Skip to main content

Barley Diseases: Introduction, Etiology, Epidemiology, and Their Management

  • Chapter
  • First Online:
Cereal Diseases: Nanobiotechnological Approaches for Diagnosis and Management
  • 403 Accesses

Abstract

Barley is regarded as the globe’s fourth major cereal crop. A variety of airborne, seedborne, and soilborne infective agents attack barley, causing a variety of barley diseases and substantial losses in agricultural output. Brown and yellow rusts, smut, net blotches, spot blotches, barley yellow dwarf, and molya disease are among the most serious diseases. In general, employing integrated disease management approaches is the best way to handle barley diseases. Growing resistant or tolerant varieties with the fewest foliar fungicides is the most effective approach for barley disease treatments. However, managing soilborne pathogens in barley plants is problematic due to a deficiency in distinguishing symptoms for diagnosis and the absence of fungicides or nematicides that are effective for these pathogens. Recently, nanotechnology has driven the advancement of creative concepts and agricultural productivity with a broad scope for managing plant infections and pests. The antimicrobial properties of metallic and metal oxide nanoparticulates such as silver, selenium, titanium dioxide, zinc oxide, and iron oxide have been extensively researched. In this chapter, we go over barley disease and the role of nanomaterials in reducing the incidence of disease and diagnosis, as well as barley seed germination, physiology, and nutritional quality of barley grain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ali A, Zafar H, Zia M et al (2016) Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnol Sci Appl 9:49–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson AJ, McLean JE, Jacobson AR, Britt DW (2018) CuO and ZnO nanoparticles modify interkingdom cell signaling processes relevant to crop production. J Agric Food Chem 66(26):6513–6524. https://doi.org/10.1021/acs.jafc.7b01302

    Article  CAS  PubMed  Google Scholar 

  • Arabi MIE, Jawhar M (2004) Identification of Cochliobolus sativus (Spot Blotch) isolates expressing differential virulence on barley genotypes in Syria. J Phytopathol 152:461–464

    Article  Google Scholar 

  • Arnst BJ, Martens JW, Wright GM, Burnett PΑ, Sanderson FR (1979) Incidence, importance and virulence of Puccinia hordei on barley in New Zealand. Ann Appl Biol 92:185–190

    Article  Google Scholar 

  • Asli S, Neumann M (2009) Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport. Plant Cell Environ 32:577–584

    Article  CAS  PubMed  Google Scholar 

  • Aubert MK, Coventry S, Shirley NJ et al (2018) Differences in hydrolytic enzyme activity accompany natural variation in mature aleurone morphology in barley (Hordeum vulgare L.). Sci Rep 8:11025

    Article  PubMed  PubMed Central  Google Scholar 

  • Backes A, Guerriero G, Ait Barka E, Jacquard C (2021) Pyrenophora teres: taxonomy, morphology, interaction with barley, and mode of control. Front Plant Sci 12:614951. https://doi.org/10.3389/fpls.2021.614951

    Article  PubMed  PubMed Central  Google Scholar 

  • Balaure PC, Gudovan D, Gudovan I (2017) Nanopesticides: a new paradigm in crop protection. New Pestic Soil Sens 2017:129–192

    Article  Google Scholar 

  • Barabanov PV, Gerasimov AV, Blinov AV, Kravtsov AA, Kravtsov VA (2018) Influence of nanosilver on the efficiency of pisum sativum crops germination. Ecotoxicol Environ Saf 147:715–719

    Article  CAS  PubMed  Google Scholar 

  • Barrena R, Casals E, Colón J, Font X, Sánchez A, Puntes V (2009) Evaluation of the ecotoxicity of model nanoparticles. Chemosphere 75:850–857

    Article  CAS  PubMed  Google Scholar 

  • Beneduzi A, Ambrosini A, Passaglia LMP (2012) Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. Genet Mol Biol 35:1044–1051. https://doi.org/10.1590/S1415-47572012000600020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhardwaj SC, Gangwar OP, Prasad P, Khan H, Kumar S (2017) Understanding wheat rusts and managing them strategically. In: Gautam HR, Gupta SK (eds) Diseases of commercial crops in India. Neoti Book Agency Pvt. Ltd., New Delhi, pp 9–29

    Google Scholar 

  • Brooks DH (1970) Powdery mildew of barley and its control. Outlook Agric 6:122–127. https://doi.org/10.1177/003072707000600306

