McMahon KD, Stroot PG, Mackie RI, Raskin L (2001) Anaerobic codigestion of municipal solid waste and biosolids under various mixing conditions-2: microbial population dynamics. Water Res 35(7):1817–1827

    CAS  Google Scholar 

  • McMahon KD, Zheng D, Stams AJM, Mackie RI, Raskin L (2004) Microbial population dynamics during start-up and overload conditions of anaerobic digesters treating municipal solid waste and sewage sludge. Biotechnol Bioeng 87(7):823–834

    CAS  Google Scholar 

  • Mladenovska Z, Ahring BK (2000) Growth kinetics of thermophilic Methanosarcina spp. isolated from full-scale biogas plants treating animal manures. FEMS Microbiol Ecol 31(3):225–230

    CAS  Google Scholar 

  • Mladenovska Z, Dabrowski S, Ahring BK (2003) Anaerobic digestion of manure and mixture of manure with lipids: biogas reactor performance and microbial community analysis. Water Sci Technol 48(6):271–278

    CAS  Google Scholar 

  • Mladenovska Z, Hartmann H, Kvist T, Sales-Cruz M, Gani R, Ahring BK (2005) Thermal treatment of the solid fraction of manure: impact on the biogas reactor performance and microbial community. In: Ahring BK, Hartmann H (eds) Proceedings of the 4th international symposium of anaerobic digestion of solid waste August–September 2005. Kopenhagen, Denmark, pp 218–225

  • Moller HB, Sommer SG, Ahring B (2004) Methane productivity of manure, straw and solid fractions of manure. Biomass Bioenergy 26(5):485–495

    CAS  Google Scholar 

  • Montero B, Garcia-Morales JL, Sales D, Solera R (2008) Evolution of microorganisms in thermophilic-dry anaerobic digestion. Biores Technol (in press)

  • Neves L, Oliveira R, Alves MM (2004) Influence of inoculum activity on the bio-methanization of a kitchen waste under different waste/inoculum ratios. Proc Biochem 39:2019–2024

    CAS  Google Scholar 

  • Nielsen HB, Mladenovska Z, Westermann P, Ahring BK (2004) Comparison of two-stage thermophilic (68°C/55°C) anaerobic digestion with one-stage thermophilic (55°C) digestion of cattle manure. Biotechnol Bioeng 86(3):291–300

    CAS  Google Scholar 

  • Nishio N, Nakashimada Y (2004) High rate production of hydrogen/methane from various substrates and wastes. Adv Biochem Eng Biotechnol 90:63–87

    CAS  Google Scholar 

  • Oh SE, Iyer P, Bruns M, Logan B (2004) Biological hydrogen production using a membrane bioreactor. Biotechnol Bioeng 87(1):119–127

    CAS  Google Scholar 

  • Ohtsubo S, Demizu K, Kohno S, Miura I, Ogawa T, Fukuda H (1992) Comparison of acetate utilization among strains of an aceticlastic methanogen, Methanothrix soehngenii. Appl Environ Microbiol 58:703–705

    CAS  Google Scholar 

  • Okamoto M, Miyahara T, Mizuno O, Noike T (2000) Biological hydrogen production potential of materials characteristics of the organic fraction of municipal solid wastes. Water Sci Technol 41(3):25–32

    CAS  Google Scholar 

  • Oude Elferink SJWH, Visser A, Hulshoff Pol LW, Stams AJM (1994) Sulfate reduction in methanogenic reactors. FEMS Microbiol Rev 15:119–136

    CAS  Google Scholar 

  • Oude Elferink SJWH, van Lis R, Heilig HGHJ, Akkermans ADL, Stams AJM (1998) Detection and quantification of microorganisms in anaerobic bioreactors. Biodegradation 9:169–177

    CAS  Google Scholar 

  • Parawira W, Murto M, Read JS, Mattiasson B (2005) Profile of hydrolases and biogas production during two-stage mesophilic anaerobic digestion of solid potato waste. Proc Biochem 40(9):2945–2952

    CAS  Google Scholar 

  • Parawira W, Read JS, Mattiasson B, Bjornsson L (2008) Energy production from agricultural residues: high methane yields in pilot-scale two-stage anaerobic digestion. Biomass Bioenergy 32:44–50

    CAS  Google Scholar 

  • Padmasiri SI, Zhang J, Fitch M, Norddahl B, Morgenroth E, Raskin L (2007) Methanogenic population dynamics and performance of an anaerobic membrane bioreactor (AnMBR) treating swine manure under high shear conditions. Water Res 41:134–144

    CAS  Google Scholar 

  • Paulo PL, Jiang B, Roest K, Van Lier JB, Lettinga G (2002) Start-up of a thermophilic methanol-fed UASB reactor: change in sludge characteristics. Water Sci Technol 45(10):145–150

    CAS  Google Scholar 

  • Paulo PL, Villa G, Van Lier JB, Lettinga G (2003) The anaerobic conversion of methanol under thermophilic conditions: pH and bicarbonate dependence. J Biosci Bioeng 96(3):213–218

    CAS  Google Scholar 

  • Petersen SP, Ahring BK (1991) Acetate oxidation in a thermophilic anaerobic sewage-sludge digestor: the importance of non-aceticlastic methanogenesis from acetate. FEMS Microbiol Ecol 86:149–158

    CAS  Google Scholar 

  • Raizada N, Sonakya V, Dalhoff R, Hausner M, Wilderer PA (2003) Population dynamics of rumen microbes using modern techniques in rumen enhanced solid incubation. Water Sci Technol 48:113–119

    CAS  Google Scholar 

  • Rao MS, Singh SP, Singh AK, Sodha MS (2000) Bioenergy conversion studies of the organic fraction of MSW: assessment of ultimate bioenergy production potential of municipal garbage. Appl Energ 66(1):75–87

    CAS  Google Scholar 

  • Raskin L, Zheng D, Griffin ME, Stroot PG, Misra P (1995) Characterization of microbial communities in anaerobic bioreactors using molecular probes. Antoine van Leeuwenhoek 68(4):297–308

    CAS  Google Scholar 

  • Rastogi G, Ranade D, Yeole TY, Patole MS, Shouche YS (2007) Investigation of methanogen population structure in biogas reactor by molecular characterization of methyl-coenzyme M reductase A (mcr A) genes. Biores Technol (in press)

  • Robinson JA, Tiedje JM (1984) Competition between sulfate-reducing and methanogenic bacteria for H2 under resting and growing conditions. Arch Microbiol 137:26–32

    CAS  Google Scholar 

  • Roest K, Altinbas M, Paulo PL, Heilig HGHJ, Akkermans ADL, Smidt H, de Vos WM, Stams AJM (2005) Enrichment and detection of microorganisms involved in direct and indirect methanogenesis from methanol in an anaerobic thermophilic bioreactor. Microb Ecol 50(3):440–446

    CAS  Google Scholar 

  • Sanz JL, Köchling T (2007) Molecular biology techniques used in wastewater treatment: an overview. Proc Biochem 42:119–133

    CAS  Google Scholar 

  • Sasaki K, Haruta S, Ueno Y, Ishii M, Igarashi Y (2007) Microbial population in the biomass adhering to supporting material in a packed-bed reactor degrading organic solid waste. Appl Microbiol Biotechnol 75(4):941–952

    CAS  Google Scholar 

  • Sawayama S, Tsukahara K, Yagishita T (2006) Phylogenetic description of immobilized methanogenic community using real-time PCR in a fixed-bed anaerobic digester. Biores Technol 97(1):69–76

    CAS  Google Scholar 

  • Schauer NL, Ferry FG (1980) Metabolism of formate in Methanobacterium formicicum. J Bacteriol 142:800–807

    CAS  Google Scholar 

  • Scherer PA, Vollmer GR, Fakhouri T, Martensen S (2000) Development of a methanogenic process to degrade exhaustively the organic fraction of municipal ‘grey waste’ under thermophilic and hyperthermophilic conditions. Water Sci Technol 41:83–91

    CAS  Google Scholar 

  • Scherer PA, Dobler S, Rohardt S, Loock R, Buttner B, Noldeke P, Brettschuh A (2003) Continuous biogas production from fodder beet silage as sole substrate. Water Sci Technol 48(4):229–233

    CAS  Google Scholar 

  • Scherer PA, Lehmann K (2004) Application of an automatic Fuzzy-logic controller to digest anaerobically fodder beet silage at a HRT of 6.5 days and with an OLR of 14 kg VS/(m3.d). In: Guiot S (ed) Proceedings of the 10th world congress of anaerobic digestion, September 2004. Montreal, Canada, pp 72–78

  • Scherer PA, Klocke M, Unbehauen M (2005) Anaerobic digestion of beet silage by non-acetoclastic methanogenesis. In: Ahring BK, Hartmann H (eds) Proceedings of the 4th international symposium on anaerobic digestion of solid waste, August–September 2005. Copenhagen, Denmark, pp 106–111

  • Schink B (1994) Diversity, ecology, and isolation of acetogenic bacteria. In: Drake HL (eds) Acetogenesis. Chapman & Hall, New York London, pp 387–415

    Google Scholar 

  • Schmidt JE, Ahring BK (1999) Immobilization patterns and dynamics of acetate-utilizing methanogens immobilized in sterile granular sludge in upflow anaerobic sludge blanket reactors. Appl Environ Microbiol 65(3):1050–1054

    CAS  Google Scholar 

  • Schmidt JE, Mladenovska Z, Lange M, Ahring BK (2000) Acetate conversion in anaerobic biogas reactors: traditional and molecular tools for studying this important group of anaerobic microorganisms. Biodegradation 11:359–364

    CAS  Google Scholar 

  • Schnürer A, Zellner G, Svensson BH (1999) Mesophilic syntrophic acetate oxidation during methane formation in biogas reactors. FEMS Microbiol Ecol 29:249–261

    Google Scholar 

  • Schönheit P, Kristjansson JK, Thauer RK (1982) Kinetic mechanism for the ability of sulfate reducers to out-compete methanogens for acetate. Arch Microbiol 132:285–288

    Google Scholar 

  • Shigematsu T, Tang Y, Kobayashi T, Kawaguchi H, Morimura S, Kida K (2004) Effect of dilution rate on metabolic pathway shift between aceticlastic and nonaceticlastic methanogenesis in chemostat cultivation. Appl Environ Microbiol 70:4048–4052

    CAS  Google Scholar 

  • Shigematsu T, Era S, Mizuno Y, Ninomiya K, Kamegawa Y, Morimura S, Kida K (2006) Microbial community of a mesophilic propionate-degrading methanogenic consortium in chemostat cultivation analyzed based on 16S rRNA and acetate kinase genes. Appl Microb Biotechnol 72(2):401–415

    CAS  Google Scholar 

  • Shin HS, Han SK, Song YC, Lee CY (2001) Performance of UASB reactor treating leachate from acidogenic fermenter in the two-phase anaerobic digestion of food waste. Water Res 35(14):3441–3447

    CAS  Google Scholar 

  • Shin HS, Youn JH, Kim SH (2004) Hydrogen production from food waste in anaerobic mesophilic and thermophilic acidogenesis. Int J Hydrogen Energy 29(13):1355–1363

    CAS  Google Scholar 

  • Shizas I, Bagley DM (2005) Fermentative hydrogen production in a system using anaerobic digester sludge without heat treatment as a biomass source. Water Sci Technol 52(1–2):139–144

    CAS  Google Scholar 

  • Siegrist H, Vogt D, Garcia-Heras JL, Gujer W (2002) Mathematical model for meso-and thermophilic anaerobic sewage sludge digestion. Environ Sci Technol 36:1113–1123

    CAS  Google Scholar 

  • Sipma J, Meulepas RJW, Parshina SN, Stams AJM, Lettinga G, Lens PNL (2004) Effect of carbon monoxide, hydrogen and sulfate on thermophilic (55°C) hydrogenic carbon monoxide conversion in two anaerobic bioreactor sludges. Appl Microb Biotechnol 64(3):421–428

    CAS  Google Scholar 

  • Smith MR, Mah RA (1978) Growth and methanogenesis by Methanosarcina strain 227 on acetate and methanol. Appl Environ Microbiol 36:870–879

    CAS  Google Scholar 

  • Stabnikova O, Liu XY, Wang JY, Ivanov V (2006) Quantification of methanogens by fluorescence in situ hybridization with oligonucleotide probe. Appl Microb Biotechnol 73(3):696–702

    CAS  Google Scholar 

  • Stroot PG, McMahon KD, Mackie RI, Raskin L (2001) Anaerobic codigestion of municipal solid waste and biosolids under various mixing conditions-1: digester performance. Water Res 35(7):1804–1816

    CAS  Google Scholar 

  • Svensson LM, Christensson K, Björnsson L (2005) Biogas production from crop residues on a farm-scale level: scale, choice of substrate and utilisation rate most important parameters for financial feasibility. In: Ahring BK, Hartmann H (eds) Proceedings of the 4th international symposium of anaerobic digestion of solid waste August–September 2005. Kopenhagen, Denmark, pp 636–643

  • Svensson LM, Björnsson L, Mattiasson B (2007) Enhancing performance in anaerobic high-solids stratified bed digesters by straw bed implementation. Biores Technol 98:46–52

    CAS  Google Scholar 

  • Syutsubo K, Sinthurat N, Ohashi A, Harada H (2001) Population dynamics of anaerobic microbial consortia in thermophilic granular sludge in response to feed composition change. Water Sci Technol 43(1):59–66

    CAS  Google Scholar 

  • Tada C, Tsukahara K, Sawayama S (2005) Illumination enhances methane production from thermophilic anaerobic digestion. Appl Microb Biotechnol 30:1–6

    Google Scholar 

  • Tang Y, Shigematsu T, Morimura S, Kida K (2005) Microbial community analysis of mesophilic anaerobic protein degradation process using bovine serum albumin (BSA)-fed continuous cultivation. J Biosci Bioeng 99(2):150–164

