Skip to main content

Molecular Mechanism of Brassinosteroids in Boosting Crop Yield

  • Chapter
  • First Online:
Brassinosteroids Signalling
  • 360 Accesses

Abstract

Increasing population leads to accelerated demand for food and fodder for fulfilling the needs of generation. Upturn in production by agronomic practices and mechanization is reaching to the plateau demanding more innovative techniques in crop production. Biotechnological approaches in crop plants can serve us with numerous avenues for enhancing crop-related traits. Brassinosteroids (BRs), which are found naturally in plants, can serve as potential regulators in crop production. They act as vital part in regulating plant metabolism related to development, differentiation, and stress retort. However, the mechanism to control/modify the BR signal is difficult. BR application for agricultural application is quite limited. BRs are known to regulate several processes in different plant parts, leading to some side effects. Therefore, efficacious strategies are needed to manipulate BR signals and avoid side effects during the process. To implement such model, there is necessity of creating molecular design of the crops to understand and employ the technique in smooth manner. In this chapter, we focused in representing the molecular mechanism, genes and cascades in plants (both Arabidopsis , and crop plants) for controlling growth-related factors. These techniques upon allocation in crops can set out perceptible biological and cellular BR mechanism and its future application in controlling traits that can serve as approaching tool for enhancing yield and quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amorim-Silva, V., García-Moreno, Á., Castillo, A. G., Lakhssassi, N., Esteban Del Valle, A., Pérez-Sancho, J., Li, Y., Posé, D., Pérez-Rodriguez, J., Lin, J., Valpuesta, V., Borsani, O., et al. (2019). TTL proteins scaffold brassinosteroid signaling components at the plasma membrane to optimize signal transduction in Arabidopsis. Plant Cell, 31, 1807–1828.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anne, P., Azzopardi, M., Gissot, L., Beaubiat, S., Hématy, K., & Palauqui, J. C. (2015). OCTOPUS negatively regulates BIN2 to control phloem differentiation in Arabidopsis thaliana. Current Biology, 25, 2584–2590.

    Article  CAS  PubMed  Google Scholar 

  • Bai, M.-Y., Shang, J.-X., Eunkyoo, O., Fan, M., Yang, B., Zentella, R., Sun, T.-p., & Wang, Z.-Y. (2012a). Brassinosteroid, gibberellin and phytochrome impinge on a common transcription module in Arabidopsis. Nature Cell Biology, 14(8), 810–817. https://doi.org/10.1038/ncb2546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bai, M.-Y., Shang, J.-X., Oh, E., Fan, M., Bai, Y., Zentella, R., Sun, T. P., & Wang, Z.-Y. (2012b). Brassinosteroid, gibberellin and phytochrome impinge on a common transcription module in Arabidopsis. Nat Cell Biol, 14, 810–817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Basera, M., Chandra, A., Kumar, V. A., & Kumar, A. (2018). Affect of brassinosteroids on in vitro proliferation and vegetative growth of potato. Pharma Innovation Journal, 7(4), 4–9.

    Google Scholar 

  • Bechtold, U., & Field, B. (2018). Molecular mechanisms controlling plant growth during abiotic stress. J Exp Bot, 69(11), 2753–2758.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belkhadir, Y., Wang, X., & Chory, J. (2006). Arabidopsis brassinosteroid signaling pathway. Science’s STKE, 2006(364), cm5. https://doi.org/10.1126/stke.3642006cm5

  • Bishop, G. J. (2003). Brassinosteroid mutants of crops. Journal of Plant Growth Regulation, 22(4), 325–335. https://doi.org/10.1007/s00344-003-0064-1

    Article  CAS  PubMed  Google Scholar 

  • Bleecker, A. B., & Kende, H. (2000). Ethylene: A gaseous signal molecule in plants. Annual Review of Cell and Developmental Biology, 16(1), 1–18. https://doi.org/10.1146/annurev.cellbio.16.1.1

    Article  CAS  PubMed  Google Scholar 

  • Caño-Delgado, A., Yin, Y., Yu, C., Vafeados, D., Mora-García, S., Cheng, J.-C., Nam, K. H., Li, J., & Chory, J. (2004). BRL1 and BRL3 are novel brassinosteroid receptors that function in vascular differentiation in Arabidopsis. Development, 131(21), 5341. https://doi.org/10.1242/dev.01403

