Skip to main content

In Vitro Production of Terpenoids

  • Chapter
  • First Online:
Nutraceuticals Production from Plant Cell Factory
  • 401 Accesses

Abstract

Plants produce diverse groups of secondary metabolites (SMs); terpenoids are one such large group of SMs. Terpenoids are found commonly in related and unrelated plant taxa; however, some specific terpenoids are also reported in lower and higher taxa. The pharmacological importance and commercial utilization of terpenoids are on the top among the plant SMs. A number of reviews on biosynthesis of terpenoids have been published suggesting 2-C-methyl-d-erythritol-4-phosphate (MEP) and the mevalonate (MVA) as common pathways. Today, researchers are working on target-specific production of terpenoids by altering metabolic pathways and expressing genes in microsystems. Recent high-throughput analytical techniques coupled to functional genomics approach has geared up biosynthesis and overproduction of terpenoids. In this chapter, terpenoids have been reviewed in detail for their sources, biosynthetic pathways, in vitro production technologies, scale-up techniques, and biological activities. The ecological and environmental perspectives for function of terpenoids have also been discussed. Considering commercial implications of terpenoids in therapeutic, perfumery, food, flavor, and fuel industries, a comprehensive account on their prospective future has been concentrated upon. Extraction and detection methodologies for terpenoids have been focused. Attention has also been drawn toward the need for designing possible roadmap for its sustainable utilization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelrahman M, Jogaiah S (2020) Production of plant bioactive triterpenoid and steroidal Saponins. In: Bioactive molecules in plant defence. Springer, Cham, pp 5–13

    Chapter  Google Scholar 

  • Açıkgöz MA (2020) Establishment of cell suspension cultures of Ocimum basilicum L. and enhanced production of pharmaceutical active ingredients. Ind Crop Prod 148:112278

    Article  CAS  Google Scholar 

  • Aharoni A, Jongsma MA, Kim TY et al (2006) Metabolic engineering of terpenoid biosynthesis in plants. Phytochem Rev 5:49–58

    Article  CAS  Google Scholar 

  • Anonymous, Government of India, Medicinal plants introduction, Indian System of Medicine and Homoeopathy (ISMH), Department of ISMH, Ministry of Health and Family Welfare, Governmet of India (2000). http://indianmedicine.nic.in/html/plants/mimain.htm

  • Asakawa Y (1982) Chemical constituents of the hepaticae. In: Herz W, Grisebach H, Kirby GW (eds) Progress in the chemistry of organic natural products, vol vol. 42. Springer, Vienna, pp 1–285

    Google Scholar 

  • Asakawa Y (1995) Chemical constituents of the bryophytes. In: Herz W, Kirby GW, Moore RE, Steglich W, Tamm C (eds) Progress in the chemistry of organic natural products, vol vol. 65. Springer, Vienna, pp 1–618

    Chapter  Google Scholar 

  • Asakawa Y, Ludwiczuk A, Nagashima F (2013) Chemical constituents of bryophytes: bio- and chemical diversity, biological activity, and chemosystematics. In: Kinghorn AD, Falk H, Kobayashi J (eds) Progress in the chemistry of organic natural products, vol vol. 95. Springer-Verlag, Vienna, pp 1–796

    Google Scholar 

  • Aziz NAA, Hasham R, Sarmidi MR et al (2021) A review on extraction techniques and therapeutic value of polar bioactives from Asian medicinal herbs: case study on Orthosiphon aristatus, Eurycoma longifolia and Andrographis paniculata. Saudi Pharm J 29(2):143–165

    Article  CAS  Google Scholar 

  • Bach TJ (1995) Some aspects of isoprenoid biosynthesis in plants. A review. Lipids 30:191–202

    Article  CAS  PubMed  Google Scholar 

  • Banthorpe DV, Bates MJ, Ireland MJ (1995) Stimulation of accumulation of terpenoids by cell suspensions of Lavandula angustifolia following pre-treatment of parent callus. Phytochemistry 40(1):83–87

    Article  CAS  Google Scholar 

  • Belcher MS, Mahinthakumar J, Keasling JD (2020) New frontiers: harnessing pivotal advances in microbial engineering for the biosynthesis of plant-derived terpenoids. Curr Opin Biotechnol 65:88–93

