Skip to main content

Advertisement

Log in

Genome editing: a robust technology for human stem cells

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Human pluripotent stem cells comprise induced pluripotent and embryonic stem cells, which have tremendous potential for biological and therapeutic applications. The development of efficient technologies for the targeted genome alteration of stem cells in disease models is a prerequisite for utilizing stem cells to their full potential. Genome editing of stem cells is possible with the help of synthetic nucleases that facilitate site-specific modification of a gene of interest. Recent advances in genome editing techniques have improved the efficiency and speed of the development of stem cells for human disease models. Zinc finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated system are powerful tools for editing DNA at specific loci. Here, we discuss recent technological advances in genome editing with site-specific nucleases in human stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bibikova M (2003) Enhancing gene targeting with designed zinc finger nucleases. Science 300:764. doi:10.1126/science.1079512

    Article  CAS  PubMed  Google Scholar 

  2. Carroll D (2011) Genome engineering with zinc-finger nucleases. Genetics 188:773–782. doi:10.1534/genetics.111.131433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Capecchi MR (2001) Generating mice with targeted mutations. Nat Med 7:1086–1090

    Article  CAS  PubMed  Google Scholar 

  4. Smih F, Rouet P, Romanienko PJ, Jasin M (1995) Double-strand breaks at the target locus stimulate gene targeting in embryonic stem cells. Nucleic Acids Res 23:5012–5019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Choulika A, Perrin A, Dujon B, Nicolas JF (1995) Induction of homologous recombination in mammalian chromosomes by using the I-SceI system of Saccharomyces cerevisiae. Mol Cell Biol 15:1968–1973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cohen-Tannoudji M, Robine S, Choulika A et al (1998) I-SceI-induced gene replacement at a natural locus in embryonic stem cells. Mol Cell Biol 18:1444–1448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Capecchi MR (1989) Altering the genome homologous recombination by from ES cells to germ line chimera. Science 244:1288–1292

    Article  CAS  PubMed  Google Scholar 

  8. Gloor G, Nassif N, Johnson-Schlitz D et al (1991) Targeted gene replacement in Drosophila via P element-induced gap repair. Science 253:1110–1117. doi:10.1126/science.1653452

    Article  CAS  PubMed  Google Scholar 

  9. Urnov FD, Rebar EJ, Holmes MC et al (2010) Genome editing with engineered zinc finger nucleases. Nat Rev Genet 11:636–646. doi:10.1038/nrg2842

    Article  CAS  PubMed  Google Scholar 

  10. Wyman C, Kanaar R (2006) DNA double-strand break repair: All’s well that ends well. Annu Rev Genet 40:363–383. doi:10.1146/annurev.genet.40.110405.090451

    Article  CAS  PubMed  Google Scholar 

  11. Rouet P, Smih F, Jasin M (1994) Expression of a site-specific endonuclease stimulates homologous recombination in mammalian cells. Proc Natl Acad Sci USA 91:6064–6068. doi:10.1073/pnas.91.13.6064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gaj T, Gersbach CA, Barbas CF (2013) ZFN, TALEN and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31:397–405. doi:10.1016/j.tibtech.2013.04.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lombardo A, Genovese P, Beausejour CM et al (2007) Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery. Nat Biotechnol 25:1298–1306. doi:10.1038/nbt1353

    Article  CAS  PubMed  Google Scholar 

  14. Mussolino C, Cathomen T (2012) TALE nucleases: tailored genome engineering made easy. Curr Opin Biotechnol 23:644–650. doi:10.1016/j.copbio.2012.01.013

    Article  CAS  PubMed  Google Scholar 

  15. Sander JD, Joung JK (2014) CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 32:347–355. doi:10.1038/nbt.2842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Smith J, Grizot S, Arnould S et al (2006) A combinatorial approach to create artificial homing endonucleases cleaving chosen sequences. Nucleic Acids Res 34:e149. doi:10.1093/nar/gkl720

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Boch J, Scholze H, Schornack S et al (2009) Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326:1509–1512. doi:10.1126/science.1178811

    Article  CAS  PubMed  Google Scholar 

  18. Ehrlich SD, Bolotin A, Quinquis B, Sorokin A (2005) Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology 151:2551–2561. doi:10.1099/mic.0.28048-0

