Skip to main content

Superconductivity Phenomenon: Fundamentals and Theories

  • Chapter
  • First Online:
Superconducting Materials

Abstract

Since their discovery, superconductor materials have been the subject of extensive studies thanks to their original properties. Such materials are endowed by zero resistance at a low temperature making it possible to conduct the electric current without loss of energy. In addition, magnetic fields are deeply affected in superconductors, they can be canceled completely in the material, or they can be pinned in a so-called mixed zone where both superconducting and normal states co-exist. Thus, thorough knowledge of the phenomena which occur within these materials is very necessary to enlarge their fields of integration. According to BCS theory, the superconductivity phenomenon in low-temperature Superconductors (LTS) originates from the pairing of electrons through phonons. Thus, researchers try to explain superconductivity in HTS materials which helps to improve the performance of applications that use superconductors. Although the LTS materials are exploited intensively in many areas, the problem of cryogenics still faces their industrial emergence. The manipulation of superconductors cooled with liquid nitrogen (77 K) instead of liquid helium (4.2 K) opens up market opportunities for high-temperature superconductivity technology. Works devoted to improving the critical temperature in view of reaching room temperature superconductivity are in permanent progression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H.K. Onnes, Commun. Phys. Lab. Univ. Leiden. Suppl. 29 (1911)

    Google Scholar 

  2. H. Kamerlingh-Onnes, Commun. Phys. Lab. Univ. Leiden 120b (1911), reprinted in Proc. K. Ned. Akad. Wet. 13, 1274 (1911)

    Google Scholar 

  3. W. Meissner, R. Ochsenfeld, Einneuer Effektbei Eintritt der Supraleitfähigkeit. Naturwissenschaften 21(44), 787–788 (1933)

    Article  ADS  Google Scholar 

  4. R.G. Sharma. Superconductivity (Springer Science and Business Media LLC, 2021)

    Google Scholar 

  5. F.B. Silsbee, J. Wash. Acad. Sci. 6, 597 (1916)

    Google Scholar 

  6. F. London, H. London, The electromagnetic equations of the supraconductor. Proc. R. Soc. Lond. A149, 71 (1935)

    ADS  MATH  Google Scholar 

  7. S. Hurand, Supraconductivité: Cours deMaster 2—Université de Poitiers. Master. Supraconductivité, Poitiers—Futuroscope, France. ffhal-03135765 (2021)

    Google Scholar 

  8. A.B. Pippard, Proc. R. Soc. London, Ser. A 216, 547 (1953); A.B. Pippard, Proc. Cambridge Philos. Soc. 47, 617 (1951)

    Google Scholar 

  9. V.L. Ginzburg, L.D. Landau, Zh. Eksperim i Teor. Fiz. 20, 1064 (1950)

    Google Scholar 

  10. J. Bardeen, L.N. Cooper, J.R. Schrieffer, Theory of superconductivity. Phys. Rev. 108, 1175–1204 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  11. L.J. De Jongh, A comparative study of (bi) polaronic (super) conductivity in high- and low Tc superconducting oxides. Physica C 152, 171–216 (1988)

    Article  ADS  Google Scholar 

  12. D. Emin, Large bipolarons and superconductivity. Phys C Supercond, 185–189, Part 3, 1593–1594 (1991)

    Google Scholar 

  13. J.E. Hirsch, Bose condensation versus pair unbinding in short-coherence-length superconductors. Physica C 179, 317–332 (1991)

    Article  ADS  Google Scholar 

  14. F. London, Superfluids, vol. 1 (Wiley, New York, 1950)

    MATH  Google Scholar 

  15. R. Doll, M. Näbauer, Phys. Rev. Lett. 7, 51 (1961)

    Article  ADS  Google Scholar 

  16. B.S. Deaver Jr., W.M. Fairbank, Phys. Rev. Lett. 7, 43 (1961)

    Article  ADS  Google Scholar 

  17. B.D. Josephson, Phys. Lett. 1, 251 (1962)

    Article  ADS  Google Scholar 

  18. J.D. Bednorz, K.A. Mueller, Possible high T c superconductivity in the Ba−La−Cu−O system. Z. Phys B Condensed Matter 64, 189 (1986)

    Article  ADS  Google Scholar 

  19. A. Schilling, M. Cantoni, J.D. Guo, H.R. Ott, Superconductivity above 130 K in the Hg–Ba–Ca–Cu–O system. Nature 363, 56–58 (1993)

    Article  ADS  Google Scholar 

  20. P. Jensen Ray, Figure 2.4 in master's thesis, structural investigation of La2–xSrxCuO4+y - following staging as a function of temperature. Niels Bohr Institute, Faculty of Science, University of Copenhagen (Copenhagen, Denmark, 2015). https://doi.org/10.6084/m9.figshare.2075680.v2

  21. A.P. Drozdov, M.I. Eremets, I.A. Troyan, V. Ksenofontov, S.I. Shylin, Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system. Nature 525, 73 (2015)

    Article  ADS  Google Scholar 

  22. A.A. Abrikosov, On the magnetic properties of superconductors of the second group. Zh. Eksperim. Teor. Fiz. 32, 1442 (1957), Soviet Phys. JETP 5, 1174 (1957)

    Google Scholar 

  23. M. Tinkham, Introduction to superconductivity (Dover Publications, New York, 1996)

    Google Scholar 

  24. P.G. de Gennes, Superconductivity of Metals and Alloys (Westview Press, 1999)

    Google Scholar 

  25. W. Buckel, R. Kleiner, Superconductivity: Fundamentals and Applications (Wiley-VCH Verlag GmbH, Weinheim, 2004)

    Book  Google Scholar 

  26. M.K. Ben Salem, E. Hannachi, Y. Slimani, A. Hamrita, M. Zouaoui, L. Bessais, M. Ben Salem, F. Ben Azzouz, SiO2 nanoparticles addition effect on microstructure and pinning properties in YBa2Cu3Oy. Ceram. Int. 40, 4953–4962 (2014)

    Google Scholar 

  27. Y. Slimani, M.A. Almessiere, E. Hannachi, M. Mumtaz, A. Manikandan, A. Baykal, F. Ben Azzouz, Improvement of flux pinning ability by tungsten oxide nanoparticles added in YBa2Cu3Oy superconductor. Ceram. Int. 45, 6828–6835 (2019)

    Google Scholar 

  28. Y. Slimani, M.A. Almessiere, E. Hannachi, F.O. Al-qwairi, A. Manikandan, A. Baykal, F. Ben Azzouz, AC susceptibility, DC magnetization and superconducting properties of tungsten oxide nanowires added YBa2Cu3Oy. Ceram. Int. 45(17), 21864–21869 (2019)

    Google Scholar 

  29. Y. Slimani, E. Hannachi, A. Ekicibil, M. A. Almessiere, F. Ben Azzouz, Investigation of the impact of nano-sized wires and particles TiO2 on Y-123 superconductor performance. J. Alloy. Compd. 43, 664–673 (2019)

    Google Scholar 

  30. E. Hannachi, M.A. Almessiere, Y. Slimani, A. Baykal, F. Ben Azzouz, AC susceptibility investigation of YBCO superconductor added by carbon nanotubes. J. Alloy. Compd. 812, 152150 (2020)

    Google Scholar 

  31. Y. Slimani, E. Hannachi, F. Ben Azzouz, M. Ben Salem, Impact of planetary ball milling parameters on the microstructure and pinning properties of polycrystalline superconductor Y3Ba5Cu8Oy. Cryogenics 92, 5–12 (2018)

    Google Scholar 

  32. R.A. Al-Mohsin, A.L. Al-Otaibi, M.A. Almessiere, H. Al-badairy, Y. Slimani, F. Ben Azzouz, Comparison of the microstructure and flux pinning properties of polycrystalline YBa2Cu3O7-d containing Zn0.95Mn0.05O or Al2O3 nanoparticles. J. Low Temp. Phys. 192, 100–116 (2018)

    Google Scholar 

  33. M.A. Almessiere, Y. Slimani, E. Hannachi, R. Algarni, F. Ben Azzouz, Impact of Dy2O3 nanoparticles additions on the properties of porous YBCO ceramics. J. Mater. Sci. Mater. Electron. 30(19), 17572–17582 (2019)

    Google Scholar 

  34. R. Algarni, M.A. Almessiere, Y. Slimani, E. Hannachi, F. Ben Azzouz, Enhanced critical current density and flux pinning traits with Dy2O3 nanoparticles added to YBa2Cu3O7-d superconductor. J. Alloy. Compd. 852, 157019 (2021)

    Google Scholar 

  35. Michael Rudolf Koblischka, Anjela Koblischka-Veneva, XianLin Zeng, Essia Hannachi, Yassine Slimani, Microstructure and Fluctuation-Induced Conductivity Analysis of Bi2Sr2CaCu2O8+δ (Bi-2212) Nanowire Fabrics. Curr. Comput. Aid. Drug Des. 10(11), 986 (2020)

    Google Scholar 

  36. A. Hamrita, Y. Slimani, M.K. Ben Salem, E. Hannachi, F. Ben Azzouz, L. Bessais, M. Ben Salem, Superconducting properties of polycrystalline YBa2Cu3O7-d prepared by sintering of ball-milled precursor powder. Ceram. Int. 40, 1461–1470 (2014)

    Google Scholar 

  37. Q. Nouailhetas, A. Koblischka-Veneva, M.R. Koblischka, S.P.K. Naik, F. Schäfer, H. Ogino, C. Motz, K. Berger, B. Douine, Y. Slimani, E. Hannachi, Magnetic phases in superconducting, polycrystalline bulk FeSe samples. AIP Adv. 11, 015230 (2021)

    Google Scholar 

  38. M.R. Koblischka, Y. Slimani, A. Koblischka-Veneva, T. Karwoth, X. Zeng, E. Hannachi, M. Murakami, Excess conductivity analysis of polycrystalline FeSe samples with the addition of Ag. Materials 13(21), 5018 (2020)

    Google Scholar 

  39. M.I. Sayyed, E. Hannachi, K.A. Mahmoud, Y. Slimani, Synthesis of different (RE)BaCuO ceramics, study their structural properties, and tracking their radiation protection efficiency using Monte Carlo simulation. Mater. Chem. Phys. 276, 125412 (2022)

    Google Scholar 

  40. G. Burns, High-Temperature Superconductivity (IBM Thomas J Watson Research Center Yorktown Heights, New York, 2004)

    Google Scholar 

  41. R. Arpaia, D. Golubev, R. Baghdadi, R. Ciancio, G. Draži´c, P. Orgiani, D. Montemurro, T. Bauch, F. Lombardi, Transport properties of ultrathin YBa2Cu3O7-x nanowires: a route to single photon detection. Phys. Rev. B. 96, 64525 (2017)

    Google Scholar 

  42. G. Papari, F. Carillo, D. Stornaiuolo, D. Massarotti, L. Longobardi, F. Beltram, F. Tafuri, Dynamics of vortex matter in YBCO sub-micron bridges. Phys. C Supercond. Appl. 506, 188–194 (2014)

    Article  ADS  Google Scholar 

  43. V. Rouco, D. Massarotti, D. Stornaiuolo, G.P. Papari, X. Obradors, T. Puig, F. Tafuri, A. Palau, Vortex lattice instabilities in YBa2Cu3O7-x Nanowires. Materials 11, 211 (2018)

    Article  ADS  Google Scholar 

  44. J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, J. Akimitsu, Superconductivity at 39 K in magnesium diboride. Nature 410, 63–64 (2001)

    Article  ADS  Google Scholar 

  45. W.L. McMillan, Transition temperature of strong-coupled superconductors. Phys. Rev. 167, 331–344 (1968)

    Article  ADS  Google Scholar 

  46. W.T. Jiang, Z.L. Xu, Z. Chen, X.P. Zhao, Introduce uniformly distributed ZnO nano-defects into BSCCO superconductors by nano-composite method. J. Funct. Mater. 38, 157–160 (2007)

    Google Scholar 

  47. S.H. Xu, Y.W. Zhou, X.P. Zhao, Research and development of inorganic powder EL materials. Mater. Rep. 21, 162–166 (2007)

    Google Scholar 

  48. Y. Li, G. Han, H. Zou, L. Tang, H. Chen, X. Zhao, Materials 14, 3066 (2021)

    Article  ADS  Google Scholar 

  49. H.G. Chen, Y.B. Li, G.W. Chen, L.X. Xu, X.P. Zhao, The effect of inhomogeneous phase on the critical temperature of smart meta-superconductor MgB2. J. Supercond. Nov. Magn. 31, 3175–3182 (2018)

    Article  Google Scholar 

  50. Y.B. Li, H.G. Chen, W.C. Qi, G.W. Chen, X.P. Zhao, Inhomogeneous phase effect of smart meta-superconducting MgB2. J. Low. Temp. Phys. 191, 217–227 (2018)

    Article  ADS  Google Scholar 

  51. S. Tao, Y.B. Li, G.W. Chen, X.P. Zhao, Critical temperature of smart meta-superconducting MgB2. J. Supercond. Nov. Magn. 30, 1405–1411 (2017)

    Article  Google Scholar 

  52. H. Chen, M. Wang, Y. Qi, Y. Li, X. Zhao, Nanomaterials 11, 1061 (2021)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Essia Hannachi or Yassine Slimani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Trabelsi, Z., Hannachi, E., Alotaibi, S.A., Slimani, Y., Almessiere, M.A., Baykal, A. (2022). Superconductivity Phenomenon: Fundamentals and Theories. In: Slimani, Y., Hannachi, E. (eds) Superconducting Materials. Springer, Singapore. https://doi.org/10.1007/978-981-19-1211-5_1

Download citation

Publish with us

Policies and ethics