Skip to main content

Manipulation of Key Genes Involved in Biosynthesis of Terpenoid Compounds in Plants

  • Chapter
  • First Online:
Metabolic Engineering in Plants

Abstract

Terpenoids represent the diverse class of plant secondary metabolites exhibiting immense applications in pharmaceutical and other industrial sectors. Commercial exploitation of terpenoid compounds is mostly hampered due to lower quantities of these compounds synthesized in their natural plant sources, difficulty in their isolation, and extreme structural diversity leading to expensive synthetic approaches. To overcome these shortcomings, plant-based systems provide an attractive platforms in manipulating the key genes of terpenoid pathways involved in biosynthesis of target terpenoid compounds. At cellular level, plants show compartmentalization and comprise cofactors which assist in metabolic manipulation of whole functional pathways taken from other plants. In this chapter, we have highlighted various attempts of metabolic engineering in host plants for enhanced production of target terpenoid compound. Besides, we have also discussed some important limitations associated with plant-based expression systems, future directions, and developments in harnessing the maximum potential of metabolic engineered plant systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aharoni, A., Jongsma, M. A., & Bouwmeester, H. J. (2005). Volatile science? Metabolic engineering of terpenoids in plants. Trends in Plant Science, 10(12), 594–602.

    Article  CAS  PubMed  Google Scholar 

  • Andersen-Ranberg, J., Kongstad, K. T., Nielsen, M. T., Jensen, N. B., Pateraki, I., Bach, S. S., et al. (2016). Expanding the landscape of diterpene structural diversity through stereochemically controlled combinatorial biosynthesis. Angewandte Chemie International Edition, 55(6), 2142–2146.

    Article  CAS  PubMed  Google Scholar 

  • Ashour, M., Wink, M., & Gershenzon, J. (2010). Biochemistry of terpenoids: Monoterpenes, sesquiterpenes and diterpenes. Annual Plant Reviews, 40, 258–303. Biochemistry of plant secondary metabolism.

    CAS  Google Scholar 

  • Blancquaert, D., Van Daele, J., Strobbe, S., Kiekens, F., Storozhenko, S., De Steur, H., et al. (2015). Improving folate (vitamin B 9) stability in biofortified rice through metabolic engineering. Nature Biotechnology, 33(10), 1076–1078.

    Article  CAS  PubMed  Google Scholar 

  • Bohlmann, J., & Keeling, C. I. (2008). Terpenoid biomaterials. The Plant Journal, 54(4), 656–669.

    Article  CAS  PubMed  Google Scholar 

  • Boutanaev, A. M., Moses, T., Zi, J., Nelson, D. R., Mugford, S. T., Peters, R. J., & Osbourn, A. (2015). Investigation of terpene diversification across multiple sequenced plant genomes. Proceedings of the National Academy of Sciences, 112(1), E81–E88.

    Article  CAS  Google Scholar 

  • Brückner, K., & Tissier, A. (2013). High-level diterpene production by transient expression in Nicotiana benthamiana. Plant Methods, 9(1), 1–10.

    Article  CAS  Google Scholar 

  • Cankar, K., Jongedijk, E., Klompmaker, M., Majdic, T., Mumm, R., Bouwmeester, H., et al. (2015). (+)-Valencene production in Nicotiana benthamiana is increased by down-regulation of competing pathways. Biotechnology Journal, 10(1), 180–189.

    Article  CAS  PubMed  Google Scholar 

  • Carrie, C., Murcha, M. W., Millar, A. H., Smith, S. M., & Whelan, J. (2007). Nine 3-ketoacyl-CoA thiolases (KATs) and acetoacetyl-CoA thiolases (ACATs) encoded by five genes in Arabidopsis thaliana are targeted either to peroxisomes or cytosol but not to mitochondria. Plant Molecular Biology, 63(1), 97–108.

    Article  CAS  PubMed  Google Scholar 

  • Chappell, J., Wolf, F., Proulx, J., Cuellar, R., & Saunders, C. (1995). Is the reaction catalyzed by 3-hydroxy-3-methylglutaryl coenzyme A reductase a rate-limiting step for isoprenoid biosynthesis in plants? Plant Physiology, 109(4), 1337–1343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, F., Tholl, D., Bohlmann, J., & Pichersky, E. (2011). The family of terpene synthases in plants: A mid-size family of genes for specialized metabolism that is highly diversified throughout the kingdom. The Plant Journal, 66(1), 212–229.

    Article  CAS  PubMed  Google Scholar 

  • Christianson, D. W. (2017). Structural and chemical biology of terpenoid cyclases. Chemical Reviews, 117(17), 11,570–11,648.

    Article  CAS  Google Scholar 

  • Chun, J. H., Adhikari, P. B., Park, S. B., Han, J. Y., & Choi, Y. E. (2015). Production of the dammarene sapogenin (protopanaxadiol) in transgenic tobacco plants and cultured cells by heterologous expression of PgDDS and CYP716A47. Plant Cell Reports, 34(9), 1551–1560.

    Article  CAS  PubMed  Google Scholar 

  • Degenhardt, J., Gershenzon, J., Baldwin, I. T., & Kessler, A. (2003a). Attracting friends to feast on foes: Engineering terpene emission to make crop plants more attractive to herbivore enemies. Current Opinion in Biotechnology, 14(2), 169–176.

    Article  CAS  PubMed  Google Scholar 

  • Degenhardt, L., Hall, W., & Lynskey, M. (2003b). Exploring the association between cannabis use and depression. Addiction, 98(11), 1493–1504.

    Article  PubMed  Google Scholar 

  • Dong, L., Miettinen, K., Goedbloed, M., Verstappen, F. W., Voster, A., Jongsma, M. A., & Bouwmeester, H. J. (2013). Characterization of two geraniol synthases from Valeriana officinalis and Lippia dulcis: Similar activity but difference in subcellular localization. Metabolic Engineering, 20, 198–211.

    Article  PubMed  CAS  Google Scholar 

  • Dong, L., Jongedijk, E., Bouwmeester, H., & Van Der Krol, A. (2016). Monoterpene biosynthesis potential of plant subcellular compartments. New Phytologist, 209(2), 679–690.

    Article  CAS  PubMed  Google Scholar 

  • Dong, L., Pollier, J., Bassard, J. E., Ntallas, G., Almeida, A., Lazaridi, E., et al. (2018). Co-expression of squalene epoxidases with triterpene cyclases boosts production of triterpenoids in plants and yeast. Metabolic Engineering, 49, 1–12.

    Article  CAS  PubMed  Google Scholar 

  • Drew, D. P., Krichau, N., Reichwald, K., & Simonsen, H. T. (2009). Guaianolides in Apiaceae: Perspectives on pharmacology and biosynthesis. Phytochemistry Reviews, 8(3), 581–599.

    Article  CAS  Google Scholar 

  • Dudareva, N., Negre, F., Nagegowda, D. A., & Orlova, I. (2006). Plant volatiles: Recent advances and future perspectives. Critical Reviews in Plant Sciences, 25(5), 417–440.

    Article  CAS  Google Scholar 

  • Dudareva, N., & Pichersky, E. (2008). Metabolic engineering of plant volatiles. Current Opinion in Biotechnology, 19(2), 181–189.

    Article  CAS  PubMed  Google Scholar 

  • Erb, M., & Kliebenstein, D. J. (2020). Plant secondary metabolites as defenses, regulators, and primary metabolites: The blurred functional trichotomy. Plant Physiology, 184(1), 39–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farhi, M., Marhevka, E., Ben-Ari, J., Algamas-Dimantov, A., Liang, Z., Zeevi, V., et al. (2011). Generation of the potent anti-malarial drug artemisinin in tobacco. Nature Biotechnology, 29(12), 1072–1074.

    Article  CAS  PubMed  Google Scholar 

  • Forestier, E. C., Czechowski, T., Cording, A. C., Gilday, A. D., King, A. J., Brown, G. D., & Graham, I. A. (2021). Developing a Nicotiana benthamiana transgenic platform for high-value diterpene production and candidate gene evaluation. Plant Biotechnology Journal.

    Google Scholar 

  • Gutensohn, M., Nagegowda, D. A., & Dudareva, N. (2012). Involvement of compartmentalization in monoterpene and sesquiterpene biosynthesis in plants. In Isoprenoid synthesis in plants and microorganisms (pp. 155–169). Springer.

    Chapter  Google Scholar 

  • Hamberger, B., Ohnishi, T., Hamberger, B., Séguin, A., & Bohlmann, J. (2011). Evolution of diterpene metabolism: Sitka spruce CYP720B4 catalyzes multiple oxidations in resin acid biosynthesis of conifer defense against insects. Plant Physiology, 157(4), 1677–1695.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han, J. Y., Wang, H. Y., & Choi, Y. E. (2014). Production of dammarenediol-II triterpene in a cell suspension culture of transgenic tobacco. Plant Cell Reports, 33(2), 225–233.

    Article  CAS  PubMed  Google Scholar 

  • Hasan, M. M., Kim, H. S., Jeon, J. H., Kim, S. H., Moon, B., Song, J. Y., et al. (2014). Metabolic engineering of Nicotiana benthamiana for the increased production of taxadiene. Plant Cell Reports, 33(6), 895–904.

    Article  CAS  PubMed  Google Scholar 

  • Hemmerlin, A., Hoeffler, J. F., Meyer, O., Tritsch, D., Kagan, I. A., Grosdemange-Billiard, C., et al. (2003). Cross-talk between the cytosolic mevalonate and the plastidial methyl erythritol phosphate pathways in tobacco bright yellow-2 cells. Journal of Biological Chemistry, 278(29), 26,666–26,676.

    Article  CAS  Google Scholar 

  • Holtz, B. R., Berquist, B. R., Bennett, L. D., Kommineni, V. J., Munigunti, R. K., White, E. L., et al. (2015). Commercial-scale biotherapeutics manufacturing facility for plant-made pharmaceuticals. Plant Biotechnology Journal, 13(8), 1180–1190.

    Article  CAS  PubMed  Google Scholar 

  • Huang, A. C., Kautsar, S. A., Hong, Y. J., Medema, M. H., Bond, A. D., Tantillo, D. J., & Osbourn, A. (2017). Unearthing a sesterterpene biosynthetic repertoire in the Brassicaceae through genome mining reveals convergent evolution. Proceedings of the National Academy of Sciences, 114(29), E6005–E6014.

    Article  CAS  Google Scholar 

  • Hwang, H. S., Adhikari, P. B., Jo, H. J., Han, J. Y., & Choi, Y. E. (2020). Enhanced monoterpene emission in transgenic orange mint (Mentha× piperita f. citrata) overexpressing a tobacco lipid transfer protein (NtLTP1). Planta, 252(3), 1–12.

    Article  CAS  Google Scholar 

  • Jacobowitz, J. R., & Weng, J. K. (2020). Exploring uncharted territories of plant specialized metabolism in the post genomic era. Annual Review of Plant Biology, 71, 631–658.

    Article  CAS  PubMed  Google Scholar 

  • Jiang, Z., Kempinski, C., Bush, C. J., Nybo, S. E., & Chappell, J. (2016). Engineering triterpene and methylated triterpene production in plants provides biochemical and physiological insights into terpene metabolism. Plant Physiology, 170(2), 702–716.

    Article  CAS  PubMed  Google Scholar 

  • Kappers, I. F., Aharoni, A., Van Herpen, T. W., Luckerhoff, L. L., Dicke, M., & Bouwmeester, H. J. (2005). Genetic engineering of terpenoid metabolism attracts bodyguards to Arabidopsis. Science, 309(5743), 2070–2072.

    Article  CAS  PubMed  Google Scholar 

  • Kempinski, C., & Chappell, J. (2019). Engineering triterpene metabolism in the oilseed of Arabidopsis thaliana. Plant Biotechnology Journal, 17(2), 386–396.

    Article  CAS  PubMed  Google Scholar 

  • Kempinski, C., Jiang, Z., Bell, S., & Chappell, J. (2015). Metabolic engineering of higher plants and algae for isoprenoid production. Biotechnology of Isoprenoids, 161–199.

    Google Scholar 

  • Kempinski, C., Jiang, Z., Zinck, G., Sato, S. J., Ge, Z., Clemente, T. E., & Chappell, J. (2019). Engineering linear, branched-chain triterpene metabolism in monocots. Plant Biotechnology Journal, 17(2), 373–385.

    Article  CAS  PubMed  Google Scholar 

  • Khakimov, B., Kuzina, V., Erthmann, P. Ø., Fukushima, E. O., Augustin, J. M., Olsen, C. E., et al. (2015). Identification and genome organization of saponin pathway genes from a wild crucifer, and their use for transient production of saponins in Nicotiana benthamiana. The Plant Journal, 84(3), 478–490.

    Article  CAS  PubMed  Google Scholar 

  • Kim, Y. K., Kim, Y. B., Uddin, M. R., Lee, S., Kim, S. U., & Park, S. U. (2014). Enhanced triterpene accumulation in Panax ginseng hairy roots overexpressing mevalonate-5-pyrophosphate decarboxylase and farnesyl pyrophosphate synthase. ACS Synthetic Biology, 3(10), 773–779.

    Article  CAS  PubMed  Google Scholar 

  • Lange, B. M., & Ahkami, A. (2013). Metabolic engineering of plant monoterpenes, sesquiterpenes and diterpenes—Current status and future opportunities. Plant Biotechnology Journal, 11(2), 169–196.

    Article  CAS  PubMed  Google Scholar 

  • Leivar, P., González, V. M., Castel, S., Trelease, R. N., López-Iglesias, C., Arró, M., et al. (2005). Subcellular localization of Arabidopsis 3-hydroxy-3-methylglutaryl-coenzyme A reductase. Plant Physiology, 137(1), 57–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewinsohn, E., Schalechet, F., Wilkinson, J., Matsui, K., Tadmor, Y., Nam, K. H., et al. (2001). Enhanced levels of the aroma and flavor compound S-linalool by metabolic engineering of the terpenoid pathway in tomato fruits. Plant Physiology, 127(3), 1256–1265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, C., Sarangapani, S., Wang, Q., Nadimuthu, K., & Sarojam, R. (2020). Metabolic engineering of the native monoterpene pathway in spearmint for production of heterologous monoterpenes reveals complex metabolism and pathway interactions. International Journal of Molecular Sciences, 21(17), 6164.

    Article  CAS  PubMed Central  Google Scholar 

  • Li, J., Mutanda, I., Wang, K., Yang, L., Wang, J., & Wang, Y. (2019). Chloroplastic metabolic engineering coupled with isoprenoid pool enhancement for committed taxanes biosynthesis in Nicotiana benthamiana. Nature Communications, 10(1), 1–12.

    CAS  Google Scholar 

  • Li, S. T., Fu, C. H., Zhang, M., Zhang, Y., Xie, S., & Yu, L. J. (2012). Enhancing taxol biosynthesis by overexpressing a 9-cis-epoxycarotenoid dioxygenase gene in transgenic cell lines of Taxus chinensis. Plant Molecular Biology Reporter, 30(5), 1125–1130.

    Article  CAS  Google Scholar 

  • Liu, Q., Majdi, M., Cankar, K., Goedbloed, M., Charnikhova, T., Verstappen, F. W., et al. (2011). Reconstitution of the costunolide biosynthetic pathway in yeast and Nicotiana benthamiana. PLoS One, 6(8), e23255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, Q., Manzano, D., Tanić, N., Pesic, M., Bankovic, J., Pateraki, I., Ricard, L., Ferrer, A., de Vos, R., van de Krol, S., & Bouwmeester, H. (2014). Elucidation and in planta reconstitution of the parthenolide biosynthetic pathway. Metabolic Engineering, 23, 145–153.

    Article  PubMed  CAS  Google Scholar 

  • Lücker, J., Bouwmeester, H. J., Schwab, W., Blaas, J., Van Der Plas, L. H., & Verhoeven, H. A. (2001). Expression of clarkia S-linalool synthase in transgenic petunia plants results in the accumulation of S-linalyl-β-d-glucopyranoside. The Plant Journal, 27(4), 315–324.

    Article  PubMed  Google Scholar 

  • Lynch, J. H., Huang, X. Q., & Dudareva, N. (2021). Silent constraints: The hidden challenges faced in plant metabolic engineering. Current Opinion in Biotechnology, 69, 112–117.

    Article  CAS  PubMed  Google Scholar 

  • Mendoza-Poudereux, I., Muñoz-Bertomeu, J., Navarro, A., Arrillaga, I., & Segura, J. (2014). Enhanced levels of S-linalool by metabolic engineering of the terpenoid pathway in spike lavender leaves. Metabolic Engineering, 23, 136–144.

    Article  CAS  PubMed  Google Scholar 

  • Merret, R., Cirioni, J. R., Bach, T. J., & Hemmerlin, A. (2007). A serine involved in actin-dependent subcellular localization of a stress-induced tobacco BY-2 hydroxymethylglutaryl-CoA reductase isoform. FEBS Letters, 581(27), 5295–5299.

    Article  CAS  PubMed  Google Scholar 

  • Muhlemann, J. K., Klempien, A., & Dudareva, N. (2014). Floral volatiles: From biosynthesis to function. Plant, Cell & Environment, 37(8), 1936–1949.

    Article  Google Scholar 

  • Nagegowda, D. A. (2010). Plant volatile terpenoid metabolism: Biosynthetic genes, transcriptional regulation and subcellular compartmentation. FEBS Letters, 584(14), 2965–2973.

    Article  CAS  PubMed  Google Scholar 

  • Newman, D. J., & Cragg, G. M. (2016). Natural products as sources of new drugs from 1981 to 2014. Journal of Natural Products, 79(3), 629–661.

    Article  CAS  PubMed  Google Scholar 

  • Paine, J. A., Shipton, C. A., Chaggar, S., Howells, R. M., Kennedy, M. J., Vernon, G., et al. (2005). Improving the nutritional value of Golden Rice through increased pro-vitamin A content. Nature Biotechnology, 23(4), 482–487.

    Article  CAS  PubMed  Google Scholar 

  • Reed, J., Stephenson, M. J., Miettinen, K., Brouwer, B., Leveau, A., Brett, P., et al. (2017). A translational synthetic biology platform for rapid access to gram-scale quantities of novel drug-like molecules. Metabolic Engineering, 42, 185–193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robert, C. A. M., Erb, M., Hiltpold, I., Hibbard, B. E., Gaillard, M. D. P., Bilat, J., et al. (2013). Genetically engineered maize plants reveal distinct costs and benefits of constitutive volatile emissions in the field. Plant Biotechnology Journal, 11(5), 628–639.

    Article  CAS  PubMed  Google Scholar 

  • Sapir-Mir, M., Mett, A., Belausov, E., Tal-Meshulam, S., Frydman, A., Gidoni, D., & Eyal, Y. (2008). Peroxisomal localization of Arabidopsis isopentenyl diphosphate isomerases suggests that part of the plant isoprenoid mevalonic acid pathway is compartmentalized to peroxisomes. Plant Physiology, 148(3), 1219–1228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi, M., Luo, X., Ju, G., Li, L., Huang, S., Zhang, T., et al. (2016). Enhanced diterpene tanshinone accumulation and bioactivity of transgenic Salvia miltiorrhiza hairy roots by pathway engineering. Journal of Agricultural and Food Chemistry, 64(12), 2523–2530.

    Article  CAS  PubMed  Google Scholar 

  • Shih, M. L., & Morgan, J. A. (2020). Metabolic flux analysis of secondary metabolism in plants. Metabolic Engineering Communications, 10, e00123.

    Article  PubMed  PubMed Central  Google Scholar 

  • Simkin, A. J., Guirimand, G., Papon, N., Courdavault, V., Thabet, I., Ginis, O., et al. (2011). Peroxisomal localisation of the final steps of the mevalonic acid pathway in planta. Planta, 234(5), 903–914.

    Article  CAS  PubMed  Google Scholar 

  • Sprenger, G. A., Schörken, U., Wiegert, T., Grolle, S., De Graaf, A. A., Taylor, S. V., et al. (1997). Identification of a thiamin-dependent synthase in Escherichia coli required for the formation of the 1-deoxy-D-xylulose 5-phosphate precursor to isoprenoids, thiamin, and pyridoxol. Proceedings of the National Academy of Sciences, 94(24), 12,857–12,862.

    Article  CAS  Google Scholar 

  • Tremblay, R., Wang, D., Jevnikar, A. M., & Ma, S. (2010). Tobacco, a highly efficient green bioreactor for production of therapeutic proteins. Biotechnology Advances, 28(2), 214–221.

    Article  CAS  PubMed  Google Scholar 

  • Wang, B., Kashkooli, A. B., Sallets, A., Ting, H. M., de Ruijter, N. C., Olofsson, L., et al. (2016). Transient production of artemisinin in Nicotiana benthamiana is boosted by a specific lipid transfer protein from A. annua. Metabolic Engineering, 38, 159–169.

    Article  CAS  PubMed  Google Scholar 

  • Wang, W., Wang, Y., Zhang, Q., Qi, Y., & Guo, D. (2009). Global characterization of Artemisia annua glandular trichome transcriptome using 454 pyrosequencing. BMC Genomics, 10(1), 1–10.

    Article  CAS  Google Scholar 

  • Weitzel, C., & Simonsen, H. T. (2015). Cytochrome P450-enzymes involved in the biosynthesis of mono-and sesquiterpenes. Phytochemistry Reviews, 14(1), 7–24.

    Article  CAS  Google Scholar 

  • Wu, S., Jiang, Z., Kempinski, C., Nybo, S. E., Husodo, S., Williams, R., & Chappell, J. (2012). Engineering triterpene metabolism in tobacco. Planta, 236(3), 867–877.

    Article  CAS  PubMed  Google Scholar 

  • Wu, S., Schalk, M., Clark, A., Miles, R. B., Coates, R., & Chappell, J. (2006). Redirection of cytosolic or plastidic isoprenoid precursors elevates terpene production in plants. Nature Biotechnology, 24(11), 1441–1447.

    Article  CAS  PubMed  Google Scholar 

  • Yang, K., Monafared, R. S., Wang, H., Lundgren, A., & Brodelius, P. E. (2015). The activity of the artemisinic aldehyde Δ11 (13) reductase promoter is important for artemisinin yield in different chemotypes of Artemisia annua L. Plant Molecular Biology, 88(4), 325–340.

    Article  CAS  PubMed  Google Scholar 

  • Yin, J. L., & Wong, W. S. (2019). Production of santalenes and bergamotene in Nicotiana tabacum plants. PLoS One, 14(1), e0203249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin, J. L., Wong, W. S., Jang, I. C., & Chua, N. H. (2017). Co-expression of peppermint geranyl diphosphate synthase small subunit enhances monoterpene production in transgenic tobacco plants. New Phytologist, 213(3), 1133–1144.

    Article  CAS  PubMed  Google Scholar 

  • Yu, F., & Utsumi, R. (2009). Diversity, regulation, and genetic manipulation of plant mono-and sesquiterpenoid biosynthesis. Cellular and Molecular Life Sciences, 66(18), 3043–3052.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Y., Nowak, G., Reed, D. W., & Covello, P. S. (2011). The production of artemisinin precursors in tobacco. Plant Biotechnology Journal, 9(4), 445–454.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, Q., Yu, S., Zeng, D., Liu, H., Wang, H., Yang, Z., & Liu, Y. G. (2017). Development of “purple endosperm rice” by engineering anthocyanin biosynthesis in the endosperm with a high-efficiency transgene stacking system. Molecular Plant, 10(7), 918–929.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, Q., Zeng, D., Yu, S., Cui, C., Li, J., Li, H., & Liu, Y. G. (2018). From golden rice to aSTARice: Bioengineering astaxanthin biosynthesis in rice endosperm. Molecular Plant, 11(12), 1440–1448.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Majeed, M., Rehman, R.U. (2022). Manipulation of Key Genes Involved in Biosynthesis of Terpenoid Compounds in Plants. In: Aftab, T., Hakeem, K.R. (eds) Metabolic Engineering in Plants. Springer, Singapore. https://doi.org/10.1007/978-981-16-7262-0_12

Download citation

Publish with us

Policies and ethics