    Article  PubMed  CAS  Google Scholar 

  19. Mojica FJM, Diez-Villasenor C, Garcia-Martinez J, Soria E (2005) Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol 60:174–182. doi:10.1007/s00239-004-0046-3

    Article  CAS  PubMed  Google Scholar 

  20. Boettcher M, McManus MT (2015) Choosing the right tool for the job: RNAi, TALEN, or CRISPR. Mol Cell 58:575–585. doi:10.1016/j.molcel.2015.04.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Maeder ML, Thibodeau-beganny S, Osiak A et al (2008) Rapid “open-source” engineering of customized zinc-finger nucleases for highly efficient gene modification. Mol Ther 31:294–301. doi:10.1016/j.molcel.2008.06.016.Rapid

    CAS  Google Scholar 

  22. Hiroyuki S, Susumu K (1981) New restriction endonucleases from Flavobacterium okeanokoites (FokI) and Micrococcus luteus (MluI). Gene 16:73–78. doi:10.1016/0378-1119(81)90062-7

    Article  Google Scholar 

  23. Smith J, Berg JM, Chandrasegaran S (1999) A detailed study of the substrate specificity of a chimeric restriction enzyme. Nucleic Acids Res 27:674–681. doi:10.1093/nar/27.2.674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chandrasegaran S, Smith J (1999) Chimeric restriction enzymes: what is next? Biol Chem. doi:10.1515/BC.1999.103

    PubMed  PubMed Central  Google Scholar 

  25. Urnov FD, Miller JC, Lee Y-L et al (2005) Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 435:646–651. doi:10.1038/nature03556

    Article  CAS  PubMed  Google Scholar 

  26. Kandavelou K, Mani M, Durai S, Chandrasegaran S (2005) “Magic” scissors for genome surgery. Nat Biotechnol 23:686–687

    Article  CAS  PubMed  Google Scholar 

  27. Bogdanove AJ, Voytas DF (2011) TAL effectors: customizable proteins for DNA targeting. Science 333:1843–1846. doi:10.1126/science.1204094

    Article  CAS  PubMed  Google Scholar 

  28. Boch J, Bonas U (2010) Xanthomonas AvrBs3 family-type III effectors: discovery and function. Annu Rev Phytopathol 48:419–436. doi:10.1146/annurev-phyto-080508-081936

    Article  CAS  PubMed  Google Scholar 

  29. Christian M, Cermak T, Doyle EL et al (2010) Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186:757–761. doi:10.1534/genetics.110.120717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mahfouz MM, Li L, Shamimuzzaman M et al (2011) De novo-engineered transcription activator-like effector (TALE) hybrid nuclease with novel DNA binding specificity creates double-strand breaks. Proc Natl Acad Sci 108:2623–2628. doi:10.1073/pnas.1019533108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Li T, Huang S, Zhao X et al (2011) Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes. Nucleic Acids Res 39:6315–6325. doi:10.1093/nar/gkr188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mak AN-S, Bradley P, Cernadas RA et al (2012) The crystal structure of TAL effector PthXo1 bound to its DNA target. Science 335:716–719. doi:10.1126/science.1216211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bultmann S, Morbitzer R, Schmidt CS et al (2012) Targeted transcriptional activation of silent oct4 pluripotency gene by combining designer TALEs and inhibition of epigenetic modifiers. Nucleic Acids Res 40:5368–5377. doi:10.1093/nar/gks199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kim Y, Kweon J, Kim A et al (2013) A library of TAL effector nucleases spanning the human genome. Nat Biotechnol 31:251–258. doi:10.1038/nbt.2517

    Article  CAS  PubMed  Google Scholar 

  35. Valton J, Dupuy A, Daboussi F et al (2012) Overcoming transcription activator-like effector (TALE) DNA binding domain sensitivity to cytosine methylation. J Biol Chem 287:38427–38432. doi:10.1074/jbc.C112.408864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Deng D, Yin P, Yan C et al (2012) Recognition of methylated DNA by TAL effectors. Cell Res 22:1502–1504. doi:10.1038/cr.2012.127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hockemeyer D, Wang H, Kiani S et al (2011) Genetic engineering of human pluripotent cells using TALE nucleases. Nat Biotechnol 29:731–734. doi:10.1038/nbt.1927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hockemeyer D, Soldner F, Beard C et al (2009) Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases. Nat Biotechnol 27:851–857. doi:10.1038/nbt.1562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Moscou MJ, Bogdanove AJ (2009) A simple cipher governs DNA recognition by TAL effectors. Science 326:1501. doi:10.1126/science.1178817

