Skip to main content

Production and Genetic Engineering of Terpenoids Production in Plant Cell and Organ Cultures

  • Reference work entry
  • First Online:
Natural Products

Abstract

Among the three main groups of secondary metabolites that can be found in plants, terpenes are by far the largest and most diverse. They play an important role in plants in both primary and secondary metabolism and constitute a source of phytochemicals for human health. Plant biotechnology, based on in vitro culture and genetic engineering techniques, has proved to be a promising tool to increase the production of these bioactive compounds. This chapter describes the plant cell and organ culture techniques used in plant biotechnology, the biotechnological production of the different groups of terpenes using empirical approaches and some examples of genetic and metabolic engineering techniques applied to improve the production of these valuable plant secondary metabolites in plant cell and organ cultures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 2,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CaMV:

Cauliflower mosaic virus 35S promoter

CM:

Culture medium

DMAPP:

Dimethylallyl diphosphate

DXR:

1-Deoxy-D-xylulose-5-phosphate reductoisomerase

DXS:

1-Deoxy-D-xylulose-5-phosphate synthase

DW:

Dry weight

FPP:

Farnesyl diphosphate

GGPP:

Geranylgeranyl diphosphate

GPP:

Geranyl diphosphate

HMGR:

3-Hydroxy-3-methyl-glutaryl-CoA reductase

IAA:

Indole-3-acetic acid

IPP:

Isopentenyl diphosphate

MEP:

2-C-methyl-D-erythritol 4-phosphate

MS:

Murashige and Skoog medium

OPP:

Diphosphate

PGR:

Plant Growth Regulators

SQS:

Squalene synthase

TXS:

Taxadiene synthase

References

  1. Kirby J, Keasling JD (2009) Biosynthesis of plant isoprenoids: perspectives for microbial engineering. Annu Rev Plant Biol 60:334–355

    Article  Google Scholar 

  2. Seigler DS (1998) Plant secondary metabolism. Kluwer Academic, Dordrecht

    Book  Google Scholar 

  3. Nagegowda DA (2010) Plant volatile terpenoid metabolism: biosynthetic genes, transcriptional regulation and subcellular compartmentation. FEBS Lett 584:2965–2973

    Article  CAS  Google Scholar 

  4. Misawa N (2011) Pathway engineering for functional isoprenoid. Curr Opin Biotech 22:627–633

    Article  CAS  Google Scholar 

  5. Oksman-Caldentey KM, Inzé D (2004) Plant cell factories in the post-genomic era: new ways to produce designer secondary metabolites. Trends Plant Sci 9:433–440

    Article  CAS  Google Scholar 

  6. Malik S, Cusido RM, Mirjalili MH, Moyano E, Palazon J, Bonfill M (2011) Production of the anticancer drug in Taxus baccata suspension cultures: a review. Process Biochem 46:23–34

    Article  CAS  Google Scholar 

  7. Expósito O, Bonfill M, Moyano E, Onrubia M, Mirjalili MH, Cusidó RM, Palazon J (2009) Biotechnological production of taxol and related taxoids: current state and prospects. Anti-Cancer Agents Med Chem 9:109–121

    Article  Google Scholar 

  8. Georgiev MI, Weber J, Maciuk A (2009) Bioprocessing of plant cell cultures for mass production of targeted compounds. Appl Microbiol Biot 83:809–823

    Article  CAS  Google Scholar 

  9. Karuppusamy S (2009) A review on trends in production of secondary metabolites from higher plants by in vitro tissue, organ and cell cultures. J Med Res 3:1222–1239

    CAS  Google Scholar 

  10. Ramachandra Rao S, Ravishankar GA (2002) Plant cell cultures: chemical factories of secondary metabolites. Biotechnol Adv 20:101–153

    Article  CAS  Google Scholar 

  11. Cusido RM, Palazon J, Bonfill M, Navia-Osorio A, Morales C, Piñol MT (2002) Improved paclitaxel and baccatin III production in suspension cultures of Taxus media. Biotechnol Prog 18:418–423

    Article  CAS  Google Scholar 

  12. Chattopadhyay S, Farkya S, Srivastava AK, Bisaria VS (2002) Bioprocess considerations for production of secondary metabolites by plant cell suspension cultures. Biotechnol Bioprocess Eng 7:138–149

    Article  CAS  Google Scholar 

  13. Yesil-Celiktas O, Gurel A, Vardar-Sukan F (2010) Large scale cultivation of plant cell and tissue culture in bioreactors. Transworld Res Netw 37:1–54

    Google Scholar 

  14. Sutton-Jones B, Street HE (1968) Studies on the growth in culture of plant cells. II. Changes in fine structure during growth of Acer pseudoplatanus L. cells in suspension culture. J Exp Bot 19:114–118

    Article  Google Scholar 

  15. Hulst AC, Tramper J (1989) Immobilized plant cells. A literature survey. Enz Microb Technol 11:546–558

    Article  Google Scholar 

  16. Williams PD, Mavituna F (1992) Immobilized plant cells. In: Fowler MW, Warren GS, Moo-Young M (eds) Plant biotechnology: comprehensive biotechnology, second supplement. Pergamon, Oxford

    Google Scholar 

  17. Tyler RT, Kurz WGW, Paiva NL, Chavadej S (1995) Bioreactors for surface immobilized cells. Plant Cell Tissue Organ Cult 42:81–90

    Article  CAS  Google Scholar 

  18. Nemoto K, Hara M, Suzuki M, Seki H, Oka A, Muranaka T, Yoshihiro M (2009) Function of the aux and rol genes of the Ri in plant cell division in vitro. Plant Signal & Behav 12:1145–1147

    Article  Google Scholar 

  19. Guillon S, Tremouillaux-Guiller J, Pati PK, Rideau M, Gantet P (2006) Harnessing the potential of hairy roots: dawn of a new era. Trends Biotech 24:403–409

    Article  CAS  Google Scholar 

  20. Heble MR (1985) Multiple shoot cultures: a viable alternative in vitro system for the production of known and new biologically active plant constituents. In: Neumann KH, Barz W, Reinhard E (eds) Primary and secondary metabolism of plant cell cultures. Springer, Berlin, pp 281–285

    Chapter  Google Scholar 

  21. Liu C, Zhao Y, Wang Y (2006) Artemisinin: current state and perspectives for biotechnological production of an antimalarial drug. Appl Microbiol Biotechnol 72:11–20

    Article  CAS  Google Scholar 

  22. Eibl R, Werner S, Eibl D (2010) Bag bioreactor based on wave-induced motion: characteristics and applications. Adv Biochem Eng Biotechnol 115:55–87

    Google Scholar 

  23. Eibl R, Eibl D (2008) Design of bioreactors suitable for plant cell and tissue cultures. Phytochem Rev 7:593–598

    Article  CAS  Google Scholar 

  24. Sivakumar G, Yu KW, Paek KY (2005) Production of biomass and ginsenosides from adventitious roots of Panax ginseng in bioreactor cultures. Eng Life Sci 5:333–342

    Article  CAS  Google Scholar 

  25. Croteau R, Kutchan TM, Lewis NG (2000) Natural products (secondary metabolites). In: Buchanan B, Gruissem W, Jones R (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville, pp 1250–1318

    Google Scholar 

  26. Wise ML, Croteau R (1999) Monoterpene biosynthesis. In: Cane DE (ed) Comprehensive natural products chemistry: isoprenoids. Elsevier Science, Oxford, pp 97–153

    Chapter  Google Scholar 

  27. Lange BM, Croteau R (1999) Genetic engineering of essential oil production in mint. Curr Opin Plant Biol 2:139–144

    Article  CAS  Google Scholar 

  28. Spencer A, Hamill JD, Rhodes MJC (1993) In vitro biosynthesis of monoterpens by Agrobacterium transformed shoot cultures of two Mentha species. Phytochemistry 32:911–919

    Article  CAS  Google Scholar 

  29. Kim T, Kim TY, Bae GW, Lee HJ, Chae YA, Chung IS (1996) Improved production of essential oils by two-phase culture of Mentha piperita cells. Plant Tissue Cult Lett 13:189–192

    Article  CAS  Google Scholar 

  30. Chang JH, Shin JH, Chung IS, Lee HJ (1998) Improved menthol production from chitosan-elicited suspension culture of Mentha piperita. Biotechnol Lett 20:1097–1099

    Article  CAS  Google Scholar 

  31. Chakraborty A, Chattopadhyay S (2008) Stimulation of menthol production in Mentha piperita cell culture. In Vitro Cell Dev Biol Plant 44:518–524

    Article  CAS  Google Scholar 

  32. Haluk JP, Roussel C (2000) Characterization and origin of tropolones responsible for the cupressales natural durability. Potential application to wood preservation. Ann Forest Sci 57:819–829

    Article  Google Scholar 

  33. Yamaguchi T, Fujita K, Sakai K (1999) Biological activity of extracts from Cupressus lusitanica cell culture. J Wood Sci 45:170–173

    Article  CAS  Google Scholar 

  34. Witte L, Berlin J, Wray V, Schubert W, Kohl W, Hofle G, Hammer J (1983) Mono- and diterpenes from cell cultures of Thuja occidentalis. Planta Med 49:216–221

    Article  CAS  Google Scholar 

  35. Ono M, Asai T, Watanabe H (1998) Hinokitiol production in a suspension culture of Calocedrus formosana. Florin Biosci Biotechnol Biochem 62:1653–1659

    Article  CAS  Google Scholar 

  36. Matsunaga Y, Fujita K, Yamada J, Ashitani T, Sakai K (2003) Monoterpenes produced by Cupressus lusitanica cultured cells including a novel monoterpene (1S, 2S, 6S)-(+)-1,6-epoxy-4(8)-p-menthen-2-ol. Nat Prod Res 17(6):441–443

    Article  CAS  Google Scholar 

  37. Itose R, Sakai K (1997) Improved culture conditions for the suspension cell cultures of production of β-thujaplicin by Cupressus lusitanica. Plant Biotechnol 14(3):163–167

    Article  CAS  Google Scholar 

  38. Inada S, Tsutsumi Y, Sakai K (1993) Elicitor of the β-thujaplicin accumulation in callus cultures of Cupressus lusitanica. J Fac Agr Kyushu Uni 38:119–126

    CAS  Google Scholar 

  39. Yamada J, Fujita K, Sakai K (2002) Feedback regulation of β-thujaplicin production and formation of its methyl ether in a suspension culture of Cupressus lusitanica. Phytochemistry 40:447–450

    Article  Google Scholar 

  40. Sakai K, Kusaba K, Tsutsumi Y, Shirashi T (1994) Secondary metobolites in cell culture of woody plants. III. Formation of β-thujaplicin in Cupressus lusitanica callus cultures treated with fungal elicitors. Mokuzai Gakkaishi 40:1–5

    CAS  Google Scholar 

  41. Saker M, Shanab S, Kahter M (2000) In vitro studies on Ambrosia maritima: I-Morphogenic responses and biotic elicitation. Breeding Research on Medicinal and Aromatic Plants. Arab J Biotechn 3(2):217–224

    Google Scholar 

  42. Saker M, Shanab S, Dessouky M, Khater MR (2000) In vitro studies on Ambrosia maritima: II-Fungal elicitor enhances sesquiterpene lactones accumulation. Arab J Biotechnol 3(2):225–232

    Google Scholar 

  43. Betina V (1989) Mycotoxins, chemicals, biological and environmental aspects. Elsevier, Amsterdam/Oxford/New York/Tokyo

    Google Scholar 

  44. Stoessl A, Stothers JB, Ward EWB (1976) Sesquiterpenoid stress compounds of the Solanaceae. Phytochemistry 15:855–872

    Article  CAS  Google Scholar 

  45. Brindle PA, Kuhn PJ, Threlfall DR (1983) Accumulation of phytoalexins in potato-cell suspension cultures. Phytochemistry 22:2719–2721

    Article  CAS  Google Scholar 

  46. Brooks CJW, Watson DG, Freer IM (1986) Elicitation of capsidiol accumulation in suspended callus cultures of Capsicum annuum. Phytochemistry 25:1089–1092

    Article  CAS  Google Scholar 

  47. Chappell J, Nable R, Fleming P, Andersen RA, Burton HR (1987) Accumulation of capsidiol in tobacco cell cultures treated with fungal elicitor. Phytochemistry 26:2259–2260

    Article  CAS  Google Scholar 

  48. Watson DG, Rycroft DS, Freer IM, Brooks CJW (1985) Sesquiterpenoid phytoalexins from suspended callus cultures of Nicotiana tabacum. Phytochemistry 24:2195–2200

    Article  CAS  Google Scholar 

  49. Chappell J, Nable R (1987) Induction of sesquiterpenoid biosynthesis in tobacco cell suspension cultures by fungal elicitor. Plant Physiol 85:469–473

    Article  CAS  Google Scholar 

  50. Zhu YZ, Huang SH, Tan BK, Sun J, Whiteman M, Zhu YC (2004) Antioxidants in Chinese herbal medicines: a biochemical perspective. Nat Prod Rep 21:478–489

    Article  CAS  Google Scholar 

  51. Wang X, Morris-Natschke SL, Lee KH (2007) New developments in the chemistry and biology of the bioactive constituents of Tanshen. Med Res Rev 27:133–148

    Article  Google Scholar 

  52. Wang JW, Wu JY (2010) Tanshinone biosynthesis in Salvia miltiorrhiza and production in plant tissue cultures. Appl Microbiol Biotechnol 88:437–449

    Article  CAS  Google Scholar 

  53. Ke SY, Shi HL, Ma ZD, Chai FR (2005) The optimization on cultural parameters for callus culture of Salvia miltiorrhiza. J Chinese Med Mater 28:82–83

    Google Scholar 

  54. Shan CG, Wang ZF, Su XH, Yan SL, Sun HC (2007) Study advance in Salvia miltiorrhiza tissue culture. Res Pract Chinese Med 22:4–57

    Google Scholar 

  55. Hu YH, Zhang R, Hu ZB, Wu YP, Shen XM, Zhang GY, Zhou XJ (1992) Callus culture and bioactive ingredients of Salvia miltiorrhiza. Plant Physiol Commun 28:424–425

    Google Scholar 

  56. Tsutomu N, Hitoshi M, Masao N, Hideko H, Kaisuke Y (1983) Production of cryptotanshinone and ferruginol in cultured cells of Salvia miltiorrhiza. Phytochemistry 22:721–722

    Article  Google Scholar 

  57. Miyasaka H, Nasu M, Yamamoto T, Shiomi Y, Ohno H, Endo Y, Yoneda K (1987) Effect of nutritional factors on cryptotanshinone and ferruginol production by cell suspension cultures of Salvia miltiorrhiza. Phytochemistry 26(5):1421–1424

    Article  CAS  Google Scholar 

  58. Miyasaka H, Nasu M, Yamamoto T, Endo Y, Yoneda K (1986) Regulation of ferruginol and cryptotanshinone biosynthesis in cell suspension cultures of Salvia miltiorrhiza. Phytochemistry 25(3):637–640

    Article  CAS  Google Scholar 

  59. Miyasaka H, Nasu M, Yamamoto T, Endo Y, Yoneda K (1986) Production of cryptotanshinone and ferruginol by immobilized cultured cells of Salvia miltiorrhiza. Phytochemistry 25(7):1621–1624

    Article  CAS  Google Scholar 

  60. Zhao JL, Zhou LG, Wu JY (2010) Effects of biotic and abiotic elicitors on cell growth and tanshinone accumulation in Salvia miltiorrhiza cell cultures. Appl Microbiol Biotechnol 87:137–144

    Article  CAS  Google Scholar 

  61. Bonfill M, Bentebibel S, Moyano E, Palazon J, Cusido RM, Eibl R, Pinol MT (2007) Paclitaxel and baccatin III production induced by methyl jasmonate in free and immobilized cells of Taxus baccata. Biol Plant 51:647–652

    Article  CAS  Google Scholar 

  62. Bonfill M, Exposito O, Moyano E, Cusido RM, Palazon J, Pinol MT (2006) Manipulation by culture mixing and elicitation of paclitaxel and baccatin III production in Taxus baccata suspension culture. In Vitro Cell Dev Biol Plant 42:422–426

    Article  CAS  Google Scholar 

  63. Onrubia M, Moyano E, Bonfill M, Exposito O, Palazon J, Cusido RM (2010) An approach to the molecular mechanism of methyl jasmonate and vanadyl sulphate elicitation in Taxus baccata cell cultures: the role of txs and bapt gene expression. Biochem Eng J 53:104–111

    Article  CAS  Google Scholar 

  64. Gillis CN (1997) Panax ginseng pharmacology: a nitric oxide link? Biochem Pharmacol 4(1):1–8

    Article  Google Scholar 

  65. Bonfill M, Cusido RM, Palazon J, Pinol MT, Morales C (2002) Influence of auxins on organogénesis and ginsenoside production in Panax ginseng calluses. Plant Cell Tissue Organ Cult 68:73–78

    Article  CAS  Google Scholar 

  66. Chung HS, Lee YC, Rhee YK, Lee SY (2011) Consumer acceptance of Ginseng food products. J Food Sci 76(9):S516–S522

    Article  CAS  Google Scholar 

  67. Furuya T, Yoshikawa T, Ishii T, Kajii K (1983) Regulation of saponin production in callus cultures of Panax ginseng. Planta Med 47:200–204

    Article  CAS  Google Scholar 

  68. Odnevall A, Björk L (1989) Effects of light on growth, morphogenesis and ginsenoside formation in tissue cultures of Panax ginseng. Biochem und Physiol der Pflanz 185:253–259

    CAS  Google Scholar 

  69. Yasuda S, Satosh K, Ishi T, Furuya T (1972) Studies on the cultural conditions of plant cell suspension culture. In: Terui G (ed) Fermentation technology today. Society for Fermentation Technology, Osaka, pp 697–703

    Google Scholar 

  70. Yue CJ, Zhong JJ (2008) Manipulation of ginsenoside heterogeneity of Panax notoginseng cells in flask and bioreactor cultivations with addition of phenobarbital. Bioprocess Biosyst Eng 31(2):95–100

    Article  CAS  Google Scholar 

  71. Mallol A, Cusido RM, Palazon J, Bonfill M, Morales C, Pinol MT (2001) Ginsenoside production in different phenotypes of Panax ginseng transformed roots. Phytochemistry 57:365–371

    Article  CAS  Google Scholar 

  72. Mirjalili MH, Moyano E, Bonfill M, Cusido RM, Palazon J (2009) Steroidal lactones from Withania somnifera, an ancient plant for novel medicine. Molecules 14:2373–2393

    Article  CAS  Google Scholar 

  73. Osuna L, Moyano E, Mangas S, Bonfill M, Cusidó RM, Piñol MT, Zamilpa A, Tortoriello J, Palazón J (2008) Immobilization of Galphimia glauca plant cell suspensions for the production of enhanced amounts of Galphimine-B. Planta Med 74(1):94–99

    Article  CAS  Google Scholar 

  74. Engelmann NJ, Clinton SK, Erdman JW Jr (2011) Nutritional aspects of phytoene and phytofluene, carotenoid precursors to lycopene. Adv Nutr 2(1):51–61

    Article  CAS  Google Scholar 

  75. Khachik F, Carvalho L, Bernstein PS, Muir GJ, Zhao DY, Katz NB (2002) Chemistry, distribution, and metabolism of tomato carotenoids and their impact on human health. Exp Biol Med (Maywood) 227:845–851

    CAS  Google Scholar 

  76. Campbell JK, Rogers RB, Lila MA, Erdman JW Jr (2006) Biosynthesis of 14C-phytoene from tomato cell suspension cultures (Lycopersicon esculentum) for utilization in prostate cancer cell culture studies. J Agric Food Chem 54:747–755

    Article  CAS  Google Scholar 

  77. Engelmann NJ, Campbell JK, Rogers RB, Rupassara SI, Garlick PJ, Lila MA, Erdman JW Jr (2010) Screening and selection of high carotenoid producing in vitro tomato cell culture lines for [(13)C]-carotenoid production. J Agric Food Chem 58:9979–9987

    Article  CAS  Google Scholar 

  78. Robertson GH, Mahoney NE, Goodman N, Pavlath AE (1995) Regulation of lycopene formation in cell suspension culture of VFNT tomato (Lycopersicon esculentum) by CPTA, growth regulators, sucrose, and temperature. J Exp Bot 46(287):667–673

    Article  CAS  Google Scholar 

  79. Fosket DE, Radin DN (1983) Induction of carotenogenesis in cultured cells of Lycopersicon esculentum cultivar Ep-7. Plant Sci Lett 30:165–176

    Article  CAS  Google Scholar 

  80. Radin DR (1986) A model cell culture system to study isoprenoid regulation in plants. Curr Top Plant Biochem Physiol 5:153–163

    Google Scholar 

  81. Dupont FM, Staraci LC, Chou B, Thomas BR, Williams BG, Mudd JB (1985) Effect of chilling temperatures upon cell cultures of tomato. Plant Physiol 77:64–68

    Article  CAS  Google Scholar 

  82. Chen DH, Liu CJ, Ye HC, Li GF, Liu BY, Meng YL, Chen XY (1999) Ri-mediated transformation of Artemisia annua with a recombinant farnesyl diphosphate synthase gene for artemisinin production. Plant Cell Tissue Organ Cult 57:157–162

    Article  CAS  Google Scholar 

  83. Exposito O, Syklowska-Baranek K, Moyano E, Onrubia M, Bonfill M, Palazon J, Cusido RM (2010) Metabolic responses of Taxus media transformed cell cultures to the addition of methyl jasmonate. Biotechnol Prog 26:1145–1153

    CAS  Google Scholar 

  84. Mirjalili MH, Moyano E, Bonfill M, Cusido RM, Palazon J (2011) Overexpression of the Arabidopsis thaliana squalene synthase gene in Withania coagulans hairy root cultures. Biol Plant 55:357–360

    Article  CAS  Google Scholar 

  85. Zhang W, Franco C, Curtin C, Conn S (2004) To stretch the boundary of secondary metabolite production in plant cell-based bioprocessing: anthocyanin as a case study. J Biomed Biotech 5:264–271

    Article  CAS  Google Scholar 

  86. Capell T, Christou P (2004) Progress in plant metabolic engineering. Curr Opin Biotechnol 15:148–154

    Article  CAS  Google Scholar 

  87. Goossens A, Haïkkinen ST, Laakso I, Seppänen-Laakso T, Stefania Biondi S, De Sutter V et al (2003) A functional genomics approach toward the understanding of secondary metabolism in plant cells. Proc Natl Acad Sci USA 100:8595–8600

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Work in the Plant Physiology Laboratory (University of Barcelona) was financially supported by the Spanish MEC (BIO2008-01210, BIO2011-29856-C02-01) and the Generalitat de Catalunya (2009SGR1217).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mercedes Bonfill .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Bonfill, M., Malik, S., Mirjalili, M.H., Goleniowski, M., Cusido, R., Palazón, J. (2013). Production and Genetic Engineering of Terpenoids Production in Plant Cell and Organ Cultures. In: Ramawat, K., Mérillon, JM. (eds) Natural Products. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22144-6_123

Download citation

Publish with us

Policies and ethics