    Article  CAS  PubMed  Google Scholar 

  • Bertoli A, Leonardi M, Krzyzanowska J et al (2011) Mentha longifolia in vitro cultures as safe source of flavouring: ingredients. Acta Biochim Pol 58(4):581–587

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharya R, Dev K, Sourirajan A (2021) Antiviral activity of bioactive phytocompounds against coronavirus: an update. J Virological Met 290:114070

    Article  CAS  Google Scholar 

  • Bloch K (1992) Sterol molecule: structure, biosynthesis and function. Steroids 57:378–382

    Article  CAS  PubMed  Google Scholar 

  • Bochar DA, Friesen JA, Stauffacher CV et al (1999) Biosynthesis of mevalonic acid from acetyl-CoA. In: Cane D (ed) Comprehensive natural product chemistry, vol Vol. 2. Pergamon, Oxford, pp 15–44

    Chapter  Google Scholar 

  • Bonfill M, Malik S, Mirjalili MH et al (2013) Production and genetic engineering of Terpenoids production in plant cell and organ cultures. In: Ramawat K, Mérillon JM (eds) Natural products. Springer, Berlin, Heidelberg, pp 2761–2796

    Chapter  Google Scholar 

  • Böttger A, Vothknecht U, Bolle C et al (2018) Terpenes and terpenoids. In: Lessons on caffeine, cannabis & co. learning materials in biosciences. Springer, Cham. https://doi.org/10.1007/978-3-319-99546-5_10

    Chapter  Google Scholar 

  • Chandran H, Meena M, Barupal T et al (2020) Plant tissue culture as a perpetual source for production of industrially important bioactive compounds. Biotech Rep 26:e00450

    Article  Google Scholar 

  • Chen F, Tholl D, Bohlmann J et al (2011) The family of terpene synthases in plants: a mid-size family of genes for specialized metabolism that is highly diversified throughout the kingdom. Plant J 66:212–229

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Li Y, Guo Y (2012) Terpenoids of Sinularia soft corals: chemistry and bioactivity. Acta Pharm Sin B 2(3):227–237

    Article  CAS  Google Scholar 

  • Chen F, Ludwiczuk A, Wei G et al (2018) Terpenoid secondary metabolites in bryophytes: chemical diversity, biosynthesis and biological functions. Crit Rev Plant Sci 37:210–231

    Article  Google Scholar 

  • Cheng A, Lou Y, Mao Y et al (2007) Plant terpenoids: biosynthesis and ecological functions. J Integr Plant Biol 49:179–186

    Article  CAS  Google Scholar 

  • Croteau R, Kutchan TM, Lewis NG (2000) Natural products (secondary metabolites). In: Buchanan B, Gruissem W, Jones R (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville, pp 1250–1318

    Google Scholar 

  • DellaPenna D (2001) Plant metabolic engineering. Plant Physiol 125(1):160–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dzubak P, Hajduch M, Vydra D et al (2006) Pharmacological activities of natural triterpenoids and their therapeutic implications. Nat Prod Rep 23:394–341

    Article  CAS  PubMed  Google Scholar 

  • Ercioglua E, Velioglub HM, Boyaci IH (2018) Determination of terpenoid contents of aromatic plants using NIRS. Talanta 178:716–721

    Article  CAS  Google Scholar 

  • Exposito O, Syklowska-Baranek K, Moyano E et al (2010) Metabolic responses of Taxus media transformed cell cultures to the addition of methyl jasmonate. Biotechnol Prog 26:1145–1153

    CAS  PubMed  Google Scholar 

  • Farzaei MH, Bahramsoltani R, Ghobadi A et al (2017) Pharmacological activity of Mentha longifolia and its phytoconstituents. J Tradit Chin Med 37(5):710–720

    Article  Google Scholar 

  • Gozari M, Alborz M, El-Seedi HR (2021) Chemistry, biosynthesis and biological activity of terpenoids and meroterpenoids in bacteria and fungi isolated from different marine habitats. Eur J Med Chem 210:112957

    Article  CAS  PubMed  Google Scholar 

  • Guerriero G, Berni R, Muñoz-Sanchez JA et al (2018) Production of plant secondary metabolites: examples, tips and suggestions for biotechnologists. Genes (Basel) 9(6):E309

    Article  CAS  Google Scholar 

  • Gupta R, Sonawane T, Pai SR (2021) An overview on pharmaceutical properties and biotechnological advancement of Withania coagulans. Adv Tradit Med. https://doi.org/10.1007/s13596-021-00558-7

  • Habtemariam S (2019) Introduction to plant secondary metabolites - from biosynthesis to chemistry and antidiabetic action. In: Medicinal foods as potential therapies for Type-2 diabetes and associated diseases, the chemical and pharmacological basis of their action, pp 109–132

    Google Scholar 

  • Harman-Ware AE, Sykes R, Peter GF et al (2016) Determination of terpenoid content in pine by organic solvent extraction and fast-GC analysis. Front Energy Res 4:2. https://doi.org/10.3389/fenrg.2016.00002

    Article  Google Scholar 

  • Hussain MS, Fareed S, Ansari MS et al (2012) Current approaches toward production of secondary plant metabolites. J Pharm Bioallied Sci 4(1):10–20

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kreis W, Muller-Uri F (2010) Biochemistry of sterols, cardiac glycosides, brassinosteroids, phytoecdysteroids and steroid saponins. In: Michael W (ed) Annual plant reviews. Wiley, Singapore, pp 304–363

    Google Scholar 

  • Kshirsagar PR, Pai SR, Nimbalkar MS et al (2015) Quantitative determination of three pentacyclic triterpenes from five Swertia L. species endemic to Western Ghats, India, using RP-HPLC analysis. Nat Prod Res 29(19):1783–1788

    Article  CAS  PubMed  Google Scholar 

  • Leavell MD, McPhee DJ, Paddon CJ (2016) Developing fermentative terpenoid production for commercial usage. Curr Opin Biotechnol 37:114–119

    Article  CAS  PubMed  Google Scholar 

  • Liu WX, Zhao JW, Zuo AX (2018) Two novel terpenoids from the cultured Perovskia atriplicifolia. Fitoterapia 130:152–155

    Article  CAS  PubMed  Google Scholar 

  • Lohr M, Schwender J, Polle JEW (2012) Isoprenoid biosynthesis in eukaryotic phototrophs: a spotlight on algae. Plant Sci 185–186:9–22

    Article  PubMed  CAS  Google Scholar 

  • Ludwiczuk A, Asakawa Y (2019) Bryophytes as a source of bioactive volatile terpenoids – a review. Food Chem Toxicol 132:110649

    Article  CAS  PubMed  Google Scholar 

  • Ma X, Jiang Y, Wen J et al (2020) A comprehensive review of natural products to fight liver fibrosis: alkaloids, terpenoids, glycosides, coumarins and other compounds. Eur J Pharmacol 888:173578

    Article  CAS  PubMed  Google Scholar 

  • Mahizan NA, Yang SK, Moo CL et al (2019) Terpene derivatives as a potential agent against antimicrobial resistance (AMR) pathogens. Molecules 24(14):2631

    Article  CAS  PubMed Central  Google Scholar 

  • Malinowska M, Sikora E, Ogonowski J (2013) Production of triterpenoids with cell and tissue cultures. Acta Biochim Pol 60(4):731–735

    PubMed  Google Scholar 

  • Martin-Smith M, Sneader WE (1969) Biological activity of the terpenoids and their derivatives--recent advances. Prog Drug Res 13:11–100

    CAS  PubMed  Google Scholar 

  • Mewalal R, Rai DK, Kainer DA et al (2017) Plant-derived terpenes: a feed stock for specialty biofuels. Trends Biotechnol 35(3):227–240

    Article  CAS  PubMed  Google Scholar 

  • Misawa N (2011) Pathway engineering for functional isoprenoid. Curr Opin Biotechnol 22:627–633

    Article  CAS  PubMed  Google Scholar 

  • Mkaddem M, Bouajila J, Ennajar et al (2009) Chemical composition and antimicrobial and antioxidant activities of Mentha (longifolia L. and viridis) essential oils. J Food Sci 74(7):M358–M363

    Article  CAS  PubMed  Google Scholar 

  • Monfort LEF, Bertolucci SKV, Lima AF, de Carvalho AA, Mohammed A, Blank AF, Pinto JEBP (2018) Effects of plant growth regulators, different culture media and strength MS on production of volatile fraction composition in shoot cultures of Ocimum basilicum. Ind Crop Prod 116:231–239

    Article  CAS  Google Scholar 

  • Montesano D, Rocchetti G, Putnik P et al (2018) Bioactive profile of pumpkin: an overview on terpenoids and their health-promoting properties. Curr Opin Food Sci 22:81–87

    Article  Google Scholar 

  • Motamed SM, Naghibi F (2010) Antioxidant activity of some edible plants of the Turkmen Sahra region in northern Iran. Food Chem 119(4):1637–1642

    Article  CAS  Google Scholar 

  • Mufflera K, Leipolda D, Schellera MC et al (2011) Biotransformation of triterpenes. Process Biochem 46:1–15

    Article  CAS  Google Scholar 

  • Muñoz-Redondo JM, Ruiz-Moreno MJ, Puertas B et al (2020) Multivariate optimization of headspace solid-phase microextraction coupled to gas chromatography-mass spectrometry for the analysis of terpenoids in sparkling wines. Talanta 208:120483

    Article  PubMed  CAS  Google Scholar 

  • National Center for Biotechnology Information (2021a) PubChem compound summary for CID 3509874, Gibberellin 1. Retrieved February 6, 2021 from https://pubchem.ncbi.nlm.nih.gov/compound/Gibberellin-1

  • National Center for Biotechnology Information (2021b) PubChem compound summary for CID 6549, Linalool. Retrieved February 6, 2021 from https://pubchem.ncbi.nlm.nih.gov/compound/Linalool

  • National Center for Biotechnology Information (2021c) PubChem compound summary for CID 1254, Menthol. Retrieved February 6, 2021 from https://pubchem.ncbi.nlm.nih.gov/compound/Menthol

  • National Center for Biotechnology Information (2021d) PubChem compound summary for CID 5464156, (R)-Lavandulol. Retrieved February 6, 2021 from https://pubchem.ncbi.nlm.nih.gov/compound/R_-Lavandulol

  • National Center for Biotechnology Information (2021e) PubChem compound summary for CID 161276, Secologanin. Retrieved February 6, 2021 from https://pubchem.ncbi.nlm.nih.gov/compound/Secologanin

  • National Center for Biotechnology Information (2021f) PubChem compound summary for CID 92776, Zingiberene. Retrieved February 6, 2021 from https://pubchem.ncbi.nlm.nih.gov/compound/Zingiberene

  • National Center for Biotechnology Information (2021g) PubChem compound summary for CID 36314, Paclitaxel. Retrieved February 6, 2021 from https://pubchem.ncbi.nlm.nih.gov/compound/taxol

  • National Center for Biotechnology Information (2021h) PubChem compound summary for CID 64971, Betulinic acid. Retrieved February 6, 2021 from https://pubchem.ncbi.nlm.nih.gov/compound/Betulinic-acid

  • National Center for Biotechnology Information (2021i) PubChem compound summary for CID 5280794, Stigmasterol. Retrieved February 6, 2021 from https://pubchem.ncbi.nlm.nih.gov/compound/Stigmasterol

  • National Center for Biotechnology Information (2021j) PubChem compound summary for CID 99474, Diosgenin. Retrieved February 6, 2021 from https://pubchem.ncbi.nlm.nih.gov/compound/Diosgenin

  • National Center for Biotechnology Information (2021k) PubChem compound summary for CID 64945, Ursolic acid. Retrieved February 6, 2021 from https://pubchem.ncbi.nlm.nih.gov/compound/Ursolic-acid

  • National Center for Biotechnology Information (2021l) PubChem compound summary for CID 5280896, Abscisic acid. Retrieved February 6, 2021 from https://pubchem.ncbi.nlm.nih.gov/compound/S_-_-Abscisic-acid

  • National Center for Biotechnology Information (2021m) PubChem compound summary for CID 15102684, 5-Deoxystrigol. Retrieved February 6, 2021 from https://pubchem.ncbi.nlm.nih.gov/compound/5-Deoxystrigol

  • National Center for Biotechnology Information (2021n) PubChem compound summary for CID 445070, Farnesol. Retrieved February 6, 2021 from https://pubchem.ncbi.nlm.nih.gov/compound/Farnesol

  • National Center for Biotechnology Information (2021o) PubChem compound summary for CID 6433320, Dolichol-20. Retrieved February 6, 2021 from https://pubchem.ncbi.nlm.nih.gov/compound/Dolichol-20

  • National Center for Biotechnology Information (2021p) PubChem compound summary for CID 65030, Artemisin. Retrieved February 6, 2021 from https://pubchem.ncbi.nlm.nih.gov/compound/Artemisin

  • Oksman-Caldentey KM, Inzé D (2004) Plant cell factories in the post-genomic era: new ways to produce designer secondary metabolites. Trends Plant Sci 9:433–440

    Article  CAS  PubMed  Google Scholar 

  • Pai SR, Joshi RK (2014) Distribution of betulinic acid in plant kingdom. Plant Sci Today 1(3):103–107

    Article  Google Scholar 

  • Pai SR, Joshi RK (2016) Variations in pentacyclic triterpenoids in different parts of four Ocimum species using reverse phase-high performance liquid chromatography. Proc Natl Acad Sci India Sect B 87:1153–1158

    Article  CAS  Google Scholar 

  • Pai SR, Joshi RK (2018) Optimized densitometric analysis for determination of triterpenoid isomers in Vitex negundo L. leaf. Natl Acad Sci Lett 41(5):323–327

    Article  CAS  Google Scholar 

  • Pai SR, Nimbalkar MS, Pawar NV et al (2011) Optimization of extraction techniques and quantification of Betulinic acid (BA) by RP-HPLC method from Ancistrocladus heyneanus wall. Ex Grah. Ind Crop Prod 34:1458–1464

    Article  CAS  Google Scholar 

  • Pai SR, Upadhya V, Hegde HV (2014) New report of triterpenoid betulinic acid along with Oleanolic acid from Achyranthes aspera by reversed- phase–ultra flow liquid chromatographic analysis and confirmation using high-performance thin-layer chromatographic and Fourier transform–infrared. J Planar Chromatogr 27:38–41

    Article  CAS  Google Scholar 

  • Pai SR, Upadhya V, Hegde HV et al (2016) Determination of betulinic acid, oleanolic acid and ursolic acid from Achyranthes aspera L. using RP-UFLC-DAD analysis and evaluation of various parameters for their optimum yield. Indian J Exp Biol 54:196–202

    PubMed  Google Scholar 

  • Pai SR, Upadhya V, Hegade HV et al (2018) In vitro rapid multiplication and determination of terpenoids in callus cultures of Achyranthes aspera Linn. Indian J Biotechnol 17:151–159

    CAS  Google Scholar 

  • Parra A, Rivas F, Garcia-Granados A et al (2009) Microbial transformation of triterpenoids. Mini-Rev Org Chem 6:307–320

    Article  CAS  Google Scholar 

  • Polzin J, Rorrer GL (2018) Selective production of the acyclic monoterpene β-myrcene by microplantlet suspension cultures of the macrophytic marine red alga Ochtodes secundiramea under nutrient perfusion cultivation with bromide-free medium. Algal Res 36:159–166

    Article  Google Scholar 

  • Pramastya H, Xuea D, Abdallah II et al (2021) High level production of amorphadiene using Bacillus subtilis as an optimized terpenoid cell factory. New Biotechnol 60:159–167

    Article  CAS  Google Scholar 

  • Qureshi N, Porter JW (1981) Conversion of acetyl-coenzyme a to isopentenyl pyrophosphate. In: Porter JW, Spurgeon SL (eds) Biosynthesis of isoprenoid compounds, vol vol. 1. Wiley, New York, pp 47–94

    Google Scholar 

  • Rajan M, Gupta P, Kumar A (2021) Promising antiviral molecules from Ayurvedic herbs and spices against COVID-19. Chin J Integr Med. https://doi.org/10.1007/s11655-021-3331-8

  • Rodríguez A, Shimada T, Cervera M et al (2014) Terpene Down-regulation triggers Defence responses in transgenic Orange leading to resistance against fungal Pathogens1[W]. Plant Physiol 164:321–339

    Article  PubMed  CAS  Google Scholar 

  • Stojakowska A, Michalska K, Kłeczek N et al (2018) Phenolics and terpenoids from a wild edible plant Lactuca orientalis (Boiss.) Boiss.: a preliminary study. J Food Comp Anal 69:20–24

    Article  CAS  Google Scholar 

  • Tholl D (2015) Biosynthesis and biological functions of terpenoids in plants. Adv Biochem Eng Biotechnol 148:63–106

    CAS  PubMed  Google Scholar 

  • Upadhya V, Ankad GM, Pai SR et al (2014) Accumulation and trends in distribution of three triterpenoids in various parts of Achyranthes coynei determined using RP-UFLC analysis. Phcog Mag 10:398–401

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vaníčková L, Pompeiano A, Maděr P et al (2020) Terpenoid profiles of resin in the genus Dracaena are species specific. Phytochemistry 170:112197

    Article  PubMed  CAS  Google Scholar 

  • Vavitsas K, Fabris M, Vickers CE (2018) Terpenoid metabolic engineering in photosynthetic microorganisms. Genes 9:520

    Article  PubMed Central  CAS  Google Scholar 

  • Verpoorte R (2000) Plant secondary metabolites. In: Verpoorte R, Alfermann AW (eds) Metabolic engineering of plant secondary metabolism. Kluwer Academic Publisher, Dodrecht, Boston, London, pp 1–30

    Chapter  Google Scholar 

  • Vranová E, Coman D, Gruissem W (2013) Network analysis of the MVA and MEP pathways for isoprenoid synthesis. Annu Rev Plant Biol 64:665–700

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Jin XY, Zhou JC et al (2020) Terpenoids from the Chinese liverwort Heteroscyphus coalitus and their antivirulence activity against Candida albicans. Phytochemistry 174:112324

    Article  CAS  PubMed  Google Scholar 

  • Yang C, Gao X, Jiang Y et al (2016) Synergy between methylerythritol phosphate pathway and mevalonate pathway for isoprene production in Escherichia coli. Metab Eng 37:79–91

    Article  CAS  PubMed  Google Scholar 

  • Yang F, Pu HY, Yaseen A et al (2021) Terpenoid and phenolic derivatives from the aerial parts of Elsholtzia rugulosa and their anti-inflammatory activity. Phytochemistry 181:112543

    Article  CAS  PubMed  Google Scholar 

  • Yu SJ, Yu JH, Yu ZP et al (2020) Bioactive terpenoid constituents from Eclipta prostrate. Phytochemistry 170:112192

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Hong K (2020) Production of Terpenoids by synthetic biology approaches. Front Bioeng Biotechnol 8:347. https://doi.org/10.3389/fbioe.2020.00347

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang B, Huo Y, Zhang J, Zhang X et al (2019) Agrobacterium rhizogenes-mediated RNAi of Tripterygium wilfordii and application for functional study of terpenoid biosynthesis pathway genes. Ind Crops Prod 139:111509

    Article  CAS  Google Scholar 

  • Zhou F, Pichersky E (2020) More is better: the diversity of terpene metabolism in plants. Curr Opin Plant Biol 55:1–10

    Article  CAS  PubMed  Google Scholar 

  • Zwenger S, Basu C (2008) Plant terpenoids: applications and future potentials. Biotech Mol Biol Rev 3(1):1–7

    Google Scholar 

Download references

Acknowledgments

Author is indebted to Rayat Shikshan Sanstha, Satara, (MS) India, for providing support.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Ethics declarations

None.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pai, S.R. (2022). In Vitro Production of Terpenoids. In: Belwal, T., Georgiev, M.I., Al-Khayri, J.M. (eds) Nutraceuticals Production from Plant Cell Factory. Springer, Singapore. https://doi.org/10.1007/978-981-16-8858-4_8

Download citation

Publish with us

Policies and ethics