    Article  CAS  PubMed  Google Scholar 

  40. Tesson L, Usal C, Ménoret S et al (2011) Knockout rats generated by embryo microinjection of TALENs. Nat Biotechnol 29:695–696. doi:10.1038/nbt.1940

    Article  CAS  PubMed  Google Scholar 

  41. Ding Q, Lee Y-K, Schaefer EAK et al (2013) A TALEN genome-editing system for generating human stem cell-based disease models. Cell Stem Cell 12:238–251. doi:10.1016/j.stem.2012.11.011

    Article  CAS  PubMed  Google Scholar 

  42. Holkers M, Maggio I, Liu J et al (2013) Differential integrity of TALE nuclease genes following adenoviral and lentiviral vector gene transfer into human cells. Nucleic Acids Res 41:e63. doi:10.1093/nar/gks1446

    Article  CAS  PubMed  Google Scholar 

  43. van der Oost J, Jore MM, Westra ER et al (2009) CRISPR-based adaptive and heritable immunity in prokaryotes. Trends Biochem Sci 34:401–407. doi:10.1016/j.tibs.2009.05.002

    Article  PubMed  CAS  Google Scholar 

  44. Jinek M, Chylinski K, Fonfara I et al (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821. doi:10.1126/science.1225829

    Article  CAS  PubMed  Google Scholar 

  45. Haft DH, Selengut J, Mongodin EF, Nelson KE (2005) A Guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes. PLoS Comput Biol 1:e60. doi:10.1371/journal.pcbi.0010060

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Barrangou R, Fremaux C, Deveau H et al (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315:1709–1712. doi:10.1126/science.1138140

    Article  CAS  PubMed  Google Scholar 

  47. Brouns SJJ, Jore MM, Lundgren M et al (2008) Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321:960–964. doi:10.1126/science.1159689

    Article  CAS  PubMed  Google Scholar 

  48. Deltcheva E, Chylinski K, Sharma CM et al (2011) CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471:602–607. doi:10.1038/nature09886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Cong L, Ran FA, Cox D et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823. doi:10.1126/science.1231143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mali P, Yang L, Esvelt KM et al (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826. doi:10.1126/science.1232033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ran FA, Hsu PD, Wright J et al (2013) Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8:2281–2308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Nishimasu H, Ran FA, Hsu PD et al (2014) Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 156:935–949. doi:10.1016/j.cell.2014.02.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Swarts DC, Mosterd C, van Passel MWJ, Brouns SJJ (2012) CRISPR interference directs strand specific spacer acquisition. PLoS One 7:e35888. doi:10.1371/journal.pone.0035888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kleinstiver BP, Prew MS, Tsai SQ et al (2015) Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 523:481–485. doi:10.1038/nature14592

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Kleinstiver BP, Pattanayak V, Prew MS et al (2016) High-fidelity CRISPR–Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529:490–495. doi:10.1038/nature16526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Thomson JA (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147. doi:10.1126/science.282.5391.1145

    Article  CAS  PubMed  Google Scholar 

  57. Urbach A (2004) Modeling for Lesch–Nyhan disease by gene targeting in human embryonic stem cells. Stem Cells 22:635–641. doi:10.1634/stemcells.22-4-635

    Article  CAS  PubMed  Google Scholar 

  58. Costa M, Dottori M, Sourris K et al (2007) A method for genetic modification of human embryonic stem cells using electroporation. Nat Protoc 2:792–796. doi:10.1038/nprot.2007.105

    Article  CAS  PubMed  Google Scholar 

  59. Di Domenico AI, Christodoulou I, Pells SC et al (2008) Sequential genetic modification of the hprt locus in human ESCs combining gene targeting and recombinase-mediated cassette exchange. Cloning Stem Cells 10:217–230. doi:10.1089/clo.2008.0016

    Article  PubMed  CAS  Google Scholar 

  60. Davis RP, Ng ES, Costa M et al (2008) Targeting a GFP reporter gene to the MIXL1 locus of human embryonic stem cells identifies human primitive streak-like cells and enables isolation of primitive hematopoietic precursors. Blood 111:1876–1884. doi:10.1182/blood-2007-06-093609

    Article  CAS  PubMed  Google Scholar 

  61. Ruby KM, Zheng B (2009) Gene targeting in a HUES line of human embryonic stem cells via electroporation. Stem Cells 27:1496–1506. doi:10.1002/stem.73