    Article  CAS  PubMed  Google Scholar 

  • Chaiwanon, J., & Wang, Z. Y. (2015). Spatiotemporal brassinosteroid signaling and antagonism with auxin pattern stem cell dynamics in Arabidopsis roots. Curr Biol, 25, 1031–1042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, J., Nolan, T., Ye, H., Zhang, M., Tong, H., Xin, P., Chu, J., Chu, C., Li, Z., & Yin, Y. (2017). Arabidopsis WRKY46, WRKY54 and WRKY70 transcription factors are involved in brassinosteroid-regulated plant growth and drought response. Plant Cell, 29, 1425–1439.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, E., Zhang, X., Yang, Z., Zhang, C., Wang, X., Ge, X., & Li, F. (2019). BR deficiency causes increased sensitivity to drought and yield penalty in cotton. BMC Plant Biology, 19(1), 220. https://doi.org/10.1186/s12870-019-1832-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choe, S., Fujioka, S., Noguchi, T., Takatsuto, S., Yoshida, S., & Feldmann, K. A. (2001). Overexpression of DWARF4 in the brassinosteroid biosynthetic pathway results in increased vegetative growth and seed yield in Arabidopsis. The Plant Journal: For Cell and Molecular Biology, 26(6), 573–582. https://doi.org/10.1046/j.1365-313x.2001.01055.x

    Article  CAS  Google Scholar 

  • Clouse, S. D. (2011a). Brassinosteroid signal transduction: From receptor kinase activation to transcriptional networks regulating plant development. The Plant Cell, 23(4), 1219. https://doi.org/10.1105/tpc.111.084475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clouse, S. D. (2011b). Brassinosteroids. The Arabidopsis Book, 9, e0151–e0151. https://doi.org/10.1199/tab.0151

    Article  PubMed  PubMed Central  Google Scholar 

  • Clouse, S. D., Langford, M., & McMorris, T. C. (1996). A brassinosteroid-insensitive mutant in Arabidopsis thaliana exhibits multiple defects in growth and development. Plant Physiology, 111(3), 671. https://doi.org/10.1104/pp.111.3.671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Divi, U. K., & Krishna, P. (2010). Overexpression of the brassinosteroid biosynthetic gene AtDWF4 in Arabidopsis seeds overcomes abscisic acid-induced inhibition of germination and increases cold tolerance in transgenic seedlings. Journal of Plant Growth Regulation, 29(4), 385–393. https://doi.org/10.1007/s00344-010-9150-3

    Article  CAS  Google Scholar 

  • Fàbregas, N., et al. (2018). Overexpression of the vascular brassinosteroid receptor BRL3 confers drought resistance without penalizing plant growth. Nat Commun, 9, 4680.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fariduddin, Q., Khan, T. A., Yusuf, M., Aafaqee, S. T., & Khalil, R. R. A. E. (2018). Ameliorative role of salicylic acid and spermidine in the presence of excess salt in Lycopersicon Esculentum. Photosynthetica, 56(3), 750–762. https://doi.org/10.1007/s11099-017-0727-y

    Article  CAS  Google Scholar 

  • Feng, Z., Wu, C., Wang, C., Roh, J., Zhang, L., Chen, J., … Wan, J. (2016). SLG controls grain size and leaf angle by modulating brassinosteroid homeostasis in rice. J Exp Bot, 67(14), 4241–4253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fischer, A. M. (2012). The complex regulation of senescence. Critical Review of Plant Science, 31, 124–147.

    Article  CAS  Google Scholar 

  • Fu, F. Q., Mao, W. H., Shi, K., Zhou, Y. H., Asami, T., & Yu, J. Q. (2008). A role of brassinosteroids in early fruit development in cucumber. J Exp Bot, 59(9), 2299–2308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gallego-Bartolomé, J., Minguet, E. G., Grau-Enguix, F., Abbas, M., Locascio, A., Thomas, S. G., Alabadí, D., & Blázquez, M. A. (2012). Molecular mechanism for the interaction between gibberellin and brassinosteroid signaling pathways in Arabidopsis. Proceedings of the National Academy of Sciences, 109(33), 13446. https://doi.org/10.1073/pnas.1119992109

    Article  Google Scholar 

  • Gampala, S. S., et al. (2007). An essential role for 14-3-3 proteins in brassinosteroid signal transduction in Arabidopsis. Dev Cell, 13, 177–189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Godara, A. S., Singh, R., Chouhan, G. S., & Nepalia, V. (2017). Yield and economics of fenugreek (Trigonella foenum-graecum L.) as influenced by fertility levels, biofertilizers and brassinosteroid. Legume research-an. Int J, 40(1), 165–169.

    Google Scholar 

  • Gou, X., Yin, H., He, K., Du, J., Yi, J., Xu, S., Lin, H., Clouse, S. D., & Li, J. (2012). Genetic evidence for an indispensable role of somatic embryogenesis receptor kinases in brassinosteroid signaling. PLoS Genet, 8, e1002452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hao, Y., Wang, H., Qiao, S., Leng, L., & Wang, X. (2016). Histone deacetylase HDA6 enhances brassinosteroid signaling by inhibiting the BIN2 kinase. Proc Natl Acad Sci U S A, 113, 10418–10423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Havé, M., Marmagne, A., Chardon, F., & Masclaux-Daubresse, C. (2017). Nitrogen remobilization during leaf senescence: Lessons from Arabidopsis to crops. Journal of Experimental Botany, 68, 2513–2529.

    PubMed  Google Scholar 

  • He, J.-X., Gendron, J. M., Yu, S., Gampala, S. S. L., Gendron, N., Sun, C. Q., & Wang, Z.-Y. (2005). BZR1 is a transcriptional repressor with dual roles in brassinosteroid homeostasis and growth responses. Science, 307(5715), 1634. https://doi.org/10.1126/science.1107580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He, G., Liu, J., Dong, H., & Sun, J. (2019). The blue-light receptor CRY1 interacts with BZR1 and BIN2 to modulate the phosphorylation and nuclear function of BZR1 in repressing BR signaling in Arabidopsis. Mol Plant, 12, 689–703.

    Article  CAS  PubMed  Google Scholar 

  • Hohmann, U., Nicolet, J., Moretti, A., Hothorn, L. A., & Hothorn, M. (2018). The SERK3 elongated allele defines a role for BIR ectodomains in brassinosteroid signalling. Nature Plants, 4(6), 345–351. https://doi.org/10.1038/s41477-018-0150-9

    Article  CAS  PubMed  Google Scholar 

  • Holá, D., Rothová, O., Kočová, M., Kohout, L., & Kvasnica, M. (2010). The effect of brassinosteroids on the morphology, development and yield of field-grown maize. Plant Growth Regul, 61(1), 29–43.

    Article  Google Scholar 

  • Holton, N., Caño-Delgado, A., Harrison, K., Montoya, T., Chory, J., & Bishop, G. J. (2007). Tomato brassinosteroid insensitive is required for system in-induced root elongation in Solanum pimpinellifolium but is not essential for wound signaling. Plant Cell, 19, 1709–1717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hothorn, M., Belkhadir, Y., Dreux, M., Dabi, T., Noel, J. P., Wilson, I. A., & Chory, J. (2011). Structural basis of steroid hormone perception by the receptor kinase BRI1. Nature, 474(7352), 467–471. https://doi.org/10.1038/nature10153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Houbaert, A., et al. (2018). POLAR-guided signaling complex assembly and localization drive asymmetric cell division. Nature, 563, 574–578.

    Article  CAS  PubMed  Google Scholar 

  • Jiang, H., Tang, B., Xie, Z., Nolan, T., Ye, H., Song, G.-Y., Walley, J., & Yin, Y. (2019). GSK3-like kinase BIN2 phosphorylates RD26 to potentiate drought signaling in Arabidopsis. Plant J, 100, 923–937.

    Article  CAS  PubMed  Google Scholar 

  • Kang, J.-G., Yun, J., Kim, D.-H., Chung, K.-S., Fujioka, S., Kim, J.-I., Dae, H.-W., Yoshida, S., Takatsuto, S., Song, P.-S., & Park, C.-M. (2001). Light and brassinosteroid signals are integrated via a dark-induced small G protein in etiolated seedling growth. Cell, 105(5), 625–636. https://doi.org/10.1016/S0092-8674(01)00370-1

    Article  CAS  PubMed  Google Scholar 

  • Khan, T. A., Fariduddin, Q., & Yusuf, M. (2015). Lycopersicon Esculentum under low temperature stress: An approach toward enhanced antioxidants and yield. Environmental Science and Pollution Research, 22(18), 14178–14188. https://doi.org/10.1007/s11356-015-4658-5

    Article  CAS  PubMed  Google Scholar 

  • Khan, T. A., Yusuf, M., & Fariduddin, Q. (2018). Hydrogen peroxide in regulation of plant metabolism: Signalling and its effect under abiotic stress. Photosynthetica, 56(4), 1237–1248. https://doi.org/10.1007/s11099-018-0830-8

    Article  CAS  Google Scholar 

  • Khan, T. A., Yusuf, M., Ahmad, A., Bashir, Z., Saeed, T., Fariduddin, Q., Hayat, S., Mock, H.-P., & Tingquan, W. (2019). Proteomic and physiological assessment of stress sensitive and tolerant variety of tomato treated with brassinosteroids and hydrogen peroxide under low-temperature stress. Food Chemistry, 289, 500–511. https://doi.org/10.1016/j.foodchem.2019.03.029

    Article  CAS  PubMed  Google Scholar 

  • Kim, T. W., Guan, S., Sun, Y., Deng, Z., Tang, W., Shang, J. X., Sun, Y., Burlingame, A. L., & Wang, Z. Y. (2009). Brassinosteroid signal transduction from cell-surface receptor kinases to nuclear transcription factors. Nat Cell Biol, 11, 1254–1260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, T. W., Guan, S., Burlingame, A. L., & Wang, Z. Y. (2011). The CDG1 kinase mediates brassinosteroid signal transduction from BRI1 receptor kinase to BSU1 phosphatase and GSK3-like kinase BIN2. Mol Cell, 43, 561–571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, T.-W., Michniewicz, M., Bergmann, D. C., & Wang, Z.-Y. (2012). Brassinosteroid regulates stomatal development by GSK3-mediated inhibition of a MAPK pathway. Nature, 482(7385), 419–422. https://doi.org/10.1038/nature10794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, B., Jeong, Y. J., Corvalán, C., Fujioka, S., Cho, S., Park, T., & Choe, S. (2014). Darkness and gulliver2/phyB mutation decrease the abundance of phosphorylated BZR1 to activate brassinosteroid signaling in Arabidopsis. Plant J, 77, 737–747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, E. J., Lee, S. H., Park, C. H., Kim, S. H., Hsu, C. C., Xu, S., Wang, Z., Kim, S. K., & Kim, T. W. (2019). Plant U-Box 40 mediates degradation of the brassinosteroid-responsive transcription factor BZR1 in Arabidopsis roots. Plant Cell, 31, 791–808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, Y., Park, S.-U., Shin, D.-M., Pham, G., Jeong, Y. S., & Kim, S.-H. (2020). ATBS1-INTERACTING FACTOR 2 negatively regulates dark- and brassinosteroid-induced leaf senescence through interactions with INDUCER OF CBF EXPRESSION 1. Journal of Experimental Botany, 71(4), 1475–1490. https://doi.org/10.1093/jxb/erz533

    Article  CAS  PubMed  Google Scholar 

  • Kir, G., Ye, H., Nelissen, H., Neelakandan, A. K., Kusnandar, A. S., Luo, A., Inzé, D., Sylvester, A. W., Yin, Y., & Becraft, P. W. (2015). RNA interference knockdown of brassinosteroid insensitive in maize reveals novel functions for brassinosteroid signaling in controlling plant architecture. Plant Physiol, 169, 826–839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, J., Shim, D., Moon, S., Kim, H., Bae, W., Kim, K., Kim, Y.-H., Rhee, S.-K., Hong, C. P., Hong, S.-Y., Lee, Y.-J., Sung, J., & Ryu, H. (2018). Genome-wide transcriptomic analysis of BR-deficient micro-tom reveals correlations between drought stress tolerance and brassinosteroid signaling in tomato. Plant Physiology and Biochemistry, 127, 553–560. https://doi.org/10.1016/j.plaphy.2018.04.031

    Article  CAS  PubMed  Google Scholar 

  • Li, J., & Chory, J. (1997). A putative leucine-rich repeat receptor kinase involved in Brassinosteroid signal transduction. Cell, 90(5), 929–938. https://doi.org/10.1016/S0092-8674(00)80357-8

    Article  CAS  PubMed  Google Scholar 

  • Li, J., & Nam, K. H. (2002). Regulation of brassinosteroid signaling by a GSK3/SHAGGY-like kinase. Science, 295, 1299–1301.

    Article  CAS  PubMed  Google Scholar 

  • Li, J., Wen, J., Lease, K. A., Doke, J. T., Tax, F. E., & Walker, J. C. (2002). BAK1, an Arabidopsis LRR receptor-like protein kinase, interacts with BRI1 and modulates brassinosteroid signaling. Cell, 110(2), 213–222. https://doi.org/10.1016/S0092-8674(02)00812-7

    Article  CAS  PubMed  Google Scholar 

  • Li, L., Yu, X., Thompson, A., Guo, M., Yoshida, S., Asami, T., Chory, J., & