Skip to main content
Log in

SPECT and PET to optimize cardiac stem cell therapy

  • From Bench to Imaging
  • Published:
Journal of Nuclear Cardiology Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

References

  1. Dobert N, Britten M, Assmus B, Berner U, Menzel C, Lehmann R, et al. Transplantation of progenitor cells after reperfused acute myocardial infarction: Evaluation of perfusion and myocardial viability with FDG-PET and thallium SPECT. Eur J Nucl Med Mol Imaging 2004;31:1146-51.

    Article  PubMed  Google Scholar 

  2. Chen SL, Fang WW, Ye F, Liu YH, Qian J, Shan SJ, et al. Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction. Am J Cardiol 2004;94:92-5.

    Article  PubMed  Google Scholar 

  3. Strauer BE, Brehm M, Zeus T, Bartsch T, Schannwell C, Antke C, et al. Regeneration of human infarcted heart muscle by intracoronary autologous bone marrow cell transplantation in chronic coronary artery disease: The IACT Study. J Am Coll Cardiol 2005;46:1651-8.

    Article  PubMed  Google Scholar 

  4. Vanoverschelde JL, Melin JA, Bol A, Vanbutsele R, Cogneau M, Labar D, et al. Regional oxidative metabolism in patients after recovery from reperfused anterior myocardial infarction. Relation to regional blood flow and glucose uptake. Circulation 1992;85:9-21.

    PubMed  CAS  Google Scholar 

  5. Ghesani M, Depuey EG, Rozanski A. Role of F-18 FDG positron emission tomography (PET) in the assessment of myocardial viability. Echocardiography 2005;22:165-77.

    Article  PubMed  Google Scholar 

  6. Chen SL, Fang WW, Qian J, Ye F, Liu YH, Shan SJ, et al. Improvement of cardiac function after transplantation of autologous bone marrow mesenchymal stem cells in patients with acute myocardial infarction. Chin Med J (Engl) 2004;117:1443-8.

    Google Scholar 

  7. Tatsumi T, Ashihara E, Yasui T, Matsunaga S, Kido A, Sasada Y, et al. Intracoronary transplantation of non-expanded peripheral blood-derived mononuclear cells promotes improvement of cardiac function in patients with acute myocardial infarction. Circ J 2007;71(8):1199-207.

    Article  PubMed  Google Scholar 

  8. Valina C, Pinkernell K, Song YH, Bai X, Sadat S, Campeau RJ, et al. Intracoronary administration of autologous adipose tissue-derived stem cells improves left ventricular function, perfusion, and remodelling after acute myocardial infarction. Eur Heart J 2007;28:2667-77.

    Article  PubMed  Google Scholar 

  9. Grajek S, Popiel M, Gil L, Breborowicz P, Lesiak M, Czepczynski R, et al. Influence of bone marrow stem cells on left ventricle perfusion and ejection fraction in patients with acute myocardial infarction of anterior wall: Randomized clinical trial: Impact of bone marrow stem cell intracoronary infusion on improvement of microcirculation. Eur Heart J 2010;31:691-702.

    Article  PubMed  Google Scholar 

  10. Tran N, Franken PR, Maskali F, Nloga J, Maureira P, Poussier S, et al. Intramyocardial Implantation of bone marrow-derived stem cells enhances perfusion in chronic myocardial infarction: Dependency on initial perfusion depth and follow-up assessed by gated pinhole SPECT. J Nucl Med 2007;48:405-12.

    PubMed  Google Scholar 

  11. Mazo M, Planat-Benard V, Abizanda G, Pelacho B, Leobon B, Gavira JJ, et al. Transplantation of adipose derived stromal cells is associated with functional improvement in a rat model of chronic myocardial infarction. Eur J Heart Fail 2008;10:454-62.

    Article  PubMed  Google Scholar 

  12. Piepoli MF, Vallisa D, Arbasi M, Cavanna L, Cerri L, Mori M, et al. Bone marrow cell transplantation improves cardiac, autonomic, and functional indexes in acute anterior myocardial infarction patients (Cardiac Study). Eur J Heart Fail 2010;12:172-80.

    Article  PubMed  Google Scholar 

  13. Assmus B, Honold J Jr, Schächinger V, Britten MB, Fischer-Rasokat U, Lehmann R, et al. Transcoronary transplantation of progenitor cells after myocardial infarction. New Engl J Med 2006;355:1222-32.

    Article  PubMed  CAS  Google Scholar 

  14. Lipiec P, Krzeminska-Pakula M, Plewka M, Kusmierek J, Plachcinska A, Szuminski R, et al. Impact of intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction on left ventricular perfusion and function: A 6-month follow-up gated 99mTc-MIBI single-photon emission computed tomography study. Eur J Nucl Med Mol Imaging 2009;36:587-93.

    Article  PubMed  Google Scholar 

  15. Strauer B-E, Steinhoff G. 10 years of intracoronary and intramyocardial bone marrow stem cell therapy of the heart: From the methodological origin to clinical practice. J Am Coll Cardiol 2011;58:1095-104.

    Article  PubMed  Google Scholar 

  16. Cao F, Sun D, Li C, Narsinh K, Zhao L, Li X, et al. Long-term myocardial functional improvement after autologous bone marrow mononuclear cells transplantation in patients with ST-segment elevation myocardial infarction: 4 years follow-up. Eur Heart J 2009;30:1986-94.

    Article  PubMed  Google Scholar 

  17. Kang HJ, Kim HS, Zhang SY, Park KW, Cho HJ, Koo BK, et al. Effects of intracoronary infusion of peripheral blood stem-cells mobilised with granulocyte-colony stimulating factor on left ventricular systolic function and restenosis after coronary stenting in myocardial infarction: The MAGIC cell randomised clinical trial. Lancet 2004;363:751-6.

    Article  PubMed  CAS  Google Scholar 

  18. Perin EC, Dohmann HF, Borojevic R, Silva SA, Sousa AL, Silva GV, et al. Improved exercise capacity and ischemia 6 and 12 months after transendocardial injection of autologous bone marrow mononuclear cells for ischemic cardiomyopathy. Circulation 2004;110:II213-8.

    Article  PubMed  Google Scholar 

  19. Beeres SL, Bax JJ, Dibbets-Schneider P, Fibbe WE, van der Wall EE, et al. Sustained effect of autologous bone marrow mononuclear cell injection in patients with refractory angina pectoris and chronic myocardial ischemia: Twelve-month follow-up results. Am Heart J 2006;152:684.e11-6.

    Article  Google Scholar 

  20. Beeres SL, Bax JJ, Kaandorp TA, Zeppenfeld K, Lamb HJ, Dibbets-Schneider P, et al. Usefulness of intramyocardial injection of autologous bone marrow-derived mononuclear cells in patients with severe angina pectoris and stress-induced myocardial ischemia. Am J Cardiol 2006;97:1326-31.

    Article  PubMed  Google Scholar 

  21. Beeres SL, Bax JJ, Dibbets P, Stokkel MP, Zeppenfeld K, Fibbe WE, et al. Effect of intramyocardial injection of autologous bone marrow-derived mononuclear cells on perfusion, function, and viability in patients with drug-refractory chronic ischemia. J Nucl Med 2006;47:574-80.

    PubMed  Google Scholar 

  22. Bartunek J, Vanderheyden M, Vandekerckhove B, Mansour S, De Bruyne B, De Bondt P, et al. Intracoronary injection of CD133-positive enriched bone marrow progenitor cells promotes cardiac recovery after recent myocardial infarction: Feasibility and safety. Circulation 2005;112:I178-83.

    PubMed  Google Scholar 

  23. Schachinger V, Assmus B, Honold J, Lehmann R, Hofmann WK, Martin H, et al. Normalization of coronary blood flow in the infarct-related artery after intracoronary progenitor cell therapy: Intracoronary Doppler substudy of the TOPCARE-AMI trial. Clin Res Cardiol 2006;95:13-22.

    Article  PubMed  CAS  Google Scholar 

  24. Schachinger V, Assmus B, Britten MB, Honold J, Lehmann R, Teupe C, et al. Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction: Final one-year results of the TOPCARE-AMI Trial. J Am Coll Cardiol 2004;44:1690-9.

    Article  PubMed  Google Scholar 

  25. Britten MB, Abolmaali ND, Assmus B, Lehmann R, Honold J, Schmitt J, et al. Infarct remodeling after intracoronary progenitor cell treatment in patients with acute myocardial infarction (TOPCARE-AMI): Mechanistic insights from serial contrast-enhanced magnetic resonance imaging. Circulation 2003;108:2212-8.

    Article  PubMed  CAS  Google Scholar 

  26. Leistner DM, Fischer-Rasokat U, Honold J, Seeger FH, Schachinger V, Lehmann R, et al. Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE-AMI): Final 5-year results suggest long-term safety and efficacy. Clin Res Cardiol 2011;100:925-34.

    Article  PubMed  Google Scholar 

  27. Strauer BE, Brehm M, Zeus T, Kostering M, Hernandez A, Sorg RV, et al. Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation 2002;106:1913-8.

    Article  PubMed  Google Scholar 

  28. Perin EC, Dohmann HF, Borojevic R, Silva SA, Sousa AL, Mesquita CT, et al. Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure. Circulation 2003;107:2294-302.

    Article  PubMed  Google Scholar 

  29. Roncalli J, Mouquet F, Piot C, Trochu JN, Le Corvoisier P, Neuder Y, et al. Intracoronary autologous mononucleated bone marrow cell infusion for acute myocardial infarction: Results of the randomized multicenter BONAMI trial. Eur Heart J 2011;32:1748-57.

    Article  PubMed  Google Scholar 

  30. Bonios M, Terrovitis J, Chang CY, Engles JM, Higuchi T, Lautamaki R, et al. Myocardial substrate and route of administration determine acute cardiac retention and lung bio-distribution of cardiosphere-derived cells. J Nucl Cardiol 2011;18:443-50.

    Article  PubMed  Google Scholar 

  31. Bonios M, Chang CY, Terrovitis J, Pinheiro A, Barth A, Dong P, et al. Constitutive HIF-1alpha expression blunts the beneficial effects of cardiosphere-derived cell therapy in the heart by altering paracrine factor balance. J Cardiovasc Transl Res 2011;4:363-72.

    Article  PubMed  Google Scholar 

  32. Seeger FH, Zeiher AM, Dimmeler S. Cell-enhancement strategies for the treatment of ischemic heart disease. Nat Clin Pract Cardiovasc Med 2007;4:S110-3.

    Article  PubMed  CAS  Google Scholar 

  33. Abraham MR, Henrikson CA, Tung L, Chang MG, Aon M, Xue T, et al. Antiarrhythmic engineering of skeletal myoblasts for cardiac transplantation. Circ Res 2005;97:159-67.

    Article  PubMed  CAS  Google Scholar 

  34. Chang MG, Tung L, Sekar RB, Chang CY, Cysyk J, Dong P, et al. Proarrhythmic potential of mesenchymal stem cell transplantation revealed in an in vitro coculture model. Circulation 2006;113:1832-41.

    Article  PubMed  Google Scholar 

  35. Lunde K, Solheim S, Aakhus S, Arnesen H, Abdelnoor M, Egeland T, et al. Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction. N Engl J Med 2006;355:1199-209.

    Article  PubMed  CAS  Google Scholar 

  36. Katritsis DG, Sotiropoulou PA, Karvouni E, Karabinos I, Korovesis S, Perez SA, et al. Transcoronary transplantation of autologous mesenchymal stem cells and endothelial progenitors into infarcted human myocardium. Catheter Cardiovasc Interv 2005;65:321-9.

    Article  PubMed  Google Scholar 

  37. Fuchs S, Satler LF, Kornowski R, Okubagzi P, Weisz G, Baffour R, et al. Catheter-based autologous bone marrow myocardial injection in no-option patients with advanced coronary artery disease: A feasibility study. J Am Coll Cardiol 2003;41:1721-4.

    Article  PubMed  Google Scholar 

  38. Fuchs S, Kornowski R, Weisz G, Satler LF, Smits PC, Okubagzi P, et al. Safety and feasibility of transendocardial autologous bone marrow cell transplantation in patients with advanced heart disease. Am J Cardiol 2006;97:823-9.

    Article  PubMed  Google Scholar 

  39. Blocklet D, Toungouz M, Berkenboom G, Lambermont M, Unger P, Preumont N, et al. Myocardial homing of nonmobilized peripheral-blood CD34+ cells after intracoronary injection. Stem Cells 2006;24:333-6.

    Article  PubMed  Google Scholar 

  40. Erbs S, Linke A, Adams V, Lenk K, Thiele H, Diederich KW, et al. Transplantation of blood-derived progenitor cells after recanalization of chronic coronary artery occlusion: First randomized and placebo-controlled study. Circ Res 2005;97:756-62.

    Article  PubMed  CAS  Google Scholar 

  41. Castellani M, Colombo A, Giordano R, Pusineri E, Canzi C, Longari V, et al. The role of PET with 13 N-ammonia and 18F-FDG in the assessment of myocardial perfusion and metabolism in patients with recent AMI and intracoronary stem cell injection. J Nucl Med 2010;51:1908-16.

    Article  PubMed  Google Scholar 

  42. Janssens S, Dubois C, Bogaert J, Theunissen K, Deroose C, Desmet W, et al. Autologous bone marrow-derived stem-cell transfer in patients with ST-segment elevation myocardial infarction: Double-blind, randomised controlled trial. Lancet 2006;367:113-21.

    Article  PubMed  Google Scholar 

  43. Kendziorra K, Barthel H, Erbs S, Emmrich F, Hambrecht R, Schuler G, et al. Effect of progenitor cells on myocardial perfusion and metabolism in patients after recanalization of a chronically occluded coronary artery. J Nucl Med 2008;49:557-63.

    Article  PubMed  Google Scholar 

  44. Aicher A, Brenner W, Zuhayra M, Badorff C, Massoudi S, Assmus B, et al. Assessment of the tissue distribution of transplanted human endothelial progenitor cells by radioactive labeling. Circulation 2003;107:2134-9.

    Article  PubMed  Google Scholar 

  45. Andersson P, Forssell-Aronsson E, Johanson V, Wangberg B, Nilsson O, Fjalling M, et al. Internalization of indium-111 into human neuroendocrine tumor cells after incubation with indium-111-DTPA-D-Phe1-octreotide. J Nucl Med 1996;37:2002-6.

    PubMed  CAS  Google Scholar 

  46. Mirpour S, Gholamrezanezhad A. Stem cells in clinic and research. Vienna: InTech; 2011.

    Google Scholar 

  47. Adonai N, Nguyen KN, Walsh J, Iyer M, Toyokuni T, Phelps ME, et al. Ex vivo cell labeling with 64Cu-pyruvaldehyde-bis(N4-methylthiosemicarbazone) for imaging cell trafficking in mice with positron-emission tomography. Proc Natl Acad Sci 2002;99:3030-5.

    Article  PubMed  CAS  Google Scholar 

  48. Barbash IM, Chouraqui P, Baron J, Feinberg MS, Etzion S, Tessone A, et al. Systemic delivery of bone marrow-derived mesenchymal stem cells to the infarcted myocardium: Feasibility, cell migration, and body distribution. Circulation 2003;108:863-8.

    Article  PubMed  Google Scholar 

  49. Assis AC, Carvalho JL, Jacoby BA, Ferreira RL, Castanheira P, Diniz SO, et al. Time-dependent migration of systemically delivered bone marrow mesenchymal stem cells to the infarcted heart. Cell Transplant 2010;19:219-30.

    Article  PubMed  Google Scholar 

  50. Tamura M, Unno K, Yonezawa S, Hattori K, Nakashima E, Tsukada H, et al. In vivo trafficking of endothelial progenitor cells their possible involvement in the tumor neovascularization. Life Sciences 2004;75:575-84.

    Article  PubMed  CAS  Google Scholar 

  51. Hofmann M, Wollert KC, Meyer GP, Menke A, Arseniev L, Hertenstein B, et al. Monitoring of bone marrow cell homing into the infarcted human myocardium. Circulation 2005;111:2198-202.

    Article  PubMed  Google Scholar 

  52. Zhang SJ, Wu JC. Comparison of imaging techniques for tracking cardiac stem cell therapy. J Nucl Med 2007;48:1916-9.

    Article  PubMed  CAS  Google Scholar 

  53. Barroso MM. Quantum dots in cell biology. J Histochem Cytochem 2011;59:237-51.

    Article  PubMed  CAS  Google Scholar 

  54. Choi HS, Frangioni JV. Nanoparticles for biomedical imaging: Fundamentals of clinical translation. Mol Imaging 2010;9:291-310.

    PubMed  CAS  Google Scholar 

  55. Cho EC, Glaus C, Chen J, Welch MJ, Xia Y. Inorganic nanoparticle-based contrast agents for molecular imaging. Trends Mol Med 2010;16:561-73.

    Article  PubMed  CAS  Google Scholar 

  56. Gambhir SS, Bauer E, Black ME, Liang Q, Kokoris MS, Barrio JR, et al. A mutant herpes simplex virus type 1 thymidine kinase reporter gene shows improved sensitivity for imaging reporter gene expression with positron emission tomography. Proc Natl Acad Sci USA 2000;97:2785-90.

    Article  PubMed  CAS  Google Scholar 

  57. Dohan O, De la Vieja A, Paroder V, Riedel C, Artani M, Reed M, et al. The sodium/iodide symporter (NIS): Characterization, regulation, and medical significance. Endocr Rev 2003;24:48-77.

    Article  PubMed  CAS  Google Scholar 

  58. Terrovitis J, Kwok KF, Lautamaki R, Engles JM, Barth AS, Kizana E, et al. Ectopic expression of the sodium-iodide symporter enables imaging of transplanted cardiac stem cells in vivo by single-photon emission computed tomography or positron emission tomography. J Am Coll Cardiol 2008;52:1652-60.

    Article  PubMed  Google Scholar 

  59. Huang M, Batra RK, Kogai T, Lin YQ, Hershman JM, Lichtenstein A, et al. Ectopic expression of the thyroperoxidase gene augments radioiodide uptake and retention mediated by the sodium iodide symporter in non-small cell lung cancer. Cancer Gene Ther 2001;8:612-8.

    Article  PubMed  CAS  Google Scholar 

  60. Mesquita CT, Correa PL, Felix RC, Azevedo JC, Alves S, Oliveira CC, et al. Autologous bone marrow mononuclear cells labeled with Tc-99m hexamethylpropylene amine oxime scintigraphy after intracoronary stem cell therapy in acute myocardial infarction. J Nucl Cardiol 2005;12:610-2.

    Article  PubMed  Google Scholar 

  61. Terrovitis J, Stuber M, Youssef A, Preece S, Leppo M, Kizana E, et al. Magnetic resonance imaging overestimates ferumoxide-labeled stem cell survival after transplantation in the heart. Circulation 2008;117:1555-62.

    Article  PubMed  Google Scholar 

  62. De A, Yaghoubi SS, Gambhir SS. Applications of lentiviral vectors in noninvasive molecular imaging. Methods Mol Biol 2008;433:177-202.

    Article  PubMed  Google Scholar 

  63. Lam AP, Dean DA. Progress and prospects: Nuclear import of nonviral vectors. Gene Ther 2010;17:439-47.

    Article  PubMed  CAS  Google Scholar 

  64. Acton PD, Zhou R. Imaging reporter genes for cell tracking with PET and SPECT. Q J Nucl Med Mol Imaging 2005;49:349-60.

    PubMed  CAS  Google Scholar 

  65. Krishnan M, Park JM, Cao F, Wang D, Paulmurugan R, Tseng JR, et al. Effects of epigenetic modulation on reporter gene expression: Implications for stem cell imaging. FASEB J 2006;20:106-8.

    PubMed  CAS  Google Scholar 

  66. Jung KH, Paik JY, Lee YL, Lee YJ, Lee J, Lee KH. Trypsinization severely perturbs radioiodide transport via membrane Na/I symporter proteolysis: Implications for reporter gene imaging. Nucl Med Biol 2009;36:967-74.

    Article  PubMed  CAS  Google Scholar 

  67. Forest VF, Tirouvanziam AM, Perigaud C, Fernandes S, Fusellier MS, Desfontis JC, et al. Cell distribution after intracoronary bone marrow stem cell delivery in damaged and undamaged myocardium: Implications for clinical trials. Stem Cell Res Ther 2010;1:4.

    Article  PubMed  Google Scholar 

  68. Silva SA, Sousa AL, Haddad AF, Azevedo JC, Soares VE, Peixoto CM, et al. Autologous bone-marrow mononuclear cell transplantation after acute myocardial infarction: Comparison of two delivery techniques. Cell Transplant 2009;18:343-52.

    Article  PubMed  Google Scholar 

  69. Gyongyosi M, Blanco J, Marian T, Tron L, Petnehazy O, Petrasi Z, et al. Serial noninvasive in vivo positron emission tomographic tracking of percutaneously intramyocardially injected autologous porcine mesenchymal stem cells modified for transgene reporter gene expression. Circ Cardiovasc Imaging 2008;1:94-103.

    Article  PubMed  Google Scholar 

  70. Kraitchman DL, Tatsumi M, Gilson WD, Ishimori T, Kedziorek D, Walczak P, et al. Dynamic imaging of allogeneic mesenchymal stem cells trafficking to myocardial infarction. Circulation 2005;112:1451-61.

    Article  PubMed  Google Scholar 

  71. Willmann JK, Paulmurugan R, Rodriguez-Porcel M, Stein W, Brinton TJ, Connolly AJ, et al. Imaging gene expression in human mesenchymal stem cells: From small to large animals. Radiology 2009;252:117-27.

    Article  PubMed  Google Scholar 

  72. Lautamaki R, Terrovitis J, Bonios M, Yu J, Tsui BM, Abraham MR, et al. Perfusion defect size predicts engraftment but not early retention of intra-myocardially injected cardiosphere-derived cells after acute myocardial infarction. Basic Res Cardiol 2011. doi:10.1007/s00395-011-0197-5.

  73. Kircher MF, Gambhir SS, Grimm J. Noninvasive cell-tracking methods. Nat Rev Clin Oncol 2011;8:677-88.

    Article  PubMed  CAS  Google Scholar 

  74. Hubbell JA. Bioactive biomaterials. Curr Opin Biotechnol 1999;10:123-9.

    Article  PubMed  CAS  Google Scholar 

  75. MacGillivray TE. Fibrin sealants and glues. J Card Surg 2003;18:480-5.

    Article  PubMed  Google Scholar 

  76. Thompson DF, Letassy NA, Thompson GD. Fibrin glue: A review of its preparation, efficacy, and adverse effects as a topical hemostat. Drug Intell Clin Pharm 1988;22:946-52.

    PubMed  CAS  Google Scholar 

  77. Schussler O, Coirault C, Louis-Tisserand M, Al-Chare W, Oliviero P, Menard C, et al. Use of arginine-glycine-aspartic acid adhesion peptides coupled with a new collagen scaffold to engineer a myocardium-like tissue graft. Nat Clin Pract Cardiovasc Med 2009;6:240-9.

    Article  PubMed  CAS  Google Scholar 

  78. Zimmermann WH, Didie M, Wasmeier GH, Nixdorff U, Hess A, Melnychenko I, et al. Cardiac grafting of engineered heart tissue in syngenic rats. Circulation 2002;106:I151-7.

    PubMed  Google Scholar 

  79. Chan AT, Higuchi T, Sun D, Strehin I, Lin X, Lu Q, et al. Autologous Tissue Engineering Scaffolds for Cellular Cardiomyoplasty. Circulation 2011;124:A16918.

    Article  Google Scholar 

Download references

Acknowledgments

ATC was supported by NIH T32HL07227 Training Grant. MRA was supported by RO1 HL092985 and AHA-BGIA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Roselle Abraham MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chan, A.T., Abraham, M.R. SPECT and PET to optimize cardiac stem cell therapy. J. Nucl. Cardiol. 19, 118–125 (2012). https://doi.org/10.1007/s12350-011-9485-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-011-9485-6

Keywords

Navigation