    Article  CAS  Google Scholar 

  • Cazorla FM, Romero D, Pérez-García A, Lugtenberg BJJ, De Vicente A, Bloemberg G (2007) Isolation and characterization of antagonistic Bacillus subtilis strains from the avocado rhizoplane displaying biocontrol activity. J Appl Microbiol 103:1950–1959. https://doi.org/10.1111/j.1365-2672.2007.03433.x

    Article  CAS  PubMed  Google Scholar 

  • Clifford BC (1985) Diseases, distribution, epidemiology, and control. Barley Leaf Rust, pp 173–205. https://doi.org/10.1016/b978-0-12-148402-6.50014-6

    Book  Google Scholar 

  • Devi H, Boda M, Shah M et al (2019) Green synthesis of iron oxide nanoparticles using Platanus orientalis leaf extract for antifungal activity. Green Proc Synthes 8(1):38–45. https://doi.org/10.1515/gps-2017-0145

    Article  CAS  Google Scholar 

  • Disfani MN, Mikhak A, Kassaee MZ, Maghari A (2017) Effects of nano Fe/SiO2 fertilizers on germination and growth of barley and maize. Arch Agron Soil Sci 63:817–826

    Article  Google Scholar 

  • Dreiseitl A (2020) Specific resistance of barley to powdery mildew, its use and beyond. A concise critical review. Genes (Basel) 11(9):971. https://doi.org/10.3390/genes11090971

    Article  CAS  Google Scholar 

  • Elamawi RM, Al-Harbi RE (2014) Effect of biosynthesized silver nanoparticles on fusarium oxysporum fungus the cause of seed rot disease of faba bean, tomato and barley. J Plant Prot and Path Mansoura Univ 5(2):225–237

    Google Scholar 

  • Ellwood S, Piscetek V, Mair W, Lawrence J, Lopez-Ruiz F, Rawlinson C (2019) Genetic variation of Pyrenophora teres f. teres isolates in Western Australia and emergence of a Cyp51A fungicide resistance mutation. Plant Pathol 68:135–142

    Article  CAS  Google Scholar 

  • Elmer W, Ma C, White J (2018) Nanoparticles for plant disease management. Curr Opin Environ Sci Health 6:66–70

    Article  Google Scholar 

  • El-Ramady HR, Domokos-Szabolcsy É, Abdalla NA, Alshaal TA, Shalaby TA, Sztrik A, Prokisch J, Fári M (2014) Selenium and nano-selenium in agroecosystems. Environ Chem Lett 12:495–510

    Article  CAS  Google Scholar 

  • Esmaeel Q, Pupin M, Kieu NP, Chataigné G, Béchet M, Deravel J et al (2016) Burkholderia genome mining for nonribosomal peptide synthetases reveals a great potential for novel siderophores and lipopeptides synthesis. Microbiology 5:512–526. https://doi.org/10.1002/mbo3.347

    Article  CAS  Google Scholar 

  • Esmaeel Q, Miotto L, Rondeau M, Leclère V, Clément C, Jacquard C et al (2018) Paraburkholderia phytofirmans PsJN-plants interaction: from perception to the induced mechanisms. Front Microbiol 9:2093. https://doi.org/10.3389/fmicb.2018.02093

    Article  PubMed  PubMed Central  Google Scholar 

  • Fayez KA, El-Deeb BA, Mostafa N (2017) Toxicity of biosynthetic silver nanoparticles on the growth, cell ultrastructure and physiological activities of barley plant. Acta Physiol Plant 39:155. https://doi.org/10.1007/s11738-017-2452-3

    Article  CAS  Google Scholar 

  • Feichtmeier NS, Walther P, Leopold K (2015) Uptake, effects, and regeneration of barley plants exposed to gold nanoparticles. Environ Sci Pollut Res Int 22:8549–8558

    Article  CAS  PubMed  Google Scholar 

  • Gangwar OP, Bhardwaj S, Singh GP, Prasad P, Kumar S (2018) Barley diseases and their management: an Indian perspective. Wheat Barley Res 10(138–150):2018

    Google Scholar 

  • Giraldo P, Benavente E, Manzano-Agugliaro F, Gimenez E (2019) Worldwide research trends on wheat and barley: a bibliometric comparative analysis. Agronomy 9:352

    Article  Google Scholar 

  • Gogos A, Knauer K, Bucheli TD (2012) Nanomaterials in plant protection and fertilization: current state, foreseen applications, and research priorities. J Agric Food Chem 60:9781–9792

    Article  CAS  PubMed  Google Scholar 

  • Gozukirmizi N, Karlik E (2017) Barley (Hordeum vulgare L.) improvement past, present and future. In: Brewing technology. IntechOpen, London

    Google Scholar 

  • Gray S, Gildow FE (2003) Luteovirus-aphid interactions. Annu Rev Phytopathol 41:539–566

    Article  CAS  PubMed  Google Scholar 

  • Gubbins EJ, Batty LC, Lead JR (2011) Phytotoxicity of silver nanoparticles to Lemna minor L. Environ Pollut 159:1551–1559

    Article  CAS  PubMed  Google Scholar 

  • Hawkins NJ, Cools HJ, Sierotzki H, Shaw MW, Knogge W, Kelly SL, Kelly DE, Fraaije BA (2014) Paralog re-emergence: a novel, historically contingent mechanism in the evolution of antimicrobial resistance. Mol Biol Evol 31:1793–1802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayles J, Johnson L, Worthley, Losic D (2017) Nanopesticides: a review of current research and perspectives. New Pestic, Soil Sens, pp 193–225

    Google Scholar 

  • Home-Grown Cereals Authority (HGCA) (2011) The HGCA barley disease management guide. HGCA, Stoneleigh Park, Warwickshire

    Google Scholar 

  • Hussain A, Ali S, Rizwan M et al (2018) Zinc oxide nanoparticles alter the wheat physiological response and reduce the cadmium uptake by plants. Environ Pollut 242:1518–1526

    Article  CAS  PubMed  Google Scholar 

  • Jenkins JΕE, Melville SC, Jemmett JL (1972) The effect of fungicides on leaf diseases and on yield in spring barley in south-West England. Plant Pathol 21:49–58

    Article  CAS  Google Scholar 

  • Jiang H-S, Qiu X-N, Li G-B, Li W, Yin L-Y (2014) Silver nanoparticles induced accumulation of reactive oxygen species and alteration of antioxidant systems in the aquatic plant spirodela polyrhiza. Environ Toxicol Chem 33:1398–1405

    Article  CAS  PubMed  Google Scholar 

  • Kah M, Hofmann T (2014) Nanopesticide research: current trends and future priorities. Environ Int 63:224–235

    Article  CAS  PubMed  Google Scholar 

  • Kashyap PL, Kumar S, Srivastava AK (2017) Nanodiagnostics for plant pathogens. Environ Chem Lett 15:7–13. https://doi.org/10.1007/s10311-016-0580-4

    Article  CAS  Google Scholar 

  • Kaur A, Sharma VK, Sharma S (2021) Management of spot blotch of barley: an eco-friendly approach. Aust Plant Pathol 50:389–401. https://doi.org/10.1007/s13313-021-00785-1

    Article  CAS  Google Scholar 

  • Khandelwal N, Barbole RS, Banerjee SS, Chate GP et al (2016) Budding trends in integrated pest management using advanced micro-and nano-materials: challenges and perspectives. J Environ Manag 184:157–169

    Article  CAS  Google Scholar 

  • Khiyami MA, Almoammar H, Awad YM et al (2014) Plant pathogen nanodiagnostic techniques: forthcoming changes? Biotechnol Biotechnol Equip 28:775–785

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim DY, Kadam A, Shinde S, Saratale RG, Patra J, Ghodake G (2018) Recent developments in nanotechnology transforming the agricultural sector: a transition replete with opportunities. J Sci Food Agric 298:849–864

    Article  Google Scholar 

  • Kokina I, Plaksenkova I, Galek R, Jermaļonoka M, Kirilova E, Gerbreders V, Krasovska M, Sledevskis E (2021) Genotoxic evaluation of Fe3O4 nanoparticles in different three barley (Hordeum vulgare L.) genotypes to explore the stress resistant molecules. Molecules 26:6710. https://doi.org/10.3390/molecules26216710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Konate M, Wilkinson MJ, Mayne BT, Pederson SM, Scott ES, Berger B, et al (2018) Salt stress induces non-cg methylation in coding regions of barley seedlings (Hordeum vulgare). Epigenomes 2:12. https://doi.org/10.3390/epigenomes2020012

  • Krishnaraj C, Jagan EG, Ramachandran R, Abirami SM, Mohan N, Kalaichelvan PT (2012a) Effect of biologically synthesized silver nanoparticles on bacopa monnieri (Linn.) wettst. Plant growth metabolism. Process Biochem 47:651–658

    Article  CAS  Google Scholar 

  • Krishnaraj C, Ramachandran R, Mohan K, Kalaichelvan P (2012b) Optimization for rapid synthesis of silver nanoparticles and its effect on phytopathogenic fungi. Spectrochim. Acta Part A Mol Biomol Spectrosc 93:95–99

    Article  CAS  Google Scholar 

  • Kumar S, Mishra CN, Sarkar B, Singh SS (2012) Barley (Hordeum vulgare L.). In: Breeding field crops. AGROBIOS India, Jodhpur

    Google Scholar 

  • Kumar GS, Kashyap PL, Awasthi S (2019) Deciphering rhizosphere microbiome for the development of novel bacterial consortium and its evaluation for salt stress management in solanaceous crops in India. Indian Phytopathol. https://doi.org/10.1007/s42360-019-00174-1

  • Lattanzio VMT, Nivarlet N, Lippolis V et al (2012) Multiplex dipstick immunoassay for semi-quantitative determination of Fusarium mycotoxins in cereals. Anal Chim Acta 718:99–108

    Article  CAS  PubMed  Google Scholar 

  • Lee W, Kwak JI, An Y-J (2012) Effect of silver nanoparticles in crop plants phaseolus radiatus and sorghum bicolor: media effect on phytotoxicity. Chemosphere 86:491–499

    Article  CAS  PubMed  Google Scholar 

  • Lim LG, Gaunt RΕ (1981) The timing of spray applications against powdery mildew and leaf rust in barley. Proc Ν Z Weed Pest Control Conf 34:195–198

    Google Scholar 

  • Linares M, Jia Y, Sunahara GI, Whalen JK (2020) Barley (Hordeum vulgare) seedling growth declines with increasing exposure to silver nanoparticles in biosolid-amended soils. Can J Soil Sci 100(3):189–197. https://doi.org/10.1139/cjss-2019-0135

    Article  CAS  Google Scholar 

  • Marchal E (1902) Compo rend. Acad Sci Paris 135:210

    Google Scholar 

  • Martens JW, Seaman WL, Atkinson TG (1984) Diseases of field crops in Canada. Canadian Phytopathological Society, p 160. ISBN 0-9691627-0-7

    Google Scholar 

  • Maslobrod SN, Mirgorod YA, Borodina VG, Borsch NA (2014) Influence of water dispersed systems with silver and copper nanoparticles on seed germination. Elect Process Mater 50(4):103–112

    CAS  Google Scholar 

  • Mathre DE (1997) Compendium of barley diseases. American Phytopathological Society, St. Paul, MN

    Google Scholar 

  • Mathre DE (1982) Compendium of barley diseases. American Phytopathological Society, pp 32–34

    Google Scholar 

  • McDonald BA, Linde C (2002a) The population genetics of plant pathogens and breeding strategies for durable resistance. Euphytica 124:163–180

    Article  CAS  Google Scholar 

  • McDonald BA, Linde C (2002b) Pathogen population genetics, evolutionary potential, and durable resistance. Annu Rev Phytopathol 40:349–379

    Article  CAS  PubMed  Google Scholar 

  • Mirzajani F, Askari H, Hamzelou S, Farzaneh, Ghassempour A (2013) Effect of silver nanoparticles on Oryza sativa L. and its rhizosphere bacteria. Ecotoxicol Environ Saf 88:48–54

    Article  CAS  PubMed  Google Scholar 

  • Mohd-Assaad N, McDonald BA, Croll D (2016) Multilocus resistance evolution to azole fungicides in fungal plant pathogen populations. Mol Ecol 25:6124–6142

    Article  CAS  PubMed  Google Scholar 

  • Montesinos E., Badosa E., Cabrefiga J., Planas M., Feliu, L., and Bardají, E (2012). Antimicrobial peptides for plant disease control. From discovery to application. K. Rajasekaran, J. W. Cary, J. M. Jaynes, and E. Montesinos In: Small wonders: peptides for disease control ACS symposium series (Washington, DC: American Chemical Society, 235–262

    Chapter  Google Scholar 

  • Musante C, White JC (2012) Toxicity of silver and copper to cucurbita pepo: differential effects of nano and bulk-size particles. Environ Toxicol 27:510–517

    Article  CAS  PubMed  Google Scholar 

  • Nezhad AS (2014) Future of portable devices for plant pathogen diagnosis. Lab Chip 14:2887–2904

    Article  CAS  PubMed  Google Scholar 

  • Ongena M, Jourdan E, Adam A, Paquot M, Brans A, Joris B et al (2007) Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ Microbiol 9:1084–1090. https://doi.org/10.1111/j.1462-2920.2006.01202.x

    Article  CAS  PubMed  Google Scholar 

  • Ordon F, Habekuß A, Kastirr U, Rabenstein F, Kühne T (2009) Virus resistance in cereals: source of resistance, genetics and breeding. J Phytopathol 157:535–545. https://doi.org/10.1111/j.1439-0434.2009.01540.x

    Article  Google Scholar 

  • Palumbi SR (2001) Humans as the world’s greatest evolutionary force. Science 293:1786–1790

    Article  CAS  PubMed  Google Scholar 

  • Park RF, Golegaonkar PG, Derevnina L et al (2015) Leaf rust of cultivated barley: pathology and control. Annu Rev Phytopathol 53(1):565–589. https://doi.org/10.1146/annurev-phyto-080614-120324

    Article  CAS  PubMed  Google Scholar 

  • Paulmann Maria K, Kunert G, Zimmermann Matthias R et al (2018) Barley yellow dwarf virus infection leads to higher chemical defense signals and lower electrophysiological reactions in susceptible compared to tolerant barley genotypes. Front Plant Sci 9:145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pérez-García A, Romero D, De Vicente A (2011) Plant protection and growth stimulation by microorganisms: biotechnological applications of Bacilli in agriculture. Curr Opin Biotechnol 22:187–193. https://doi.org/10.1016/j.copbio.2010.12.003

    Article  CAS  PubMed  Google Scholar 

  • Petrova A, Plaksenkova I, Kokina I, Jermaļonoka M (2021) Effect of Fe3O4 and CuO nanoparticles on morphology, genotoxicity and miRNA expression on different barley (Hordeum vulgare L.) genotypes. Sci World J. https://doi.org/10.1155/2021/6644689

  • Pimentel D (2009) Invasive plants: their role in species extinctions and economic losses to agriculture in the USA. In: Inderjit (ed) Management of invasive weeds, invading nature—Springer series in invasion ecology, vol 5. Springer, Dordrecht, pp 1–7. https://doi.org/10.1007/978-1-4020-9202-2_1

    Chapter  Google Scholar 

  • Pošćić F, Mattiello A, Fellet G et al (2016) Effects of cerium and titanium oxide nanoparticles in soil on the nutrient composition of barley (Hordeum vulgare L.) Kernels. Int J Environ Res Public Health 13(6):577. https://doi.org/10.3390/ijerph13060577

    Article  CAS  PubMed Central  Google Scholar 

  • Priyanka (2018) Cereal cyst nematode: a hidden foe to indian agriculture. Pop Kheti 6(2):142–143

    Google Scholar 

  • Reinhold M, Sharp EL (1982) Resistance to leaf rust of barley in Southern Texas. Cereal Rusts Bull 10:4–10

    Google Scholar 

  • Rico CM, Barrios AC, Tan W et al (2015) Physiological and biochemical response of soil-grown barley (Hordeum vulgare L.) to cerium oxide nanoparticles. Environ Sci Pollut Res 22:10551–10558. https://doi.org/10.1007/s11356-015-4243-y

    Article  CAS  Google Scholar 

  • Rizwan M, Ali S, Qayyum MF et al (2017) Effect of metal and metal oxide nanoparticles on growth and physiology of globally important food crops: a critical review. J Hazard Mater 322:2–16

    Article  CAS  PubMed  Google Scholar 

  • Romero I, de Francisco P, Gutiérrez JC, Martín-González A (2019) Selenium cytotoxicity in Tetrahymena thermophila: new clues about its biological effects and cellular resistance mechanisms. Sci Total Environ 671:850–865

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui SA, Blinov AV, Serov AV, Gvozdenko AA, Kravtsov AA, Nagdalian AA, Raffa VV, Maglakelidze DG, Blinova AA, Kobina AV, Golik AB, Ibrahim SA (2021) Effect of selenium nanoparticles on germination of Hordéum Vulgáre barley seeds. Coatings 11(7):862. https://doi.org/10.3390/coatings11070862

    Article  CAS  Google Scholar 

  • Singh J, Kaur A, Sharma VK (2020) Evaluation of barley genotypes for resistance against covered smut disease. Indian Phytopathol 73:359–360. https://doi.org/10.1007/s42360-020-00231-0

    Article  CAS  Google Scholar 

  • Sinha K, Ghosh J, Sil PC (2017) 2-New pesticides: a cutting-edge view of contributions from nanotechnology for the development of sustainable agricultural pest control A2—Grumezescu, Alexandru Mihai. In: New pesticides and soil sensors. Academic Press, Cambridge, MA

    Google Scholar 

  • Thomas PL (1984a) An albino strain of Ustilago nuda from Canada (PDF). CJPP 6(2):98–100. https://doi.org/10.1080/07060668409501567. Archived from the original (PDF) on 2007-09-29. Retrieved 2007-03-03

    Article  Google Scholar 

  • Thomas PL (1984b) Recombination of virulence genes following hybridization between isolates of Ustilago nuda infecting barley under natural conditions (PDF). CJPP 6(2):101–104. https://doi.org/10.1080/07060668409501568

    Article  Google Scholar 

  • Tombuloglu H, Slimani Y, Tombuloglu G, Almessiere M, Baykal A (2019a) Uptake and translocation of magnetite (Fe3O4) nanoparticles and its impact on photosynthetic genes in barley (Hordeum vulgare L.). Chemosphere 226:110–122. https://doi.org/10.1016/j.chemosphere.2019.03.075

    Article  CAS  PubMed  Google Scholar 

  • Tombuloglu H, Slimani Y, Tombuloglu G et al (2019b) Tracking of NiFe2O4 nanoparticles in barley (Hordeum vulgare L.) and their impact on plant growth, biomass, pigmentation, catalase activity, and mineral uptake. Environ Nanotechnol Monit Manag 11:100223. https://doi.org/10.1016/j.enmm.2019.100223

    Article  Google Scholar 

  • Tombuloglu H, Tombuloglu G, Slimani Y, Ercan I, Sozeri H et al (2018) Impact of manganese ferrite (MnFe2O4) nanoparticles on growth and magnetic character of barley (Hordeum vulgare L.). Environ Pollut 243(Pt B):872–881. https://doi.org/10.1016/j.envpol.2018.08.096

    Article  CAS  PubMed  Google Scholar 

  • Udeogalanya AC, Clifford BC (1982) Control of barley brown rust, Puccinia hordei Otth., by benodanil and oxycarboxin in the field and the effects on yield. Crop Prot 1:299–308

    Article  CAS  Google Scholar 

  • Vance ME, Kuiken T, Vejerano EP et al (2015) Nanotechnology in the real world: redeveloping the nanomaterial consumer products inventory. Beilstein J Nanotechnol 6(1):1769–1780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waghu FH, Idicula-Thomas S (2020) Collection of antimicrobial peptides database and its derivatives: applications and beyond. Protein Sci 29:42. https://doi.org/10.1002/pro.3714

    Article  CAS  Google Scholar 

  • Walters DR, Avrova A, Bingham IJ et al (2012) Control of foliar diseases in barley: towards an integrated approach. Eur J Plant Pathol 133:33–73. https://doi.org/10.1007/s10658-012-9948-x

    Article  CAS  Google Scholar 

  • Wunderle J, Leclerque A, Schaffrath U et al (2012) Assessment of the loose smut fungi (Ustilago nuda and U. tritici) in tissues of barley and wheat by fluorescence microscopy and real-time PCR. Eur J Plant Pathol 133:865–875. https://doi.org/10.1007/s10658-012-0010-9

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abbas, H.S. (2022). Barley Diseases: Introduction, Etiology, Epidemiology, and Their Management. In: Abd-Elsalam, K.A., Mohamed, H.I. (eds) Cereal Diseases: Nanobiotechnological Approaches for Diagnosis and Management. Springer, Singapore. https://doi.org/10.1007/978-981-19-3120-8_6

Download citation

Publish with us

Policies and ethics