    CAS  Google Scholar 

  • Touzel JP, Petroff D, Albagnac G (1985) Isolation and characterization of a new thermophilic Methanosarcina, the strain CHTI55. Syst Appl Microbiol 6:66–71

    CAS  Google Scholar 

  • Valdez-Vazquez I, Sparling R, Risbey D, Rinderknecht-Seijas N, Poggi-Varaldo HM (2005) Hydrogen generation via anaerobic fermentation of paper mill wastes. Biores Technol 96(17):1907–1913

    CAS  Google Scholar 

  • Van Lier JB (1996) Limitations of thermophilic anaerobic wastewater treatment and the consequence for process design. Antoine van Leeuwenhoek 69:1–14

    Google Scholar 

  • Vavilin VA, Lokshina LY, Rytov SV, Kotsyurbenko OR, Nozhevnikova AN (1998) Modelling low-temperature methane production from cattle manure by an acclimated microbial community. Biores Technol 63:159–171

    CAS  Google Scholar 

  • Vogels GD, Keltjens JT, Van Der Drift C (1988) Biochemistry of methane production. In: Zehnder AJB (Ed) Biology of anaerobic microorganisms. John Wiley&Sons, New York, pp 707–770

    Google Scholar 

  • Whitman WB, Boone DR, Koga Y, Keswani J (2001) Taxonomy of methanogenic Archaea. In: Boone DR, Castenholz RW, Garrity GM (eds) Bergey’s manual of systematic bacteriology, vol 1. Springer, pp 211–294

  • Wilkie AC, Smith PH, Bordeaux FM (2004) An economical bioreactor for evaluating biogas potential of particulate biomass. Biores Technol 92(1):103–109

    CAS  Google Scholar 

  • Yang ST, Okos MR (1987) Kinetic study and mathematical modelling of methanogenesis of acetate using pure cultures of methanogens. Biotechnol Bioeng 30(5):661–667

    CAS  Google Scholar 

  • Yang Y, Tsukahara K, Sawayama S (2007) Performance and methanogenic community of rotating disk reactor packed with polyurethane during thermophilic anaerobic digestion. Mat Sci Eng C 27:767–772

    CAS  Google Scholar 

  • Yu Y, Lee C, Hwang S (2005) Analysis of community structures in anaerobic processes using a quantitative real-time PCR method. Water Sci Technol 52(1–2):85–91

    CAS  Google Scholar 

  • Zinder SH, Mah RA (1979) Isolation and characterization of a thermophilic strain of Methanosarcina unable to use H2-CO2 for methanogenesis. Appl Environ Microbiol 38:996–1008

    CAS  Google Scholar 

  • Zinder SH, Cardwell SC, Anguish T, Lee M, Koch M (1984) Methanogenesis in a thermophilic (58°C) anaerobic digestor: Methanothrix sp as an important aceticlastic methanogen. Appl Environ Microbiol 47:796–807

    CAS  Google Scholar 

  • Zinder SH, Koch M (1984) Non-aceticlastic methanogenesis from acetate: acetate oxidation by a thermophilic syntrophic co-culture. Arch Microbiol 54:263–272

    Google Scholar 

  • Zinder SH, Sowers KR, Ferry JG (1985) Methanosarcina thermophila sp. nov., a thermophilic, acetotrophic, methane-producing bacterium. Int J Syst Bact 35:522–523

    Article  Google Scholar 

  • Zinder SH (1994) Syntrophic acetate oxidation and “Reversible Acetogenesis”. In: Drake HL (ed) Acetogenesis. Chapman & Hall, New York London, pp 387–415

    Google Scholar 

  • Zhang R, El-Mashad HM, Hartmann K, Wang F, Liu G, Choate C, Gamble P (2007) Characterization of food waste as feedstock for anaerobic digestion. Biores Technol 98:929–935

    CAS  Google Scholar 

  • Zheng D, Raskin L (2000) Quantification of Methanosaeta species in anaerobic bioreactors using genus- and species-specific hybridization probes. Microb Ecol 39(3):246–262

    CAS  Google Scholar 

  • Zhu J, Hu J, Gu X (1997) The bacterial numeration and an observation of a new syntrophic association for granular sludge. Water Sci Technol 36(6–7):133–140

    Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to Lukas Neumann, Olaf Schmidt, Karsten Lehmann and Monika Unbehauen for their help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Burak Demirel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Demirel, B., Scherer, P. The roles of acetotrophic and hydrogenotrophic methanogens during anaerobic conversion of biomass to methane: a review. Rev Environ Sci Biotechnol 7, 173–190 (2008). https://doi.org/10.1007/s11157-008-9131-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11157-008-9131-1

Keywords

Navigation