    Article  CAS  PubMed  Google Scholar 

  62. Cowan CA, Klimanskaya I, McMahon J et al (2004) Derivation of embryonic stem-cell lines from human blastocysts. N Engl J Med 350:1353–1356. doi:10.1056/NEJMsr040330

    Article  CAS  PubMed  Google Scholar 

  63. Cartier N, Hacein-Bey-Abina S, Bartholomae CC et al (2009) Hematopoietic stem cell gene therapy with a lentiviral vector in X-linked adrenoleukodystrophy. Science 326:818–823. doi:10.1126/science.1171242

    Article  CAS  PubMed  Google Scholar 

  64. Boudes PF (2014) Gene therapy as a new treatment option for inherited monogenic diseases. Eur J Intern Med 25:31–36. doi:10.1016/j.ejim.2013.09.009

    Article  PubMed  Google Scholar 

  65. Ibraheem D, Elaissari A, Fessi H (2014) Gene therapy and DNA delivery systems. Int J Pharm 459:70–83. doi:10.1016/j.ijpharm.2013.11.041

    Article  CAS  PubMed  Google Scholar 

  66. Hacein-Bey-Abina S, Le Deist F, Carlier F et al (2002) Sustained correction of X-Linked severe combined immunodeficiency by ex vivo gene therapy. N Engl J Med 346:1185–1193. doi:10.1056/NEJMoa012616

    Article  CAS  PubMed  Google Scholar 

  67. Hacein-Bey-Abina S (2003) LMO2-associated clonal T Cell proliferation in two patients after gene therapy for SCID-X1. Science 302:415–419. doi:10.1126/science.1088547

    Article  CAS  PubMed  Google Scholar 

  68. Thomas CE, Ehrhardt A, Kay MA (2003) Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet 4:346–358. doi:10.1038/nrg1066

    Article  CAS  PubMed  Google Scholar 

  69. Zou J, Maeder ML, Mali P et al (2009) Gene targeting of a disease-related gene in human induced pluripotent stem and embryonic stem cells. Cell Stem Cell 5:97–110. doi:10.1016/j.stem.2009.05.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Saleh-Gohari N (2004) Conservative homologous recombination preferentially repairs DNA double-strand breaks in the S phase of the cell cycle in human cells. Nucleic Acids Res 32:3683–3688. doi:10.1093/nar/gkh703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Schwank G, Koo B-K, Sasselli V et al (2013) Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell 13:653–658. doi:10.1016/j.stem.2013.11.002

    Article  CAS  PubMed  Google Scholar 

  72. Suzuki K, Mitsui K, Aizawa E et al (2008) Highly efficient transient gene expression and gene targeting in primate embryonic stem cells with helper-dependent adenoviral vectors. Proc Natl Acad Sci 105:13781–13786. doi:10.1073/pnas.0806976105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Soldner F, Laganière J, Cheng AW et al (2011) Generation of isogenic pluripotent stem cells differing exclusively at two early onset Parkinson point mutations. Cell 146:318–331. doi:10.1016/j.cell.2011.06.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Sebastiano V, Maeder ML, Angstman JF et al (2011) In situ genetic correction of the sickle cell anemia mutation in human induced pluripotent stem cells using engineered zinc finger nucleases. Stem Cells 29:1717–1726. doi:10.1002/stem.718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Miller JC, Tan S, Qiao G et al (2011) A TALE nuclease architecture for efficient genome editing. Nat Biotechnol 29:143–148. doi:10.1038/nbt.1755

    Article  CAS  PubMed  Google Scholar 

  76. Park I-H, Zhao R, West JA et al (2008) Reprogramming of human somatic cells to pluripotency with defined factors. Nature 451:141–146. doi:10.1038/nature06534

    Article  CAS  PubMed  Google Scholar 

  77. Raya Á, Rodríguez-Pizà I, Guenechea G et al (2009) Disease-corrected haematopoietic progenitors from Fanconi anaemia induced pluripotent stem cells. Nature 460:53–59. doi:10.1038/nature08129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Dimos JT, Rodolfa KT, Niakan KK et al (2008) Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science 321:1218–1221. doi:10.1126/science.1158799

    Article  CAS  PubMed  Google Scholar 

  79. Ye Z, Zhan H, Mali P et al (2009) Human-induced pluripotent stem cells from blood cells of healthy donors and patients with acquired blood disorders. Blood 114:5473–5480. doi:10.1182/blood-2009-04-217406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Jiang J, Jing Y, Cost GJ et al (2013) Translating dosage compensation to trisomy 21. Nature 500:296–300. doi:10.1038/nature12394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Brown CJ, Hendrich BD, Rupert JL et al (1992) The human XIST gene: analysis of a 17 kb inactive X-specific RNA that contains conserved repeats and is highly localized within the nucleus. Cell 71:527–542. doi:10.1016/0092-8674(92)90520-M

    Article  CAS  PubMed  Google Scholar 

  82. Kazuki Y, Yakura Y, Abe S et al (2014) Down syndrome-associated haematopoiesis abnormalities created by chromosome transfer and genome editing technologies. Sci Rep 4:6136. doi:10.1038/srep06136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ramirez CL, Foley JE, Wright DA et al (2008) Unexpected failure rates for modular assembly of engineered zinc fingers. Nat Methods 5:374–375. doi:10.1038/nmeth0508-374

    Article  CAS  PubMed  Google Scholar 

  84. Maeder ML, Thibodeau-Beganny S, Sander JD et al (2009) Oligomerized pool engineering (OPEN): an “open-source” protocol for making customized zinc-finger arrays. Nat Protoc 4:1471–1501. doi:10.1038/nprot.2009.98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zhang F, Cong L, Lodato S et al (2011) Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. Nat Biotechnol 29:149–153. doi:10.1038/nbt.1775

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. An MC, O’Brien RN, Zhang N et al (2014) Polyglutamine disease modeling: epitope based screen for homologous recombination using CRISPR/Cas9 system. PLoS Curr. doi:10.1371/currents.hd.0242d2e7ad72225efa72f6964589369a

    PubMed  PubMed Central  Google Scholar 

  87. Mandal PK, Ferreira LMR, Collins R et al (2014) Efficient ablation of genes in human hematopoietic stem and effector cells using CRISPR/Cas9. Cell Stem Cell 15:643–652. doi:10.1016/j.stem.2014.10.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Chen Y, Cao J, Xiong M et al (2015) Engineering human stem cell lines with inducible gene knockout using CRISPR/Cas9. Cell Stem Cell 17:233–244. doi:10.1016/j.stem.2015.06.001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Sapranauskas R, Gasiunas G, Fremaux C et al (2011) The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic Acids Res 39:9275–9282. doi:10.1093/nar/gkr606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Davis L, Maizels N (2011) DNA nicks promote efficient and safe targeted gene correction. PLoS One 6:e23981. doi:10.1371/journal.pone.0023981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. McConnell Smith A, Takeuchi R, Pellenz S et al (2009) Generation of a nicking enzyme that stimulates site-specific gene conversion from the I-AniI LAGLIDADG homing endonuclease. Proc Natl Acad Sci USA 106:5099–5104. doi:10.1073/pnas.0810588106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Metzger MJ, McConnell-Smith A, Stoddard BL, Miller AD (2011) Single-strand nicks induce homologous recombination with less toxicity than double-strand breaks using an AAV vector template. Nucleic Acids Res 39:926–935. doi:10.1093/nar/gkq826

    Article  CAS  PubMed  Google Scholar 

  93. Ran FA, Hsu PD, Lin C-Y et al (2013) Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154:1380–1389. doi:10.1016/j.cell.2013.08.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Kim S, Kim D, Cho SW et al (2014) Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res 24:1012–1019. doi:10.1101/gr.171322.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Cho SW, Kim S, Kim Y et al (2014) Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res 24:132–141. doi:10.1101/gr.162339.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Fu Y, Sander JD, Reyon D et al (2014) Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol 32:279–284. doi:10.1038/nbt.2808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Wyvekens N, Topkar VV, Khayter C et al (2015) Dimeric CRISPR RNA-Guided FokI-dCas9 nucleases directed by truncated gRNAs for highly specific genome editing. Hum Gene Ther 26:425–431. doi:10.1089/hum.2015.084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Guilinger JP, Thompson DB, Liu DR (2014) Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat Biotechnol 32:577–582. doi:10.1038/nbt.2909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Tsai SQ, Wyvekens N, Khayter C et al (2014) Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nat Biotechnol 32:569–576. doi:10.1038/nbt.2908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. González F, Zhu Z, Shi Z-D et al (2014) An iCRISPR platform for rapid, multiplexable, and inducible genome editing in human pluripotent stem cells. Cell Stem Cell 15:215–226. doi:10.1016/j.stem.2014.05.018

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Xie F, Ye L, Chang JC et al (2014) Seamless gene correction of β-thalassemia mutations in patient-specific iPSCs using CRISPR/Cas9 and piggyBac. Genome Res 24:1526–1533. doi:10.1101/gr.173427.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Zhang P-W, Haidet-Phillips AM, Pham JT et al (2016) Generation of GFAP:GFP astrocyte reporter lines from human adult fibroblast-derived iPS cells using zinc-finger nuclease technology. Glia 64:63–75. doi:10.1002/glia.22903

    Article  PubMed  Google Scholar 

  103. Tebas P, Stein D, Tang WW et al (2014) Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N Engl J Med 370:901–910. doi:10.1056/NEJMoa1300662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Matano M, Date S, Shimokawa M et al (2015) Modeling colorectal cancer using CRISPR-Cas9-mediated engineering of human intestinal organoids. Nat Med. doi:10.1038/nm.3802

    PubMed  Google Scholar 

  105. Drost J, van Jaarsveld RH, Ponsioen B et al (2015) Sequential cancer mutations in cultured human intestinal stem cells. Nature 521:43–47. doi:10.1038/nature14415

    Article  CAS  PubMed  Google Scholar 

  106. Martinez RA, Stein JL, Krostag A-RF et al (2015) Genome engineering of isogenic human ES cells to model autism disorders. Nucleic Acids Res 43:e65. doi:10.1093/nar/gkv164

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Abudayyeh OO, Gootenberg JS, Konermann S et al (2016) C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science 353:aaf5573. doi:10.1126/science.aaf5573

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Gao F, Shen XZ, Jiang F et al (2016) DNA-guided genome editing using the Natronobacterium gregoryi Argonaute. Nat Biotechnol 34:768–773. doi:10.1038/nbt.3547

    Article  CAS  PubMed  Google Scholar 

  109. Wang H (2016) NgAgo: an exciting new tool for genome editing. Sci Bull 61:1074–1075. doi:10.1007/s11434-016-1117-8

    Article  Google Scholar 

  110. Lee SH, Turchiano G, Ata H et al (2016) Failure to detect DNA-guided genome editing using Natronobacterium gregoryi Argonaute. Nat Biotechnol. doi:10.1038/nbt.3753

    Google Scholar 

  111. Tiyaboonchai A, Mac H, Shamsedeen R et al (2014) Utilization of the AAVS1 safe harbor locus for hematopoietic specific transgene expression and gene knockdown in human ES cells. Stem Cell Res 12:630–637. doi:10.1016/j.scr.2014.02.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Zou J, Sweeney CL, Chou B-K et al (2011) Oxidase-deficient neutrophils from X-linked chronic granulomatous disease iPS cells: functional correction by zinc finger nuclease-mediated safe harbor targeting. Blood 117:5561–5572. doi:10.1182/blood-2010-12-328161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Yusa K, Rashid ST, Strick-Marchand H et al (2011) Targeted gene correction of α1-antitrypsin deficiency in induced pluripotent stem cells. Nature 478:391–394. doi:10.1038/nature10424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Wang J, Exline CM, DeClercq JJ et al (2015) Homology-driven genome editing in hematopoietic stem and progenitor cells using ZFN mRNA and AAV6 donors. Nat Biotechnol 33:1256–1263. doi:10.1038/nbt.3408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Asuri P, Bartel MA, Vazin T et al (2012) Directed evolution of adeno-associated virus for enhanced gene delivery and gene targeting in human pluripotent stem cells. Mol Ther 20:329–338. doi:10.1038/mt.2011.255

    Article  CAS  PubMed  Google Scholar 

  116. Hofer U, Henley JE, Exline CM et al (2013) Pre-clinical modeling of CCR5 knockout in human hematopoietic stem cells by zinc finger nucleases using humanized mice. J Infect Dis 208:S160–S164. doi:10.1093/infdis/jit382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Li L, Krymskaya L, Wang J et al (2013) Genomic editing of the HIV-1 coreceptor CCR5 in adult hematopoietic stem and progenitor cells using zinc finger nucleases. Mol Ther 21:1259–1269. doi:10.1038/mt.2013.65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Ma N, Liao B, Zhang H et al (2013) Transcription activator-like effector nuclease (TALEN)-mediated gene correction in integration-free β-thalassemia induced pluripotent stem cells. J Biol Chem 288:34671–34679. doi:10.1074/jbc.M113.496174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Osborn MJ, Starker CG, McElroy AN et al (2013) TALEN-based gene correction for Epidermolysis Bullosa. Mol Ther 21:1151–1159. doi:10.1038/mt.2013.56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Choi SM, Kim Y, Shim JS et al (2013) Efficient drug screening and gene correction for treating liver disease using patient-specific stem cells. Hepatology 57:2458–2468. doi:10.1002/hep.26237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Park C-Y, Kim J, Kweon J et al (2014) Targeted inversion and reversion of the blood coagulation factor 8 gene in human iPS cells using TALENs. Proc Natl Acad Sci 111:9253–9258. doi:10.1073/pnas.1323941111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Cerbini T, Funahashi R, Luo Y et al (2015) Transcription activator-like effector nuclease (TALEN)-mediated CLYBL targeting enables enhanced transgene expression and one-step generation of dual reporter human induced pluripotent stem cell (iPSC) and neural stem cell (NSC) lines. PLoS One 10:e0116032. doi:10.1371/journal.pone.0116032

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Mock U, Machowicz R, Hauber I et al (2015) mRNA transfection of a novel TAL effector nuclease (TALEN) facilitates efficient knockout of HIV co-receptor CCR5. Nucleic Acids Res 43:5560–5571. doi:10.1093/nar/gkv469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Li HL, Fujimoto N, Sasakawa N et al (2015) Precise correction of the dystrophin gene in duchenne muscular dystrophy patient induced pluripotent stem cells by TALEN and CRISPR-Cas9. Stem Cell Rep 4:143–154. doi:10.1016/j.stemcr.2014.10.013

    Article  CAS  Google Scholar 

  125. Ye L, Wang J, Beyer AI et al (2014) Seamless modification of wild-type induced pluripotent stem cells to the natural CCR5Δ32 mutation confers resistance to HIV infection. Proc Natl Acad Sci USA 111:9591–9596. doi:10.1073/pnas.1407473111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Ding Q, Regan SN, Xia Y et al (2013) Enhanced efficiency of human pluripotent stem cell genome editing through replacing TALENs with CRISPRs. Cell Stem Cell 12:393–394. doi:10.1016/j.stem.2013.03.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Huang X, Wang Y, Yan W et al (2015) Production of gene-corrected adult beta globin protein in human erythrocytes differentiated from patient iPSCs after genome editing of the sickle point mutation. Stem Cells 33:1470–1479. doi:10.1002/stem.1969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Bassuk AG, Zheng A, Li Y et al (2016) Precision medicine: genetic repair of retinitis pigmentosa in patient-derived stem cells. Sci Rep 6:19969. doi:10.1038/srep19969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Firth AL, Menon T, Parker GS et al (2015) Functional gene correction for cystic fibrosis in lung epithelial cells generated from patient iPSCs. Cell Rep 12:1385–1390. doi:10.1016/j.celrep.2015.07.062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Giani FC, Fiorini C, Wakabayashi A et al (2015) Targeted application of human genetic variation can improve red blood cell production from stem cells. Cell Stem Cell. doi:10.1016/j.stem.2015.09.015

    PubMed  PubMed Central  Google Scholar 

  131. Shalem O, Sanjana NE, Hartenian E et al (2014) Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343:84–87. doi:10.1126/science.1247005

    Article  CAS  PubMed  Google Scholar 

  132. Dever DP, Bak RO, Reinisch A et al (2016) CRISPR/Cas9 β-globin gene targeting in human haematopoietic stem cells. Nature 539:384–389. doi:10.1038/nature20134

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank all of Suri’s laboratory members for their helpful discussions. Our work is supported by the National Research Foundation of Korea (2015R1C1A1A01054482 and 2013R1A1A1075992).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Minjung Song or Suresh Ramakrishna.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandrasekaran, A.P., Song, M. & Ramakrishna, S. Genome editing: a robust technology for human stem cells. Cell. Mol. Life Sci. 74, 3335–3346 (2017). https://doi.org/10.1007/s00018-017-2522-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-017-2522-0

Keywords

Navigation