Skip to main content

Molecular Imaging and Stem Cell Imaging

  • Chapter
  • First Online:
Advances in Imaging
  • 1129 Accesses

Key Points (Abstract)

Stem cell (SC) is the newer concept of the regenerative medicine. This is being established as an important component of the cells having capability of the excellent proliferation, having very high differentiation potential and with the important property of the self-renewal. The stem cell imaging is based on the various concepts of the harvesting of the cells at various sites of interest, then purification, and lastly implantation of the cells. Now in this era, the stem cell therapies have become one of the most advanced forms of the treatment options having the excellent results. Here the basic aim of these stem cells is the evaluation of the functioning of the cell and then differentiating the various stages of the pathologies and their exact location detection and for also for the characterization of the various pathologies in the tissues at the early molecular level. These stem cells are playing a significant role in the development of the tissues, their pathological basis, having option for the various medical therapies, and for the cell regeneration therapeutics. Due to various safety issues, still this type of therapy is few in number and still being used widely. These types of therapies are important for cell survival and cell distribution and for cell which needs to be analysed. These stem cells can be imaged in relation to various existing modalities like MRI, scintigraphy, PET, ultrasound, and optical imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mason C, et al. Cell therapy industry: billion-dollar global business with unlimited potential. Regen Med. 2011;6:265–72.

    Article  PubMed  Google Scholar 

  2. Trounson A, DeWitt ND. Pluripotent stem cells progressing to the clinic. Nat Rev Mol Cell Biol. 2016;17:194–200.

    Article  CAS  PubMed  Google Scholar 

  3. Boregowda SV, et al. A clinical indications prediction scale based on TWIST1 for human mesenchymal stem cells. EBioMed. 2016;4:62–73.

    Article  Google Scholar 

  4. Egawa EY, et al. A DNA hybridization system for labelling of neural stem cells with SPIO nanoparticles for MRI monitoring post-transplantation. Biomaterials. 2015;54:158–67.

    Article  CAS  PubMed  Google Scholar 

  5. Wainger BJ, et al. Intrinsic membrane hyperexcitability of amyotrophic lateral sclerosis patient-derived motor neurons. Cell Rep. 2014;7:1–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mandai M, et al. Autologous induced stem-cell-derived retinal cells for macular degeneration. N Engl J Med. 2017;376:1038–46.

    Article  CAS  PubMed  Google Scholar 

  7. Barker RA, et al. Are stem cell-based therapies for Parkinson’s disease ready for the clinic in 2016? J Parkinsons Dis. 2016;6:57–63.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Raju R, et al. Cell expansion during directed differentiation of stem cells toward the hepatic lineage. Stem Cells Dev. 2016; https://doi.org/10.1089/scd.2016.0119.

  9. Trounson A, McDonald C. Stem cell therapies in clinical trials: progress and challenges. Cell Stem Cell. 2015;17:11–22.

    Article  CAS  PubMed  Google Scholar 

  10. Kovacic JC, Fuster V. Cell therapy for patients with acute myocardial infarction. American Heart Association; 2015.

    Book  Google Scholar 

  11. Stuckey DW, Shah K. Stem cell-based therapies for cancer treatment: separating hope from hype. Nat Rev Cancer. 2014;14:683–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nguyen PK, et al. Stem cell imaging: from bench to bedside. Cell Stem Cell. 2014;14:431–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Naumova AV, et al. Clinical imaging in regenerative medicine. Nat Biotechnol. 2014;32:804–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gu E, et al. Molecular imaging of stem cells: tracking survival, biodistribution, tumorigenicity, and immunogenicity. Theranostics. 2012;2:335–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang Y, et al. Commercial nanoparticles for stem cell labelling and tracking. Theranostics. 2013;3:544–60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Wang J, Jokerst JV. Stem cell imaging: tools to improve cell delivery and viability. Stem Cells Int. 2016;2016:9240652.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Gavins FN, Smith HK. Cell tracking technologies for acute ischemic brain injury. J Cereb Blood Flow Metab. 2015;35:1090–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tavri S, et al. In vivo transfection and detection of gene expression of stem cells preloaded with DNA-carrying microbubbles. Radiology. 2015;276:518–25.

    Article  PubMed  Google Scholar 

  19. Naumova AV, et al. (2010) Ferritin overexpression for non-invasive magnetic resonance imaging-based tracking of stem cells transplanted into the heart. Mol Imaging. 2010;9(7290):00020.

    Google Scholar 

  20. Toyokuni T, et al. Repetitive, non-invasive imaging of the dopamine D2 receptor as a reporter gene in living animals. Gene Ther. 1999;6:785–91.

    Article  PubMed  CAS  Google Scholar 

  21. Green LA, et al. A tracer kinetic model for 18F-FHBG for quantitating herpes simplex virus type 1 thymidine kinase reporter gene expression in living animals using PET. J Nucl Med. 2004;45:1560–70.

    CAS  PubMed  Google Scholar 

  22. Huang NF, et al. Bioluminescence imaging of stem cell-based therapeutics for vascular regeneration. Differentiation. 2012;41:42.

    Google Scholar 

  23. Klibanov AL, et al. Detection of individual microbubbles of ultrasound contrast agents: imaging of free-floating and targeted bubbles. Invest Radiol. 2004;39:187–95.

    Article  PubMed  Google Scholar 

  24. Cui W, et al. Neural progenitor cells labelling with microbubble contrast agent for ultrasound imaging in vivo. Biomaterials. 2013;34:4926–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nam SY, et al. In vivo ultrasound and photoacoustic monitoring of mesenchymal stem cells labelled with gold nanotracers. PLoS One. 2012;7:e37267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ghosh D, et al. Toward optimization of in vivo super-resolution ultrasound imaging using size-selected microbubble contrast agents. Med Phys. 2017;44:6304–13.

    Article  CAS  PubMed  Google Scholar 

  27. Tanigaki K, et al. Hyposialylated IgG activates endothelial IgG receptor FcgammaRIIB to promote obesity-induced insulin resistance. J Clin Invest. 2018;128:309–22.

    Article  PubMed  Google Scholar 

  28. Chan AT, Abraham MR. From bench to imaging SPECT and PET to optimize cardiac stem cell therapy. J Nucl Cardiol. 2012;19:118–25.

    Article  PubMed  Google Scholar 

  29. Von der Haar K, et al. Lost signature: progress and failures in in vivo tracking of implanted stem cells. Appl Microbiol Biotechnol. 2015;99:9907–22.

    Article  PubMed  CAS  Google Scholar 

  30. Leibacher J, Henschler R. Biodistribution, migration and homing of systemically applied mesenchymal stem/stromal cells. Stem Cell Res Ther. 2016;7:7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Cen P, et al. Noninvasive in-vivo tracing and imaging of transplanted stem cells for liver regeneration. Stem Cell Res Ther. 2016;7:143.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Legacz M, et al. Contrast agents and cell labelling strategies for in vivo imaging. Adv Nanoparticles. 2014;3:41–53.

    Article  CAS  Google Scholar 

  33. Sood V, et al. Biodistribution of 18F-FDG-labeled autologous bone marrow-derived stem cells in patients with type 2 diabetes mellitus: exploring targeted and intravenous routes of delivery. Clin Nucl Med. 2015;40:697–700.

    Article  PubMed  Google Scholar 

  34. Faivre L, et al. 18 F-FDG labelling of hematopoietic stem cells: dynamic study of bone marrow homing by PET–CT imaging and impact on cell functionality. Curr Res Transl Med. 2016;64:141–8.

    Article  CAS  PubMed  Google Scholar 

  35. Kircher MF, et al. Non-invasive cell-tracking methods. Nat Rev Clin Oncol. 2011;8:677–88.

    Article  CAS  PubMed  Google Scholar 

  36. Guo Z, et al. Simultaneous SPECT imaging of multi-targets to assist in identifying hepatic lesions. Sci Rep. 2016;6:28812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Stojanov K, et al. [18F] FDG labeling of neural stem cells for in vivo cell tracking with positron emission tomography: inhibition of tracer release by phloretin. Mol Imaging. 2012;11(1):1–12.

    Article  CAS  PubMed  Google Scholar 

  38. Wolfs E, et al. 18F-FDG labelling of mesenchymal stem cells and multipotent adult progenitor cells for PET imaging: effects on ultrastructure and differentiation capacity. J Nucl Med. 2013;54:447–54.

    Article  CAS  PubMed  Google Scholar 

  39. Verma V, et al. In vitro assessment of cytotoxicity and labelling efficiency of 99m TcHMPAO with stromal vascular fraction of adipose tissue. Nucl Med Biol. 2014;41:744–8.

    Article  CAS  PubMed  Google Scholar 

  40. Bartelle BB, et al. Divalent metal transporter, DMT1: a novel MRI reporter protein. Magn Reson Med. 2013;70:842–50.

    Article  PubMed  CAS  Google Scholar 

  41. Bansal A, et al. Novel 89 Zr cell labelling approach for PET-based cell trafficking studies. EJNMMI Res. 2015;5:19.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Holvoet B, et al. Sodium iodide symporter PET and BLI noninvasively reveal mesoangioblast survival in dystrophic mice. Stem Cell Rep. 2015;5:1183–95.

    Article  CAS  Google Scholar 

  43. Haralampieva D, et al. Noninvasive PET imaging and tracking of engineered human muscle precursor cells for skeletal muscle tissue engineering. J Nucl Med. 2016;57:1467–73.

    Article  CAS  PubMed  Google Scholar 

  44. Li L, et al. Superparamagnetic iron oxide nanoparticles as MRI contrast agents for non-invasive stem cell labelling and tracking. Theranostics. 2013;3:595–615.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Penheiter AR, et al. The sodium iodide symporter (NIS) as an imaging reporter for gene, viral, and cell-based therapies. Curr Gene Ther. 2012;12:33–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Liu L, et al. A new method for preparing mesenchymal stem cells and labelling with ferumoxytol for cell tracking by MRI. Sci Rep. 2016;6:26271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Goodfellow FT, et al. Tracking and quantification of magnetically labelled stem cells using magnetic resonance imaging. Adv Funct Mater. 2016;26:3899–915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yang Y, et al. Superparamagnetic iron oxide is suitable to label tendon stem cells and track them in vivo with MR imaging. Ann Biomed Eng. 2013;41:2109–19.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Karussis D, et al. Safety and immunological effects of mesenchymal stem cell transplantation in patients with multiple sclerosis and amyotrophic lateral sclerosis. Arch Neurol. 2010;67:1187–94.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Kim SJ, et al. Superparamagnetic iron oxide nanoparticles for direct labelling of stem cells and in vivo MRI tracking. Contrast Media Mol Imaging. 2016;11:55–64.

    Article  CAS  PubMed  Google Scholar 

  51. Daldrup-Link HE, et al. Detection of stem cell transplant rejection with ferumoxytol MR imaging: correlation of MR imaging findings with those at intravital microscopy. Radiology. 2017;284(2):495–50.

    Article  PubMed  Google Scholar 

  52. Skelton R, et al. Magnetic resonance imaging of iron oxide-labelled human embryonic stem cell-derived cardiac progenitors. Stem Cells Transl Med. 2016;5:67–74.

    Article  CAS  PubMed  Google Scholar 

  53. Shapiro EM, et al. In vivo detection of single cells by MRI. Magn Reson Med. 2006;55:242–9.

    Article  PubMed  Google Scholar 

  54. Boulland J-L, et al. Evaluation of intracellular labelling with micron-sized particles of iron oxide (MPIOs) as a general tool for in vitro and in vivo tracking of human stem and progenitor cells. Cell Transplant. 2012;21:1743–59.

    Article  PubMed  Google Scholar 

  55. Xu C, et al. Tracking mesenchymal stem cells with iron oxide nanoparticle loaded poly (lactide-co-glycolide) microparticles. Nano Lett. 2012;12:4131–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Faucher L, et al. Rapid synthesis of PEGylated ultrasmall gadolinium oxide nanoparticles for cell labelling and tracking with MRI. ACS Appl Mater Interfaces. 2012;4:4506–15.

    Article  CAS  PubMed  Google Scholar 

  57. Rammohan N, et al. Gd(III)-Gold nanoconjugates provide remarkable cell labelling for high field magnetic resonance imaging. Bioconjug Chem. 2016;28:153–60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Randolph LM, et al. Polymeric Gd-DOTA amphiphiles form spherical and fibril-shaped nanoparticle MRI contrast agents. Chem Sci. 2016;7:4230–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zeng Y, et al. Gadolinium hybrid iron oxide nanocomposites for dual T 1- and T 2-weighted MR imaging of cell labeling. Biomater Sci. 2017;5:50–6.

    Article  CAS  Google Scholar 

  60. Srinivas M, et al. 19 F MRI for quantitative in vivo cell tracking. Trends Biotechnol. 2010;28:363–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gaudet JM, et al. Application of dual 19F and iron cellular MRI agents to track the infiltration of immune cells to the site of a rejected stem cell transplant. Magn Reson Med. 2016;78:713–20.

    Article  PubMed  CAS  Google Scholar 

  62. Mattrey RF. Perfluorooctylbromide: a new contrast agent for CT, sonography, and MR imaging. Am J Roentgenol. 1989;152:247–52.

    Article  CAS  Google Scholar 

  63. Riess JG. Reassessment of criteria for the selection of perfluorochemicals for second generation blood substitutes: analysis of structure/property relationships. Artif Organs. 1984;8:44–56.

    Article  CAS  PubMed  Google Scholar 

  64. Vu-Quang H, et al. Chitosan-coated poly (lactic-co-glycolic acid) perfluorooctyl bromide nanoparticles for cell labelling in 19 F magnetic resonance imaging. Carbohydr Polym. 2016;136:936–44.

    Article  CAS  PubMed  Google Scholar 

  65. Gaudet JM, et al. Tracking the fate of stem cell implants with fluorine-19 MRI. PLoS One. 2015;10:e0118544.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Boehm-Sturm P, et al. A multi-modality platform to image stem cell graft survival in the naïve and stroke-damaged mouse brain. Biomaterials. 2014;35:2218–26.

    Article  CAS  PubMed  Google Scholar 

  67. Rose LC, et al. Fluorine-19 labelling of stromal vascular fraction cells for clinical imaging applications. Stem Cells Transl Med. 2015;4:1472–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ruiz-Cabello J, et al. In vivo “hot spot” MR imaging of neural stem cells using fluorinated nanoparticles. Magn Reson Med. 2008;60:1506–11.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Kislukhin AA, et al. Paramagnetic fluorinated nano emulsions for sensitive cellular fluorine-19 magnetic resonance imaging. Nat Mater. 2016;15:662–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lee S-W, et al. Magnetic resonance reporter gene imaging. Theranostics. 2012;2:403–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Patrick PS, et al. Dual-modality gene reporter for in vivo imaging. Proc Natl Acad Sci USA. 2014;111:415–20.

    Article  CAS  PubMed  Google Scholar 

  72. Mukherjee A, et al. Non-invasive imaging using reporter genes altering cellular water permeability. Nat Commun. 2016;7:13891.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Chan KW, et al. MRI-detectable pH nano sensors incorporated into hydrogels for in vivo sensing of transplanted-cell viability. Nat Mater. 2013;12:268–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ziv K, Gambhir SS. Bioengineering and regenerative medicine: keeping track. Nat Mater. 2013;12:180–1.

    Article  CAS  PubMed  Google Scholar 

  75. Jin T, et al. Diamagnetic chemical exchange saturation transfer (diaCEST) affords magnetic resonance imaging of extracellular matrix hydrogel implantation in a rat model of stroke. Biomaterials. 2017;113:176–90.

    Article  CAS  PubMed  Google Scholar 

  76. Weizenecker J, et al. A simulation study on the resolution and sensitivity of magnetic particle imaging. Phys Med Biol. 2007;52:6363–74.

    Article  CAS  PubMed  Google Scholar 

  77. Weizenecker J, et al. Three-dimensional real-time in vivo magnetic particle imaging. Phys Med Biol. 2009;54:L1–10.

    Article  CAS  PubMed  Google Scholar 

  78. Zheng B, et al. Magnetic particle imaging tracks the long-term fate of in vivo neural cell implants with high image contrast. Sci Rep. 2015;5:14055.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Zheng B, et al. Quantitative magnetic particle imaging monitors the transplantation, biodistribution, and clearance of stem cells in vivo. Theranostics. 2016;6:291–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Bulte JW, et al. Quantitative “hot spot” imaging of transplanted stem cells using superparamagnetic tracers and magnetic particle imaging (MPI). Tomography. 2015;1:91–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Behan M, et al. Perfluorooctylbromide as a contrast agent for CT and sonography: preliminary clinical results. Am J Roentgenol. 1993;160:399–405.

    Article  CAS  Google Scholar 

  82. Hartanto J, Jokerst JV. Nanoparticles for ultrasound-guided imaging of cell implantation. In: Bulte JWM, Modo MMJ, editors. Design and applications of nanoparticles in biomedical imaging. New York: Springer; 2017. p. 299–314.

    Chapter  Google Scholar 

  83. Jokerst JV, et al. Intracellular aggregation of multimodal silica nanoparticles for ultrasound-guided stem cell implantation. Sci Transl Med. 2013;5:177ra35.

    Article  PubMed  CAS  Google Scholar 

  84. Kempen PJ, et al. Theranostic mesoporous silica nanoparticles biodegrade after prosurvival drug delivery and ultrasound/magnetic resonance imaging of stem cells. Theranostics. 2015;5:631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Herbst SM, et al. Delivery of stem cells to porcine arterial wall with echogenic liposomes conjugated to antibodies against CD34 and intercellular adhesion molecule-1. Mol Pharm. 2009;7:3–11.

    Article  CAS  Google Scholar 

  86. Kuliszewski MA, et al. Molecular imaging of endothelial progenitor cell engraftment using contrast-enhanced ultrasound and targeted microbubbles. Cardiovasc Res. 2009;83:653–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kaya M, et al. Acoustic radiation force for vascular cell therapy: in vitro validation. Ultrasound Med Biol. 2012;38:1989–97.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Toma C, et al. Vascular endoluminal delivery of mesenchymal stem cells using acoustic radiation force. Tissue Eng Part A. 2011;17:1457–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Wang G, et al. Effects of diagnostic ultrasound-targeted microbubble destruction on the homing ability of bone marrow stromal cells to the kidney parenchyma. Eur Radiol. 2016;26:3006–16.

    Article  PubMed  Google Scholar 

  90. Shapiro MG, et al. Biogenic gas nanostructures as ultrasonic molecular reporters. Nat Nanotechnol. 2014;9:311–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Maresca D, et al. Nonlinear ultrasound imaging of nanoscale acoustic biomolecules. Appl Phys Lett. 2017;110:073704.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Lu GJ, et al. Proteins, air and water: reporter genes for ultrasound and magnetic resonance imaging. Curr Opin Chem Biol. 2018;45:57–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kim T, et al. Photoacoustic imaging of human mesenchymal stem cells labelled with Prussian blue-poly(L-lysine) nanocomplexes. ACS Nano. 2017;11:9022–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Qin X, et al. Photoacoustic imaging of embryonic stem cell-derived cardiomyocytes in living hearts with ultrasensitive semiconducting polymer nanoparticles. Adv Funct Mater. 2018;28:1704939.

    Article  PubMed  CAS  Google Scholar 

  95. Hoffman RM. The multiple uses of fluorescent proteins to visualize cancer in vivo. Nat Rev Cancer. 2005;5:796–806.

    Article  CAS  PubMed  Google Scholar 

  96. Chen G, et al. In vivo real-time visualization of mesenchymal stem cells tropism for cutaneous regeneration using NIR-II fluorescence imaging. Biomaterials. 2015;53:265–73.

    Article  CAS  PubMed  Google Scholar 

  97. Xiong R, et al. Cytosolic delivery of nano labels prevents their asymmetric inheritance and enables extended quantitative in vivo cell imaging. Nano Lett. 2016;16:5975–86.

    Article  CAS  PubMed  Google Scholar 

  98. Kang JH, Chung J-K. Molecular-genetic imaging based on reporter gene expression. J Nucl Med. 2008;49:164–179S.

    Article  CAS  Google Scholar 

  99. Peeters M, et al. Bioluminescence-mediated longitudinal monitoring of adipose-derived stem cells in a large mammal ex vivo organ culture. Sci Rep. 2015;5:13960.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Allen AB, et al. In vivo bioluminescent tracking of mesenchymal stem cells within large hydrogel constructs. Tissue Eng Part C Methods. 2014;20:806–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Janowski M, et al. Survival of neural progenitors allografted into the CNS of immunocompetent recipients is highly dependent on transplantation site. Cell Transplant. 2014;23:253–62.

    Article  CAS  PubMed  Google Scholar 

  102. Moriyama EH, et al. The influence of hypoxia on bioluminescence in luciferase-transfected gliosarcoma tumor cells in vitro. Photochem Photobiol Sci. 2008;7:675–80.

    Article  CAS  PubMed  Google Scholar 

  103. Ueda I, et al. Molecular mechanism of inhibition of firefly luminescence by local anaesthetics. Proc Natl Acad Sci USA. 1976;73:481–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Keyaerts M, et al. Plasma protein binding of luciferase substrates influences sensitivity and accuracy of bioluminescence imaging. Mol Imaging Biol. 2011;13:59–66.

    Article  PubMed  Google Scholar 

  105. Iwano S, et al. Single-cell bioluminescence imaging of deep tissue in freely moving animals. Science. 2018;359:935–9.

    Article  CAS  PubMed  Google Scholar 

  106. Srinivas M, et al. Cell tracking using multimodal imaging. Contrast Media Mol Imaging. 2013;8:432–8.

    Article  CAS  PubMed  Google Scholar 

  107. Kedziorek DA, et al. Using C-arm x-ray imaging to guide local reporter probe delivery for tracking stem cell engraftment. Theranostics. 2013;3:916–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Guglielmetti C, et al. Multimodal imaging of subventricular zone neural stem/progenitor cells in the cuprizone mouse model reveals increased neurogenic potential for the olfactory bulb pathway, but no contribution to remyelination of the corpus callosum. Neuroimage. 2014;86:99–110.

    Article  CAS  PubMed  Google Scholar 

  109. Grossmann U, et al. Double-labelling of stem cells for combined brain PET/MRI. In: Society of Nuclear Medicine annual meeting abstracts. 2014.

    Google Scholar 

  110. Lewis CM, et al. 52Mn production for PET/MRI tracking of human stem cells expressing divalent metal transporter 1 (DMT1). Theranostics. 2015;5:227–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Garikipati VNS, et al. Mesenchymal stem cells from foetal heart attenuate myocardial injury after infarction: an in vivo serial pinhole gated SPECT-CT study in rats. PLoS One. 2014;9:e100982.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Rojas SV, et al. Multimodal imaging for in vivo evaluation of induced pluripotent stem cells in a murine model of heart failure. Artif Organs. 2017;41:192–9.

    Article  CAS  PubMed  Google Scholar 

  113. Harding J, et al. Large animal models for stem cell therapy. Stem Cell Res Ther. 2013;4:23.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Shah S, Heldman AW. Stem cell therapy in heart failure. In: Marin Garcia J, editor. Heart failure. New York: Springer; 2017. p. 727–47.

    Chapter  Google Scholar 

  115. Schrepfer S, et al. Stem cell transplantation: the lung barrier. Transplant Proc. 2007;39:573–6.

    Article  CAS  PubMed  Google Scholar 

  116. Kean TJ, et al. MSCs: delivery routes and engraftment, cell-targeting strategies, and immune modulation. Stem Cells Int. 2013;2013:732742.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Wei X, et al. Mesenchymal stem cells: a new trend for cell therapy. Acta Pharmacol Sin. 2013;34:747–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Yin X, et al. Engineering stem cell organoids. Cell Stem Cell. 2016;18:25–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Quarta M, et al. An artificial niche preserves the quiescence of muscle stem cells and enhances their therapeutic efficacy. Nat Biotechnol. 2016;34:752–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Bagó JR, et al. Tumor-homing cytotoxic human induced neural stem cells for cancer therapy. Sci Transl Med. 2017;9:eaah6510.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Sheng CC, et al. Current stem cell delivery methods for myocardial repair. Biomed Res Int. 2012;2013:547902.

    PubMed  PubMed Central  Google Scholar 

  122. Guan J, et al. Transplantation of human mesenchymal stem cells loaded on collagen scaffolds for the treatment of traumatic brain injury in rats. Biomaterials. 2013;34:5937–46.

    Article  CAS  PubMed  Google Scholar 

  123. Uchida S, et al. Treatment of spinal cord injury by an advanced cell transplantation technology using brain-derived neurotrophic factor-transfected mesenchymal stem cell spheroids. Biomaterials. 2016;109:1–11.

    Article  CAS  PubMed  Google Scholar 

  124. Nicolas CT, et al. Concise review: liver regenerative medicine: from hepatocyte transplantation to bioartificial livers and bioengineered grafts. Stem Cells. 2017;35:42–50.

    Article  PubMed  Google Scholar 

  125. Chen C, Hou J. Mesenchymal stem cell-based therapy in kidney transplantation. Stem Cell Res Ther. 2016;7:16.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Sanganalmath SK, Bolli R. Cell therapy for heart failure. Circ Res. 2013;113:810–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Kumamaru H, et al. Direct isolation and RNA-seq reveal environment-dependent properties of engrafted neural stem/progenitor cells. Nat Commun. 2012;3:1140.

    Article  PubMed  CAS  Google Scholar 

  128. Lan F, et al. Safe genetic modification of cardiac stem cells using a site-specific integration technique. Circulation. 2012;126:S20–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Chandrasekaran AP, et al. Genome editing: a robust technology for human stem cells. Cell Mol Life Sci. 2017;74:3335–46.

    Article  CAS  PubMed  Google Scholar 

  130. Wang G, et al. Efficient, footprint-free human iPSC genome editing by consolidation of Cas9/CRISPR and piggyBac technologies. Nat Protoc. 2017;12:88–103.

    Article  CAS  PubMed  Google Scholar 

  131. Choi YJ, et al. 3D cell printed tissue analogues: a new platform for theranostics. Theranostics. 2017;7:3118–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Fung M, Yuan Y, Atkins H, Shi Q, Bubela T. Responsible translation of stem cell research: an assessment of clinical trial registration and publications. Stem Cell Rep. 2017;8(5):1190–201.

    Article  Google Scholar 

  133. Park JS, Suryaprakash S, Lao YH, Leong KW. Engineering mesenchymal stem cells for regenerative medicine and drug delivery. Methods. 2015;84:3–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Sage EK, Kolluri KK, McNulty K, Lourenco SDS, Kalber TL, Ordidge KL, Davies D, Gary Lee YC, Giangreco A, Janes SM. Systemic but not topical TRAIL-expressing mesenchymal stem cells reduce tumour growth in malignant mesothelioma. Thorax. 2014;69(7):638–47.

    Article  PubMed  Google Scholar 

  135. Bagó JR, Alfonso-Pecchio A, Okolie O, Dumitru R, Rinkenbaugh A, Baldwin AS, Miller CR, Magness ST, Hingtgen SD. Therapeutically engineered induced neural stem cells are tumour-homing and inhibit progression of glioblastoma. Nat Commun. 2016;7:10593.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Nakamizo A, Marini F, Amano T, Khan A, Studeny M, Gumin J, Chen J, Hentschel S, Vecil G, Dembinski J, Andreeff M, Lang FF. Human bone marrow–derived mesenchymal stem cells in the treatment of gliomas. Cancer Res. 2005;65(8):3307–18.

    Article  CAS  PubMed  Google Scholar 

  137. Sasportas LS, Kasmieh R, Wakimoto H, Hingtgen S, van de Water JA, Mohapatra G, Figueiredo JL, Martuza RL, Weissleder R, Shah K. Assessment of therapeutic efficacy and fate of engineered human mesenchymal stem cells for cancer therapy. Proc Natl Acad Sci U S A. 2009;106(12):4822–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Loebinger MR, Eddaoudi A, Davies D, Janes SM. Mesenchymal stem cell delivery of TRAIL can eliminate metastatic cancer. Cancer Res. 2009;69(10):4134–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Barbash IM, Chouraqui P, Baron J, Feinberg MS, Etzion S, Tessone A, Miller L, Guetta E, Zipori D, Kedes LH, Kloner RA, Leor J. Systemic delivery of bone marrow-derived mesenchymal stem cells to the infarcted myocardium: feasibility, cell migration, and body distribution. Circulation. 2003;108(7):863–8.

    Article  PubMed  Google Scholar 

  140. Kraitchman DL, Tatsumi M, Gilson WD, Ishimori T, Kedziorek D, Walczak P, Segars WP, Chen HH, Fritzges D, Izbudak I, Young RG, Marcelino M, Pittenger MF, Solaiyappan M, Boston RC, Tsui BM, Wahl RL, Bulte JW. Dynamic imaging of allogeneic mesenchymal stem cells trafficking to myocardial infarction. Circulation. 2005;112(10):1451–61.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Gao J, Dennis JE, Muzic RF, Lundberg M, Caplan AI. The dynamic in vivo distribution of bone marrow-derived mesenchymal stem cells after infusion. Cells Tissues Organs. 2001;169(1):12–20.

    Article  CAS  PubMed  Google Scholar 

  142. Scarfe L, Brillant N, Kumar JD, Ali N, Alrumayh A, et al. Preclinical imaging methods for assessing the safety and efficacy of regenerative medicine therapies. NPJ Regener Med. 2017;2(1):28.

    Article  Google Scholar 

  143. Patrick S, Kalber P. Reporter genes for magnetic resonance. In: Webb GA, editor. Modern magnetic resonance. Cham: Springer; 2017. p. 1–22.

    Google Scholar 

  144. Hill JM, Dick AJ, Raman VK, Thompson RB, Yu ZX, Hinds KA, Pessanha BS, Guttman MA, Varney TR, Martin BJ, Dunbar CE, McVeigh ER, Lederman RJ. Serial cardiac magnetic resonance imaging of injected mesenchymal stem cells. Circulation. 2003;108(8):1009–14.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Rogers WJ, Meyer CH, Kramer CM. Technology insight: in vivo cell tracking by use of MRI. Nat Clin Pract Cardiovasc Med. 2006;3(10):554–62.

    Article  CAS  PubMed  Google Scholar 

  146. Stuckey DJ, Carr CA, Martin-Rendon E, Tyler DJ, Willmott C, Cassidy PJ, Hale SJ, Schneider JE, Tatton L, Harding SE, Radda GK, Watt S, Clarke K. Iron particles for noninvasive monitoring of bone marrow stromal cell engraftment into, and isolation of viable engrafted donor cells from, the heart. Stem Cells. 2006;24(8):1968–75.

    Article  CAS  PubMed  Google Scholar 

  147. de Vries IJ, Lesterhuis WJ, Barentsz JO, Verdijk P, van Krieken JH, Boerman OC, Oyen WJ, Bonenkamp JJ, Boezeman JB, Adema GJ, Bulte JW, Scheenen TW, Punt CJ, Heerschap A, Figdor CG. Magnetic resonance tracking of dendritic cells in melanoma patients for monitoring of cellular therapy. Nat Biotechnol. 2005;23(11):1407–13.

    Article  PubMed  CAS  Google Scholar 

  148. Bull E, Madani SY, Sheth R, Seifalian A, Green M, Seifalian AM. Stem cell tracking using iron oxide nanoparticles. Int J Nanomed. 2014;9:1641–53.

    CAS  Google Scholar 

  149. McColgan P, Sharma P, Bentley P. Stem cell tracking in human trials: a meta-regression. Stem Cell Rev. 2011;7(4):1031–40.

    Article  Google Scholar 

  150. Zheng Y, Huang J, Zhu T, Li R, Wang Z, Ma F, Zhu J. Stem cell tracking technologies for neurological regenerative medicine purposes. Stem Cells Int. 2017; https://doi.org/10.1155/2017/2934149.

  151. Thakur ML, Segal AW, Louis L, Welch MJ, Hopkins J, Peters TJ. Indium-111-labeled cellular blood components: mechanism of labelling and intracellular location in human neutrophils. J Nucl Med. 1977;18(10):1022–6.

    CAS  PubMed  Google Scholar 

  152. Schachinger V, Aicher A, Dobert N, Rover R, Diener J, Fichtlscherer S, Assmus B, Seeger FH, Menzel C, Brenner W, Dimmeler S, Zeiher AM. Pilot trial on determinants of progenitor cell recruitment to the infarcted human myocardium. Circulation. 2008;118(14):1425–32.

    Article  PubMed  Google Scholar 

  153. Gholamrezanezhad A, Mirpour S, Bagheri M, Mohamadnejad M, Alimoghaddam K, Abdolahzadeh L, Saghari M, Malekzadeh R. In vivo tracking of 111Inoxine labelled mesenchymal stem cells following infusion in patients with advanced cirrhosis. Nucl Med Biol. 2011;38(7):961–7.

    Article  CAS  PubMed  Google Scholar 

  154. Detante O, Moisan A, Dimastromatteo J, Richard MJ, Riou L, Grillon E, Barbier E, Desruet MD, De Fraipont F, Segebarth C, Jaillard A, Hommel M, Ghezzi C, Remy C. Intravenous administration of 99mTcHMPAO-labeled human mesenchymal stem cells after stroke: in vivo imaging and biodistribution. Cell Transplant. 2009;18(12):1369–79.

    Article  PubMed  Google Scholar 

  155. Chen IY, Greve JM, Gheysens O, Willmann JK, Rodriguez-Porcel M, Chu P, Sheikh AY, Faranesh AZ, Paulmurugan R, Yang PC, Wu JC, Gambhir SS. Comparison of optical bioluminescence reporter gene and superparamagnetic iron oxide MR contrast agent as cell markers for noninvasive imaging of cardiac cell transplantation. Mol Imaging Biol. 2009;11(3):178–87.

    Article  PubMed  Google Scholar 

  156. Wu JC, Chen IY, Sundaresan G, Min JJ, De A, Qiao JH, Fishbein MC, Gambhir SS. Molecular imaging of cardiac cell transplantation in living animals using optical bioluminescence and positron emission tomography. Circulation. 2003;108(11):1302–5.

    Article  PubMed  PubMed Central  Google Scholar 

  157. Cao F, Drukker M, Lin S, Sheikh AY, Xie X, Li Z, Connolly AJ, Weissman IL, Wu JC. Molecular imaging of embryonic stem cell misbehaviour and suicide gene ablation. Cloning Stem Cells. 2007;9(1):107–17.

    Article  CAS  PubMed  Google Scholar 

  158. Thorne N, Inglese J, Auld DS. Illuminating insights into firefly luciferase and other bioluminescent reporters used in chemical biology. Chem Biol. 2010;17(6):646–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Patrick PS, Bogart LK, Macdonald TJ, Southern P, Powell MJ, Zaw-Thin M, Voelcker NH, Parkin IP, Pankhurst QA, Lythgoe MF, Kalber TL, Bear JC. Surface radio-mineralisation mediates chelate-free radiolabelling of iron oxide nanoparticles. Chem Sci. 2019;10(9):2592–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Lee HY, Li Z, Chen K, Hsu AR, Xu C, Xie J, Sun S, Chen X. PET/MRI dual-modality tumor imaging using arginine-glycine-aspartic (RGD)-conjugated radiolabelled iron oxide nanoparticles. J Nucl Med. 2008;49(8):1371–9.

    Article  CAS  PubMed  Google Scholar 

  161. Tang Y, Zhang C, Wang J, Lin X, Zhang L, Yang Y, Wang Y, Zhang Z, Bulte JWM, Yang GY. MRI/SPECT/fluorescent tri-modal probe for evaluating the homing and therapeutic efficacy of transplanted mesenchymal stem cells in a rat ischemic stroke model. Adv Funct Mater. 2015;25(7):1024–34.

    Article  CAS  PubMed  Google Scholar 

  162. Grisendi G, Bussolari R, Cafarelli L, Petak I, Rasini V, Veronesi E, De Santis G, Spano C, Tagliazzucchi M, Barti-Juhasz H, Scarabelli L, Bambi F, Frassoldati A, Rossi G, Casali C, Morandi U, Horwitz EM, Paolucci P, Conte P, Dominici M. Adipose-derived mesenchymal stem cells as stable source of tumor necrosis factor-related apoptosis-inducing ligand delivery for cancer therapy. Cancer Res. 2010;70(9):3718–29.

    Article  CAS  PubMed  Google Scholar 

  163. Shyh-Chang N, Ng H-H. The metabolic programming of stem cells. Genes Dev. 2017;31:336–46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Carletti B, Piemonte F, Rossi F. Neuroprotection: the emerging concept of restorative neural stem cell biology for the treatment of neurodegenerative diseases. Curr Neuropharmacol. 2011;9:313–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Lee S-T, Chu K, Park J-E, et al. Intravenous administration of human neural stem cells induces functional recovery in Huntington’s disease rat model. Neurosci Res. 2005;52:243–9.

    Article  CAS  PubMed  Google Scholar 

  166. Lee WC, Arcona S, Thomas SK, et al. Effect of comorbidities on medical care use and cost among refractory patients with partial seizure disorder. Epilepsy Behav. 2005;7:123–6.

    Article  PubMed  Google Scholar 

  167. Lu P, Woodruff G, Wang Y, et al. Long-distance axonal growth from human induced pluripotent stem cells after spinal cord injury. Neuron. 2014;83:789–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Michelsen KA, Acosta-Verdugo S, Benoit-Marand M, et al. Area specific re-establishment of damaged circuits in the adult cerebral cortex by cortical neurons derived from mouse embryonic stem cells. Neuron. 2015;85:982–97.

    Article  CAS  PubMed  Google Scholar 

  169. Napoli E, Borlongan CV. Recent advances in stem cell-based therapeutics for stroke. Transl Stroke Res. 2016;7:452–7.

    Article  PubMed  PubMed Central  Google Scholar 

  170. Shah K. Stem cell-based therapies for tumours in the brain: are we there yet? Neuro Oncol. 2016;18:1066–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Barrow M, Taylor A, Murray P, et al. Design considerations for the synthesis of polymer coated iron oxide nanoparticles for stem cell labelling and tracking using MRI. Chem Soc Rev. 2015;44:6733–48.

    Article  CAS  PubMed  Google Scholar 

  172. Ramos-Gómez M, Seiz EG, Martínez-Serrano A. Optimization of the magnetic labelling of human neural stem cells and MRI visualization in the hemi-parkinsonian rat brain. J Nanobiotechnol. 2015;13:20.

    Article  CAS  Google Scholar 

  173. Hachani R, Lowdell M, Birchall M, et al. Tracking stem cells in tissue-engineered organs using magnetic nanoparticles. Nanoscale. 2013;5:11362–73.

    Article  CAS  PubMed  Google Scholar 

  174. Nagaraja TN, Karki K, Ewing JR, et al. The MRI-measured arterial input function resulting from a bolus injection of Gd-DTPA in a rat model of stroke slightly underestimates that of Gd-[14C]DTPA and marginally overestimates the blood-to-brain influx rate constant determined by Patlak plots. Magn Reson Med. 2010;63:1502–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Srinivas M, Heerschap A, Ahrens ET, et al. (19)F MRI for quantitative in vivo cell tracking. Trends Biotechnol. 2010;28:363–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Meier S, Gilad AA, Brandon JA, et al. Non-invasive detection of adeno-associated viral gene transfer using a genetically encoded CEST-MRI reporter gene in the murine heart. Sci Rep. 2018;8:4638.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  177. Lin MM, Kim DK, El Haj AJ, et al. Development of superparamagnetic iron oxide nanoparticles (SPIONS) for translation to clinical applications. IEEE Trans Nanobiosci. 2008;7:298–305.

    Article  Google Scholar 

  178. Gindy ME, Prud’homme RK. Multifunctional nanoparticles for imaging, delivery and targeting in cancer therapy. Expert Opin Drug Deliv. 2009;6:865–78.

    Article  CAS  PubMed  Google Scholar 

  179. Patel D, Kell A, Simard B, et al. Cu2+-labeled, SPION loaded porous silica nanoparticles for cell labelling and multifunctional imaging probes. Biomaterials. 2010;31:2866–73.

    Article  CAS  PubMed  Google Scholar 

  180. Liu L, Tseng L, Ye Q, et al. A new method for preparing mesenchymal stem cells and labelling with Ferumoxytol for cell tracking by MRI. Sci Rep. 2016;6:26271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Egawa EY, Kitamura N, Nakai R, et al. A DNA hybridization system for labelling of neural stem cells with SPIO nanoparticles for MRI monitoring post-transplantation. Biomaterials. 2015;54:158–67.

    Article  CAS  PubMed  Google Scholar 

  182. Thu MS, Bryant LH, Coppola T, et al. Self-assembling nanocomplexes by combining ferumoxytol, heparin and protamine for cell tracking by magnetic resonance imaging. Nat Med. 2012;18:463–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Liu T, Wang S, Liu H, et al. Detection of vertebral metastases: a meta-analysis comparing MRI, CT, PET, Bs and BS with SPECT. J Cancer Res Clin Oncol. 2017;143:457–65.

    Article  PubMed  Google Scholar 

  184. Sanchez-Catasus CA, Stormezand GN, van Laar PJ, et al. Fdg-PET for prediction of AD dementia in mild cognitive impairment. A review of the state of the art with particular emphasis on the comparison with other neuroimaging modalities (MRI and perfusion SPECT). Curr Alzheimer Res. 2017;14:127–42.

    Article  CAS  PubMed  Google Scholar 

  185. Yang C-T, Ghosh KK, Padmanabhan P, et al. Pet-Mr and SPECT-MR multimodality probes: development and challenges. Theranostics. 2018;8:6210–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Taïeb D, Pacak K. Pet scans with 18F-fluorodeoxyglucose to diagnose adrenal tumours—reply. JAMA. 2017;318:1614–5.

    Article  PubMed  PubMed Central  Google Scholar 

  187. Keu KV, Witney TH, Yaghoubi S, et al. Reporter gene imaging of targeted T cell immunotherapy in recurrent glioma. Sci Transl Med. 2017;9

    Google Scholar 

  188. Pichler V, Berroteran-Infante N, Philippe C, et al. An overview of PET radiochemistry, part 1: the covalent labels 18 F, 11 C, and 13 N. J Nucl Med. 2018;59:1350–4.

    Article  CAS  PubMed  Google Scholar 

  189. Meerwaldt R, Slart RHJA, van Dam GM, et al. PET/SPECT imaging: from carotid vulnerability to brain viability. Eur J Radiol. 2010;74:104–9.

    Article  PubMed  Google Scholar 

  190. Zanzonico P. Principles of nuclear medicine imaging: planar, SPECT, PET, multi-modality, and autoradiography systems. Radiat Res. 2012;177:349–64.

    Article  CAS  PubMed  Google Scholar 

  191. Sabapathy V, Mentam J, Jacob PM, et al. Non-invasive optical imaging and in vivo cell tracking of indocyanine green labelled human stem cells transplanted at superficial or in-depth tissue of SCID mice. Stem Cells Int. 2015;2015:1–8.

    Google Scholar 

  192. Contag CH. In vivo pathology: seeing with molecular specificity and cellular resolution in the living body. Annu Rev Pathol. 2007;2:277–305.

    Article  CAS  PubMed  Google Scholar 

  193. Specht EA, Braselmann E, Palmer AE. A critical and comparative review of fluorescent tools for live-cell imaging. Annu Rev Physiol. 2017;79:93–117.

    Article  CAS  PubMed  Google Scholar 

  194. Mezzanotte L, van’t Root M, Karatas H, et al. In vivo molecular bioluminescence imaging: new tools and applications. Trends Biotechnol. 2017;35:640–52.

    Article  CAS  PubMed  Google Scholar 

  195. Shah K, Weissleder R. Molecular optical imaging: applications leading to the development of present day therapeutics. NeuroRx. 2005;2:215–25.

    Article  PubMed  PubMed Central  Google Scholar 

  196. Srivastava AK, Bulte JWM. Seeing stem cells at work in vivo. Stem Cell Rev Rep. 2014;10:127–44.

    Article  PubMed  Google Scholar 

  197. Glover JC, Aswendt M, Boulland J-L, et al. In vivo cell tracking using non-invasive imaging of iron oxide-based particles with particular relevance for stem cell-based treatments of neurological and cardiac disease. Mol Imaging Biol. 2019; https://doi.org/10.1007/s11307-019-01440-4. [Epub ahead of print: 04 Dec 2019]

  198. Cromer Berman SM, Walczak P, Bulte JWM. Tracking stem cells using magnetic nanoparticles. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2011;3:343–55.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  199. Wang S, Chopp M, Nazem-Zadeh M-R, et al. Comparison of neurite density measured by MRI and histology after TBI. PLoS One. 2013;8:e63511.

    Article  PubMed  PubMed Central  Google Scholar 

  200. Michonneau D, Bousso P, Negrin RS. In vivo imaging of GVHD and GVL[M]. In: Immune biology of allogeneic hematopoietic stem cell transplantation. 2019. p. 51–68.

    Google Scholar 

  201. Aarntzen EHJG, Srinivas M, Walczak P, et al. In vivo tracking techniques for cellular regeneration, replacement, and redirection. J Nucl Med. 2012;53:1825–8.

    Article  CAS  PubMed  Google Scholar 

  202. Yang B, Parsha K, Schaar K, et al. Various cell populations within the mononuclear fraction of bone marrow contribute to the beneficial effects of autologous bone marrow cell therapy in a rodent stroke model. Transl Stroke Res. 2016;7:322–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Alessandrini M, Preynat-Seauve O, De Bruin K, et al. Stem cell therapy for neurological disorders. S Afr Med J. 2019;109:70–7.

    Article  CAS  PubMed  Google Scholar 

  204. Bhakoo K. In vivo stem cell tracking in neurodegenerative therapies. Expert Opin Biol Ther. 2011;11:911–20.

    Article  PubMed  Google Scholar 

  205. Zhu J, Wu X, Zhang HL. Adult neural stem cell therapy: expansion in vitro, tracking in vivo and clinical transplantation. Curr Drug Targets. 2005;6:97–110.

    Article  CAS  PubMed  Google Scholar 

  206. McIntyre CW, Goldsmith DJ. Ischemic brain injury in hemodialysis patients: which is more dangerous, hypertension or intradialytic hypotension? Kidney Int. 2015;87:1109–15.

    Article  PubMed  Google Scholar 

  207. Kondziolka D, Wechsler L, Goldstein S, et al. Transplantation of cultured human neuronal cells for patients with stroke. Neurology. 2000;55:565–9.

    Article  CAS  PubMed  Google Scholar 

  208. Kondziolka D, Steinberg GK, Wechsler L, et al. Neurotransplantation for patients with subcortical motor stroke: a phase 2 randomized trial. J Neurosurg. 2005;103:38–45.

    Article  PubMed  Google Scholar 

  209. Kalladka D, Sinden J, Pollock K, et al. Human neural stem cells in patients with chronic ischaemic stroke (Pisces): a phase 1, first-in-man study. Lancet. 2016;388:787–96.

    Article  PubMed  Google Scholar 

  210. Wechsler LR, Bates D, Stroemer P, et al. Cell therapy for chronic stroke. Stroke. 2018;49:1066–74.

    Article  PubMed  Google Scholar 

  211. Hess DC, Wechsler LR, Clark WM, et al. Safety and efficacy of multipotent adult progenitor cells in acute ischaemic stroke (masters): a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Neurol. 2017;16:360–8.

    Article  PubMed  Google Scholar 

  212. Mays RW, Savitz SI. Intravenous cellular therapies for acute ischemic stroke. Stroke. 2018;49:1058–65.

    Article  PubMed  Google Scholar 

  213. Walczak P, Wojtkiewicz J, Nowakowski A, et al. Real-Time MRI for precise and predictable intra-arterial stem cell delivery to the central nervous system. J Cereb Blood Flow Metab. 2017;37:2346–58.

    Article  PubMed  Google Scholar 

  214. Lim S, Yoon HY, Jang HJ, et al. Dual-modal imaging-guided precise tracking of bioorthogonally labeled mesenchymal stem cells in mouse brain stroke. ACS Nano. 2019;13:10991–1007.

    Article  CAS  PubMed  Google Scholar 

  215. Chen P-J, Kang Y-D, Lin C-H, et al. Multitheragnostic multi-GNRs crystal-seeded magnetic nanoseaurchin for enhanced in vivo mesenchymal-stem-cell homing, multimodal imaging, and stroke therapy. Adv Mater. 2015;27:6488–95.

    Article  CAS  PubMed  Google Scholar 

  216. Zhang F, Duan X, Lu L, et al. In vivo long-term tracking of neural stem cells transplanted into an acute ischemic stroke model with reporter gene-based bimodal Mr and optical imaging. Cell Transplant. 2017;26:1648–62.

    Article  PubMed  PubMed Central  Google Scholar 

  217. Tang Y, Zhang C, Wang J, et al. MRI/SPECT/Fluorescent TriModal probe for evaluating the homing and therapeutic efficacy of transplanted mesenchymal stem cells in a rat ischemic stroke model. Adv Funct Mater. 2015;25:1024–34.

    Article  CAS  PubMed  Google Scholar 

  218. Mani V, Adler E, Briley-Saebo KC, et al. Serial in vivo positive contrast MRI of iron oxide-labeled embryonic stem cell-derived cardiac precursor cells in a mouse model of myocardial infarction. Magn Reson Med. 2008;60:73–81.

    Article  PubMed  Google Scholar 

  219. Venkataramana NK, Pal R, Rao SAV, et al. Bilateral transplantation of allogenic adult human bone marrow-derived mesenchymal stem cells into the subventricular zone of Parkinson’s disease: a pilot clinical study. Stem Cells Int. 2012;2012:1–12.

    Article  Google Scholar 

  220. Yin F, Tian Z-M, Liu S, et al. Transplantation of human retinal pigment epithelium cells in the treatment for Parkinson disease. CNS Neurosci Ther. 2012;18:1012–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Brazzini A, Cantella R, De la Cruz A, et al. Intraarterial autologous implantation of adult stem cells for patients with Parkinson disease. J Vasc Interv Radiol. 2010;21:443–51.

    Article  PubMed  Google Scholar 

  222. Garitaonandia I, Gonzalez R, Sherman G, et al. Novel approach to stem cell therapy in Parkinson’s disease. Stem Cells Dev. 2018;27:951–7.

    Article  PubMed  Google Scholar 

  223. Bali P, Lahiri DK, Banik A, et al. Potential for stem cells therapy in Alzheimer’s disease: do neurotrophic factors play critical role? Curr Alzheimer Res. 2017;14:208–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Tong LM, Fong H, Huang Y. Stem cell therapy for Alzheimer’s disease and related disorders: current status and future perspectives. Exp Mol Med. 2015;47:e151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Hunsberger JG, Rao M, Kurtzberg J, et al. Accelerating stem cell trials for Alzheimer’s disease. Lancet Neurol. 2016;15:219–30.

    Article  PubMed  Google Scholar 

  226. Song C-G, Zhang Y-Z, Wu H-N, et al. Stem cells: a promising candidate to treat neurological disorders. Neural Regen Res. 2018;13:1294–304.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  227. Kang JM, Yeon BK, Cho S-J, et al. Stem cell therapy for Alzheimer’s disease: a review of recent clinical trials. J Alzheimers Dis. 2016;54:879–89.

    Article  PubMed  Google Scholar 

  228. Kim HJ, Seo SW, Chang JW, et al. Stereotactic brain injection of human umbilical cord blood mesenchymal stem cells in patients with Alzheimer’s disease dementia: a phase 1 clinical trial. Alzheimers Dement. 2015;1:95–102.

    Article  Google Scholar 

  229. Lee NK, Kim HS, Yoo D, et al. Magnetic resonance imaging of Ferumoxytol-Labeled human mesenchymal stem cells in the mouse brain. Stem Cell Rev Rep. 2017;13:127–38.

    Article  CAS  PubMed  Google Scholar 

  230. Bonafede R, Mariotti R. ALS pathogenesis and therapeutic approaches: the role of mesenchymal stem cells and extracellular vesicles. Front Cell Neurosci. 2017;11:80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  231. Abdul Wahid SF, Law ZK, Ismail NA, et al. Cell-Based therapies for amyotrophic lateral sclerosis/motor neuron disease. Cochrane Database Syst Rev. 2016;11:CD011742.

    PubMed  Google Scholar 

  232. Petrou P, Gothelf Y, Argov Z, et al. Safety and clinical effects of mesenchymal stem cells secreting neurotrophic factor transplantation in patients with amyotrophic lateral sclerosis: results of phase 1/2 and 2A clinical trials. JAMA Neurol. 2016;73:337–44.

    Article  PubMed  Google Scholar 

  233. Mazzini L, Mareschi K, Ferrero I, et al. Mesenchymal stromal cell transplantation in amyotrophic lateral sclerosis: a long-term safety study. Cytotherapy. 2012;14:56–60.

    Article  PubMed  Google Scholar 

  234. Richard J-P, Hussain U, Gross S, et al. Perfluorocarbon labeling of human glial-restricted progenitors for 19 F magnetic resonance imaging. Stem Cells Transl Med. 2019;8:355–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Hess DC, Borlongan CV. Stem cells and neurological diseases. Cell Prolif. 2008;41:94–114.

    Article  PubMed  Google Scholar 

  236. Chen Z, Palmer TD. Cellular repair of CNS disorders: an immunological perspective. Hum Mol Genet. 2008;17:R84–92.

    Article  CAS  PubMed  Google Scholar 

  237. Tian C, Wang X, Wang X, et al. Autologous bone marrow mesenchymal stem cell therapy in the subacute stage of traumatic brain injury by lumbar puncture. Exp Clin Transplant. 2013;11:176–81.

    Article  PubMed  Google Scholar 

  238. Gennai S, Monsel A, Hao Q, et al. Cell-based therapy for traumatic brain injury. Br J Anaesth. 2015;115:203–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Wang P, Zhang HL, Li W, et al. Generation of patient-specific induced neuronal cells using a direct reprogramming strategy. Stem Cells Dev. 2014;23:16–23.

    Article  PubMed  CAS  Google Scholar 

  240. Jiang L, Li R, Tang H, et al. MRI tracking of iPS cells-induced neural stem cells in traumatic brain injury rats. Cell Transplant. 2019;28:747–55.

    Article  PubMed  Google Scholar 

  241. Saxena T, Loomis KH, Pai SB, et al. Nanocarrier-mediated inhibition of macrophage migration inhibitory factor attenuates secondary injury after spinal cord injury. ACS Nano. 2015;9:1492–505.

    Article  CAS  PubMed  Google Scholar 

  242. Donnelly EM, Lamanna J, Boulis NM. Stem cell therapy for the spinal cord. Stem Cell Res Ther. 2012;3:24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Sahni V, Kessler JA. Stem cell therapies for spinal cord injury. Nat Rev Neurol. 2010;6:363–72.

    Article  PubMed  PubMed Central  Google Scholar 

  244. Lindvall O, Kokaia Z. Stem cells in human neurodegenerative disorders—time for clinical translation? J Clin Invest. 2010;120:29–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Satti HS, Waheed A, Ahmed P, et al. Autologous mesenchymal stromal cell transplantation for spinal cord injury: a phase I pilot study. Cytotherapy. 2016;18:518–22.

    Article  PubMed  Google Scholar 

  246. Cheng H, Liu X, Hua R, et al. Clinical observation of umbilical cord mesenchymal stem cell transplantation in treatment for sequelae of thoracolumbar spinal cord injury. J Transl Med. 2014;12:253.

    Article  PubMed  PubMed Central  Google Scholar 

  247. Mendonça MVP, Larocca TF, de Freitas Souza BS, et al. Safety and neurological assessments after autologous transplantation of bone marrow mesenchymal stem cells in subjects with chronic spinal cord injury. Stem Cell Res Ther. 2014;5:126.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shaikh, S. (2022). Molecular Imaging and Stem Cell Imaging. In: Advances in Imaging . Springer, Singapore. https://doi.org/10.1007/978-981-16-9535-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-9535-3_20

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-9534-6

  • Online ISBN: 978-981-16-9535-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics