Skip to main content

Mycoremediation: A Natural Solution for Unnatural Problems

  • Chapter
  • First Online:
Fungal diversity, ecology and control management

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

The rapid and unchecked human population growth has contributed to accelerated urbanization and industrialization causing severe environmental consequences. Human activities such as agriculture, industrial, forest fires, sewage and waste disposal, ocean oil spills, surface petroleum pollution, crude oil transport incidents, etc., aid in the incremental production of persistent-toxic contaminants, heavy metals, polycyclic aromatic hydrocarbons, pesticides, fungicides, antibiotics in various ecosystem niches. Mycoremediation is an ecofriendly and relatively cheaper way to manage all these pollutants and restore the ecosystem. Biological approaches based on industrial and environmental biotechnology focus on the creation of "clean technologies" which emphasize in some useful way on maximum output, reduced waste generation, waste treatment and conversion. Further, these clean technologies focus on the use of biological methods for the remediation of waste. One such biological method is mycoremediation, which is based on the use of fungi and mushrooms to remove waste from the environment. It is an in situ remediation strategy that utilizes the ability of the fungus to recycle. Fungal associations in nature are known to break down complex substances into simpler ones by producing a wide range of extracellular enzymes that are well exploited for toxic waste degradation and remediation of polluted sites. This chapter deals with different sources of pollutants and ecological niches where mycoremediation can be exploited. Also, different fungi used for mycorestoration and their mechanism will be discussed. An attempt has also been made to highlight past experiences in which mycoremediation has proved to be an effective and beneficial strategy for restoring the ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abadulla E, Tzanov T, Costa S, Robra KH, Cavaco-Paulo A, Gubitz GM (2000) Decolorization and detoxification of textile dyes with a laccase from Trametes hirsuta. Appl Environ Microbiol 66(8):3357–3362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abu-Elsaoud AM, Nafady NA, Abdel-Azeem AM (2017) Arbuscular mycorrhizal strategy for zinc mycoremediation and diminished translocation to shoots and grains in wheat. PLoS One 12(11):e0188220

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Adav SS, Ravindran A, Sze SK (2012) Quantitative proteomic analysis of lignocellulolytic enzymes by Phanerochaete chrysosporium on different lignocellulosic biomass. J Proteome 75(5):1493–1504

    Article  CAS  Google Scholar 

  • Adenipekun CO, Lawal R (2012) Uses of mushrooms in bioremediation: a review. Biotechnol Mol Biol Rev 7:62–68

    CAS  Google Scholar 

  • Adongbede EM, Sanni RO (2014) Biodegradation of engine oil by Agaricus campestris (a white rot fungus). J Bioremed Biodegr 5(262):2

    Google Scholar 

  • Akhtar N, Mannan MAU (2020) Mycoremediation: Expunging environmental pollutants. Biotechnol Rep:e00452

    Google Scholar 

  • Akinyele JB, Olaniyi OO, Arotupin DJ (2011) Bioconversion of selected agricultural wastes and associated enzymes by Volvariella volvacea: an edible mushroom. Res J Microbiol 6(1):63

    Article  CAS  Google Scholar 

  • Akinyele JB, Fakoya S, Adetuyi CF (2012) Anti-growth factors associated with Pleurotus ostreatus in a submerged liquid fermentation. Malays J Microbiol 8(3):135–140

    Google Scholar 

  • Albert Q, Leleyter L, Lemoine M, Heutte N, Rioult JP, Sage L, Baraud F, Garon D (2018) Comparison of tolerance and biosorption of three trace metals (cd, cu, pb) by the soil fungus Absidia cylindrospora. Chemosphere 196:386–392

    Article  CAS  PubMed  Google Scholar 

  • Alexander M (1994) Biodegradation and bioremediation, 2nd edn. Academic Press, San Diego

    Google Scholar 

  • Arias EM, Lopez PE, Martinez CE, Simal GJ, Mejuto JC, Garcia RL (2008) The mobility and degradation of pesticides in soils and the pollution of groundwater resources. Agric Ecosyst Environ 123(4):247–260

    Article  CAS  Google Scholar 

  • Arunprasath T, Sudalai S, Meenatchi R, Jeyavishnu K, Arumugam A (2019) Biodegradation of triphenylmethane dye malachite green by a newly isolated fungus strain. Biocatal Agric Biotechnol 17:672–679

    Article  Google Scholar 

  • Asgher M, Bhatti HN, Ashraf M, Legge RL (2008) Recent developments in biodegradation of industrial pollutants by white rot fungi and their enzyme system. Biodegradation 19(6):771

    Article  CAS  PubMed  Google Scholar 

  • Asgher M, Iqbal HMN, Irshad M (2012) Characterization of purified and xerogel immobilized novel lignin peroxidase produced from Trametes versicolor IBL-04 using solid state medium of corncobs. BMC Biotechnol 12(1):1–8

    Article  CAS  Google Scholar 

  • Ashoka C, Geetha MS, Sullia SB (2002) Biobleaching of composite textile-dye effluent using bacterial consortia. Asian J Microbiol Biotechnol Environ Sci 4:65–68

    Google Scholar 

  • Atashgahi S, Sánchez AI, Heipieper HJ, van der Meer JR, Stams AJ, Smidt H (2018) Prospects for harnessing biocide resistance for bioremediation and detoxification. Science 360(6390):743–746

    Article  CAS  PubMed  Google Scholar 

  • Baldrian P (2006) Fungal laccases–occurrence and properties. FEMS Microbiol Rev 30(2):215–242

    Article  CAS  PubMed  Google Scholar 

  • Bansal N, Kanwar SS (2013) Peroxidase (s) in environment protection. Sci World J. https://doi.org/10.1155/2013/714639

  • Barh A, Kumari B, Sharma S, Annepu SK, Kumar A, Kamal S, Sharma VP (2019) Mushroom mycoremediation: kinetics and mechanism. In: Smart bioremediation technologies: microbial enzymes. Academic Press, New York, pp 1–22

    Google Scholar 

  • Barr D, Finnamore JR, Bardos RP, Weeks JM, Nathanail CP (2002) Biological methods for assessment and remediation of contaminated land: case studies. CIRIA, London

    Google Scholar 

  • Bhattacharjee B, Roy A, Majumder AL (1992) Beta-glucosidase of a white rot fungus Trametes gibbosa. Biochem Res Int 28(5):783–793

    CAS  Google Scholar 

  • Bhattacharya S, Das A (2011) Mycoremediation of Congo red dye by filamentous fungi. Braz J Microbiol 42(4):1526–1536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhattacharya SS, Syed K, Shann J, Yadav JS (2013) A novel P450-initiated biphasic process for sustainable biodegradation of benzo [a] pyrene in soil under nutrient-sufficient conditions by the white rot fungus Phanerochaete chrysosporium. J Hazard Mater 261:675–683

    Article  CAS  PubMed  Google Scholar 

  • Bilal M, Iqbal HM (2020) Microbial peroxidases and their unique catalytic potentialities to degrade environmentally related pollutants. In: Arora PK (ed) Microbial Technology for Health and Environment. Springer, Singapore, pp 1–24

    Google Scholar 

  • Boopathy R (2000) Factors limiting bioremediation technologies. Bioresour Technol 74(1):63–67

    Article  CAS  Google Scholar 

  • Bumpus JA, Tien M, Wright D, Aust SD (1985) Oxidation of persistent environmental pollutants by a white rot fungus. Science 228(4706):1434–1436

    Article  CAS  PubMed  Google Scholar 

  • Casida JE (2017) Organophosphorus xenobiotic toxicology. Annu Rev Pharmacol Toxicol 57:309–327

    Article  CAS  PubMed  Google Scholar 

  • Chan CW, Heredia AG, Rodriguez VR (2016) Atrazine degradation by fungal co-culture enzyme extracts under different soil conditions. J Environ Sci Health 51(5):298–308

    Article  CAS  Google Scholar 

  • Chandra P (2019) Fungal enzymes for bioremediation of contaminated soil. In: Yadav AN, Singh S, Mishra SS, Gupta A (eds) Recent advancement in white biotechnology through fungi. Springer, Cham, pp 189–215

    Chapter  Google Scholar 

  • Chen S, Xu J, Liu C, Zhu Y, Nelson DR, Zhou S, Sun C (2012) Genome sequence of the model medicinal mushroom Ganoderma lucidum. Nat Commun 3(1):1–9

    CAS  Google Scholar 

  • Choi SM, Yoo SD, Lee BM (2004) Toxicological characteristics of endocrine-disrupting chemicals: developmental toxicity, carcinogenicity, and mutagenicity. J Toxicol Environ Health 7(1):1–23

    Article  CAS  Google Scholar 

  • Chun SC, Muthu M, Hasan N, Tasneem S, Gopal J (2019) Mycoremediation of PCBs by Pleurotus ostreatus: possibilities and prospects. Appl Sci 9(19):4185

    Article  CAS  Google Scholar 

  • Clemente AR, Anazawa TA, Durrant LR (2001) Biodegradation of polycyclic aromatic hydrocarbons by soil fungi. Braz J Microbiol 32(4):255–261

    Article  CAS  Google Scholar 

  • Cotter T (2014) Organic mushroom farming and mycoremediation: simple to advanced and experimental techniques for indoor and outdoor cultivation. Chelsea Green Publishing, Hartford, VT

    Google Scholar 

  • Covino S, Stella T, Cajthaml T (2016) Mycoremediation of organic pollutants: principles, opportunities, and pitfalls. In: Purchase D (ed) Fungal applications in sustainable environmental biotechnology. Springer Nature, New York, pp 185–231

    Chapter  Google Scholar 

  • Cragg SM, Beckham GT, Bruce NC, Bugg TD, Distel DL, Dupree P, Etxabe AG, Goodell BS, Jellison J, McGeehan JE, McQueen-Mason SJ (2015) Lignocellulose degradation mechanisms across the tree of life. Curr Opin Chem Biol 29:108–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crinnion WJ (2011) Polychlorinated biphenyls: persistent pollutants with immunological, neurological, and endocrinological consequences. Sci Rev Altern Med 16(1):5–13

    Google Scholar 

  • Cvancarova M, Kresinova Z, Filipova A, Covino S, Cajthaml T (2012) Biodegradation of PCBs by ligninolytic fungi and characterization of the degradation products. Chemosphere 88(11):1317–1323

    Article  CAS  PubMed  Google Scholar 

  • D'Annibale A, Ricci M, Leonardi V, Quaratino D, Mincione E, Petruccioli M (2005) Degradation of aromatic hydrocarbons by white rot fungi in a historically contaminated soil. Biotechnol Bioeng 90(6):723–731

    Article  CAS  PubMed  Google Scholar 

  • D'Annibale A, Rosetto F, Leonardi V, Federici F, Petruccioli M (2006) Role of autochthonous filamentous fungi in bioremediation of a soil historically contaminated with aromatic hydrocarbons. Appl Environ Microbiol 72(1):28–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Darwish L (2013) Earth repair: a grassroots guide to healing toxic and damaged landscapes. New Society Publishers, Gabriola, BC, Canada

    Google Scholar 

  • Das S, Dash HR (2014) Microbial bioremediation: a potential tool for restoration of contaminated areas. In: Das S (ed) Microbial biodegradation and bioremediation. Elsevier, New York, pp 1–21

    Google Scholar 

  • Dashtban M, Schraft H, Qin W (2009) Fungal bioconversion of lignocellulosic residues; opportunities & perspectives. Int J Biol Sci 5(6):578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dulay RMR, Parungao AG, Kalaw SP, Reyes RG (2012) Aseptic cultivation of Coprinus comatus (OF Mull.) Gray on various pulp and paper wastes. Mycosphere 3(3):392–397

    Article  Google Scholar 

  • Dutta SD, Hyder MD (2019) Mycoremediation: a potential tool for sustainable management. J Mycopathol Res 57(1):25–34

    Google Scholar 

  • Elekes CC, Busuioc (2010) The mycoremediation of metals polluted soils using wild growing species of mushrooms. Latest trends on engineering education. Not Bot Horti Agrobot Cluj Napoca 38:147–151

    CAS  Google Scholar 

  • Elisashvili V, Kachlishvili E, Tsiklauri N, Metreveli E, Khardziani T, Agathos SN (2009) Lignocellulose-degrading enzyme production by white rot basidiomycetes isolated from the forests of Georgia. World J Microbiol Biotechnol 25(2):331–339

    Article  CAS  Google Scholar 

  • Elissetche JP, Ferraz A, Freer J, Rodriguez J (2007) Enzymes produced by Ganoderma australe growing on wood and in submerged cultures. World J Microbiol Biotechnol 23(3):429–434

    Article  CAS  Google Scholar 

  • Eman A, Abdel MA, Suliman A, Sadik MW, Sholkamy EN (2013) Biodegradation of glyphosate by fungal strains isolated from herbicides polluted-soils in Riyadh area. Int J Environ Stud 1(1):7–29

    Google Scholar 

  • Gajendiran A, Abraham J (2017) Biomineralisation of fipronil and its major metabolite, fipronil sulfone, by aspergillus glaucus strain AJAG1 with enzymes studies and bioformulation. Biotech 7(3):1–15

    Google Scholar 

  • Gangola S, Khati P, Sharma A (2015) Mycoremediation of imidaclopridin the presence of different soil amendments using Trichoderma longibrachiatum and Aspergillus oryzae isolated from pesticide contaminated agricultural fields of Uttarakhand. J Bioremediat Biodegrad 6:1–5

    CAS  Google Scholar 

  • Gavrilescu M (2004) Removal of heavy metals from the environment by biosorption. Eng Life Sci 4(3):219–232

    Article  CAS  Google Scholar 

  • Gidarakos E, Aivalioti M (2007) Large scale and long term application of bioslurping: the case of a Greek petroleum refinery site. J Hazard Mater 149(3):574–581

    Article  CAS  PubMed  Google Scholar 

  • Gnanasalomi VDV, Jebapriya GR, Gnanadoss JJ (2013) Bioremediation of hazardous pollutants using fungi. Int J Comput Algorithm 2:273–278

    Google Scholar 

  • Gupta M, Shrivastava S (2014) Mycoremediation: a management tool for removal of pollutants from environment. Environ Sci 4:289–291

    Google Scholar 

  • Hamada N, Ishikawa K, Fuse N, Kodaira R, Shimosaka M, AmanoY OM (1999) Purification, characterization and gene analysis of exo-cellulase II (Ex-2) from the white rot basidiomycete Irpex lacteus. J Biosci Bioeng 87(4):442–451

    Article  CAS  PubMed  Google Scholar 

  • Hirai H, Sugiura M, Kawai S, Nishida T (2005) Characteristics of novel lignin peroxidases produced by white rot fungus Phanerochaete sordida YK-624. FEMS Microbiol Lett 246(1):19–24

    Article  CAS  PubMed  Google Scholar 

  • Hofrichter M, Ullrich R (2011) New trends in fungal biooxidation. In: Esser K (ed) Industrial applications, 2nd edn. Springer, Berlin, Heidelberg, pp 425–449

    Chapter  Google Scholar 

  • Hofrichter M, Ullrich R, Pecyna MJ, Liers C, Lundell T (2010) New and classic families of secreted fungal heme peroxidases. Appl Microbiol Biotechnol 87(3):871–897

    Article  CAS  PubMed  Google Scholar 

  • Höhener P, Ponsin V (2014) In situ vadose zone bioremediation. Curr Opin Biotechnol 27:1–7

    Article  PubMed  CAS  Google Scholar 

  • Horel A, Schiewer S (2020) Microbial degradation of different hydrocarbon fuels with mycoremediation of volatiles. Microorganisms 8(2):163

    Article  CAS  PubMed Central  Google Scholar 

  • Jagtap SS, Dhiman SS, Kim TS, Kim IW, Lee JK (2014) Characterization of a novel endo-β-1, 4-glucanase from armillaria gemina and its application in biomass hydrolysis. Appl Microbiol Biotechnol 98(2):661–669

    Article  CAS  PubMed  Google Scholar 

  • Kamei I, Kogura R, Kondo R (2006) Metabolism of 4, 4′-dichlorobiphenyl by white rot fungi Phanerochaete chrysosporium and Phanerochaete sp. MZ142. Appl Microbiol Biotechnol 72(3):566–575

    Article  CAS  PubMed  Google Scholar 

  • Kapoor A, Viraraghavan T (1995) Fungal biosorption-an alternative treatment option for heavy metal bearing wastewaters: a review. Bioresour Technol 53(3):195–206

    CAS  Google Scholar 

  • Kaur J, Chadha BS, Kumar BA, Saini HS (2007) Purification and characterization of two endoglucanases from Melanocarpus sp. MTCC 3922. Bioresour Technol 98(1):74–81

    Article  CAS  PubMed  Google Scholar 

  • Kaur P, Sharma A, Parihar L (2015) In vitro study of mycoremediation of cypermethrin-contaminated soils in different regions of Punjab. Ann Microbiol 65(4):1949–1959

    Article  CAS  Google Scholar 

  • Khan FI, Husain T, Hejazi R (2004) An overview and analysis of site remediation technologies. J Environ Manag 71(2):95–122

    Article  Google Scholar 

  • Khan I, Ali M, Aftab M, Shakir S, Qayyum S, Haleem KS, Tauseef I (2019) Mycoremediation: a treatment for heavy metal-polluted soil using indigenous metallotolerant fungi. Environ Monit Assess 191(10):1–15

    Article  CAS  Google Scholar 

  • Kim S, Krajmalnik BR, Kim JO, Chung J (2014) Remediation of petroleum hydrocarbon-contaminated sites by DNA diagnosis-based bioslurping technology. Sci Total Environ 497:250–259

    Article  PubMed  CAS  Google Scholar 

  • Kubartová A, Ranger J, Berthelin J, Beguiristain T (2009) Diversity and decomposing ability of saprophytic fungi from temperate forest litter. Microb Ecol 58(1):98–107

    Article  PubMed  Google Scholar 

  • Kubatova A, Erbanova P, Eichlerova I, Homolka L, Nerud F, Sasek V (2001) PCB congener selective biodegradation by the white rot fungus Pleurotus ostreatus in contaminated soil. Chemosphere 43(2):207–215

    Article  CAS  PubMed  Google Scholar 

  • Kulshreshtha S, Mathur N, Bhatnagar P (2013) Mycoremediation of paper, pulp and cardboard industrial wastes and pollutants. In: Goltapeh E, Danesh Y, Varma A (eds) Fungi as bioremediators. Springer, Berlin, Heidelberg, pp 77–116

    Chapter  Google Scholar 

  • Kulshreshtha S, Mathur N, Bhatnagar P (2014) Mushroom as a product and their role in mycoremediation. AMB Express 4(1):1–7

    Article  CAS  Google Scholar 

  • Kulshreshtha S, Mathur N, Bhatnagar P, Jain BL (2010) Bioremediation of industrial waste through mushroom cultivation. J Environ Biol 31(4):441–444

    CAS  PubMed  Google Scholar 

  • Kumar VV (2017) Mycoremediation: a step toward cleaner environment. In: Prasad R (ed) Mycoremediation and environmental sustainability, vol 1. Springer, Cham, pp 171–187

    Chapter  Google Scholar 

  • Kumhomkul T, Panich-pat T (2013) Lead accumulation in the straw mushroom, Volvariella volvacea, from lead contaminated rice straw and stubble. Bull Environ Contam Toxicol 91(2):231–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumla J, Suwannarach N, Sujarit K, Penkhrue W, Kakumyan P, Jatuwong K, Vadthanarat S, Lumyong S (2020) Cultivation of mushrooms and their lignocellulolytic enzyme production through the utilization of Agro-industrial waste. Molecules (Basel, Switzerland) 25(12):2811

    Article  CAS  Google Scholar 

  • Lee AH, Lee H, Heo YM, Lim YW, Kim CM, Kim GH, Kim JJ (2020) A proposed stepwise screening framework for the selection of polycyclic aromatic hydrocarbon (PAH)-degrading white rot fungi. Bioprocess Biosyst Eng:1–17

    Google Scholar 

  • Levin L, Forchiassin F (1997) Effect of culture conditions on the production of cellulases by Trametes trogii. Rev Argent Microbiol 29(1):16–23

    CAS  PubMed  Google Scholar 

  • Lobos S, Larraín J, Salas L, Cullen D, Vicuna R (1994) Isoenzymes of manganese-dependent peroxidase and laccase produced by the lignin-degrading basidiomycete Ceriporiopsis subvermispora. Microbiology 140(10):2691–2698

    Article  CAS  PubMed  Google Scholar 

  • Luz JMR, Paes SA, Nunes MD, da Silva MDCS, Kasuya MCM (2013) Degradation of oxo-biodegradable plastic by Pleurotus ostreatus. PLoS One 8(8):e69386

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maila MP, Cloete TE (2004) Bioremediation of petroleum hydrocarbons through landfarming: are simplicity and cost-effectiveness the only advantages? Rev Environ Sci Biotechnol 3(4):349–360

    Article  CAS  Google Scholar 

  • Manavalan T, Manavalan A, Heese K (2015) Characterization of lignocellulolytic enzymes from white rot fungi. Curr Microbiol 70(4):485–498

    Article  CAS  PubMed  Google Scholar 

  • Manavalan T, Manavalan A, Thangavelu KP, Heese K (2012) Secretome analysis of Ganoderma lucidum cultivated in sugarcane bagasse. J Proteome 77:298–309

    Article  CAS  Google Scholar 

  • Maqbool Z, Hussain S, Imran M, Mahmood F, Shahzad T, Ahmed Z, Muzammil S (2016) Perspectives of using fungi as bioresource for bioremediation of pesticides in the environment: a critical review. Environ Sci Pollut Res 23(17):16904–16925

    Article  Google Scholar 

  • Mohan SV, Sirisha K, Rao NC, Sarma PN, Reddy SJ (2004) Degradation of chlorpyrifos contaminated soil by bioslurry reactor operated in sequencing batch mode: bioprocess monitoring. J Hazard Mater 116(1–2):39–48

    Article  CAS  PubMed  Google Scholar 

  • Morais S, Costa FG, Pereira MDL (2012) Heavy metals and human health. In: Oosthuizen J (ed), Environmental health: emerging issues and practice. InTech, Croatia 10(1):227–245

    Google Scholar 

  • Murugesan K, Arulmani M, Nam IH, Kim YM, Chang YS, Kalaichelvan PT (2006) Purification and characterization of laccase produced by a white rot fungus Pleurotus sajor-caju under submerged culture condition and its potential in decolorization of azo dyes. Appl Microbiol Biotechnol 72(5):939–946

    Article  CAS  PubMed  Google Scholar 

  • Nikolopoulou M, Pasadakis N, Norf H, Kalogerakis N (2013) Enhanced ex situ bioremediation of crude oil contaminated beach sand by supplementation with nutrients and rhamnolipids. Mar Pollut Bull 77(1–2):37–44

    Article  CAS  PubMed  Google Scholar 

  • Njoku KL, Ulu Z, Adesuyi AA, Jolaoso AO, Akinola MO (2018) Mycoremediation of dichlorvos pesticide contaminated soil by Pleurotus pulmonarius (fries) Quelet. Pollution 4(4):605–615

    CAS  Google Scholar 

  • Novotny C, Svobodova K, Erbanova P, Cajthaml T, Kasinath A, Lang E, Sasek V (2004) Ligninolytic fungi in bioremediation: extracellular enzyme production and degradation rate. Soil Biol Biochem 36(10):1545–1551

    Article  CAS  Google Scholar 

  • Okamura T, Ogata T, Minamoto N, Takeno T, Noda H, Fukuda S, Ohsugi M (2001) Characteristics of wine produced by mushroom fermentation. Biosci Biotechnol Biochem 65(7):1596–1600

    Article  CAS  PubMed  Google Scholar 

  • Oladipo OG, Awotoye OO, Olayinka A, Bezuidenhout CC, Maboeta MS (2018) Heavy metal tolerance traits of filamentous fungi isolated from gold and gemstone mining sites. Braz J Microbiol 49(1):29–37

    Article  CAS  PubMed  Google Scholar 

  • Pandey RK, Tewari S, Tewari L (2018) Lignolytic mushroom Lenzites elegans WDP2: laccase production, characterization, and bioremediation of synthetic dyes. Ecotoxicol Environ Saf 158:50–58

    Article  CAS  PubMed  Google Scholar 

  • Paszczynski A, Huynh VB, Crawford R (1985) Enzymatic activities of an extracellular, manganese-dependent peroxidase from Phanerochaete chrysosporium. FEMS Microbiol Lett 29(1–2):37–41

    Article  CAS  Google Scholar 

  • Philp JC, Atlas RM (2005) Bioremediation of contaminated soils and aquifers. In: Atlas RM, Hazen T, Philp JC (eds) Bioremediation: applied microbial solutions for real-world environmental Cleanup. ASM Press, Washington, DC, pp 139–236

    Google Scholar 

  • Pointing S (2001) Feasibility of bioremediation by white rot fungi. Appl Microbiol Biotechnol 57(1):20–33

    CAS  PubMed  Google Scholar 

  • Pozdnyakova NN (2012) Involvement of the ligninolytic system of white rot and litter-decomposing fungi in the degradation of polycyclic aromatic hydrocarbons. Biomed Res Int. https://doi.org/10.1155/2012/243217

  • Prasad YL, Sachin DR (2013) Biosorption of cu, Zn, Fe, cd, pb and Ni by non-treated biomass of some edible mushrooms. Asian J Exp Biol Sci 4(2):190–195

    Google Scholar 

  • Purnomo AS, Mori T, Putra SR, Kondo R (2013) Biotransformation of heptachlor and heptachlor epoxide by white rot fungus Pleurotus ostreatus. Int Biodeterior Biodegradation 82:40–44

    Article  CAS  Google Scholar 

  • Purnomo AS, Mori T, Takagi K, Kondo R (2011) Bioremediation of DDT contaminated soil using brown-rot fungi. Int Biodeterior Biodegradation 65(5):691–695

    Article  CAS  Google Scholar 

  • Purnomo AS, Nawfa R, Martak F, Shimizu K, Kamei I (2017) Biodegradation of aldrin and dieldrin by the white rot fungus Pleurotus ostreatus. Curr Microbiol 74(3):320–324

    Article  CAS  PubMed  Google Scholar 

  • Rouau X, Odier E (1986) Purification and properties of two enzymes from Dichomitus squalens which exhibit both cellobiohydrolase and xylanase activity. Carbohydr Res 145(2):279–292

    Article  CAS  Google Scholar 

  • Salem SS, Mohamed A, El-Gamal M, Talat M, Fouda A (2019) Biological decolorization and degradation of azo dyes from textile wastewater effluent by aspergillus Niger. Egypt J Chem 62(10):1799–1813

    Google Scholar 

  • Sanlier SH, Gider S, Koprulu A (2013) Immobilization of laccase for biotechnology applications. Artif Cells Nanomed Biotechnol 41(4):259–263

    Article  CAS  PubMed  Google Scholar 

  • Sanscartier D, Zeeb B, Koch I, Reimer K (2009) Bioremediation of diesel-contaminated soil by heated and humidified biopile system in cold climates. Cold Reg Sci Technol 55(1):167–173

    Article  Google Scholar 

  • Shahsavari E, Schwarz A, Aburto MA, Ball AS (2019) Biological degradation of polycyclic aromatic compounds (PAHs) in soil: a current perspective. Curr Pollut Rep 5(3):84–92

    Article  CAS  Google Scholar 

  • Sharma S (2012) Bioremediation: features, strategies and applications. Asian J Pharm Sci 2(2) ISSN 2231:4423

    Google Scholar 

  • Shi J, Chinn MS, Sharma SRR (2008) Microbial pretreatment of cotton stalks by solid state cultivation of Phanerochaete chrysosporium. Bioresour Technol 99(14):6556–6564

    Article  CAS  PubMed  Google Scholar 

  • Shrivastava R, Christian V, Vyas BRM (2005) Enzymatic decolorization of sulfonphthalein dyes. Enzym Microb Technol 36(2–3):333–337

    Article  CAS  Google Scholar 

  • Silambarasan S, Abraham J (2013) Mycoremediation of endosulfan and its metabolites in aqueous medium and soil by Botryosphaeria laricina JAS6 and aspergillus tamarii JAS9. PLoS One 8(10):e77170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh H (2006) Mycoremediation: fungal bioremediation. John Wiley & Sons, Hoboken, NJ, pp 15–61

    Book  Google Scholar 

  • Singh M, Srivastava PK, Verma PC, Kharwar RN, Singh N, Tripathi RD (2015) Soil fungi for mycoremediation of arsenic pollution in agriculture soils. J Appl Microbiol 119(5):1278–1290

    Article  CAS  PubMed  Google Scholar 

  • Singhal V, Kumar A, Rai JP (2005) Bioremediation of pulp and paper mill effluent with Phanerochaete chrysosporium. J Environ Biol 26(3):525–529

    CAS  PubMed  Google Scholar 

  • Stamets P (2005) Mycelium running: how mushrooms can help save the world. Ten Speed Press, Berkeley, CA

    Google Scholar 

  • Sun J, Peng RH, Xiong AS, Tian Y, Zha W, Xu H, Yao QH (2012) Secretory expression and characterization of a soluble laccase from the Ganoderma lucidum strain 7071-9 in Pichia pastoris. Mol Biol Rep 39(4):3807–3814

    Article  CAS  PubMed  Google Scholar 

  • Thakur M (2014) Mycoremediation-a potential tool to control soil pollution. Asian J Environ Sci 9(1):24–31

    Google Scholar 

  • Tsujiyama SI, Ueno H (2013) Performance of wood-rotting fungi-based enzymes on enzymic saccharification of rice straw. J Sci Food Agric 93(11):2841–2848

    Article  CAS  PubMed  Google Scholar 

  • Wang HX, Ng TB (2006) A laccase from the medicinal mushroom Ganoderma lucidum. Appl Microbiol Biotechnol 72(3):508–513

    Article  CAS  PubMed  Google Scholar 

  • Whelan MJ, Coulon F, Hince G, Rayner J, McWatters R, Spedding T, Snape I (2015) Fate and transport of petroleum hydrocarbons in engineered biopiles in polar regions. Chemosphere 131:232–240

    Article  CAS  PubMed  Google Scholar 

  • Wu M, Xu Y, Ding W, Li Y, Xu H (2016) Mycoremediation of manganese and phenanthrene by Pleurotus eryngii mycelium enhanced by tween 80 and saponin. Appl Microbiol Biotechnol 100(16):7249–7261

    Article  CAS  PubMed  Google Scholar 

  • Xiao P, Kondo R (2020) Biodegradation and biotransformation of pentachlorophenol by wood-decaying white rot fungus Phlebia acanthocystis TMIC34875. J Wood Sci 66(1):1–11

    Article  CAS  Google Scholar 

  • Yadav JS, Wallace RE, Reddy CA (1995) Mineralization of mono-and dichlorobenzenes and simultaneous degradation of chloro-and methyl-substituted benzenes by the white rot fungus Phanerochaete chrysosporium. Appl Environ Microbiol 61(2):677–680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang SO, Sodaneath H, Lee JI, Jung H, Choi JH, Ryu HW, Cho KS (2017) Decolorization of acid, disperse and reactive dyes by Trametes versicolor CBR43. J Environ Sci Health 52(9):862–872

    Article  CAS  Google Scholar 

  • Yeoh KA, Othman A, Meon S, Abdullah F, Ho CL (2012) Sequence analysis and gene expression of putative exo-and endo-glucanases from oil palm (Elaeis guineensis) during fungal infection. J Plant Physiol 169(15):1565–1570

    Article  CAS  PubMed  Google Scholar 

  • Yoshida H (1883) LXIII-chemistry of lacquer (Urushi). Part I communication from the chemical society of Tokio. J Chem Soc Trans 43:472–486

    Article  CAS  Google Scholar 

  • Zhu MJ, Du F, Zhang GQ, Wang HX, Ng TB (2013) Purification a laccase exhibiting dye decolorizing ability from an edible mushroom Russula virescens. Int Biodeterior Biodegradation 82:33–39

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hegde, G.M., Aditya, S., Wangdi, D., Chetri, B.K. (2022). Mycoremediation: A Natural Solution for Unnatural Problems. In: Rajpal, V.R., Singh, I., Navi, S.S. (eds) Fungal diversity, ecology and control management. Fungal Biology. Springer, Singapore. https://doi.org/10.1007/978-981-16-8877-5_17

Download citation

Publish with us

Policies and ethics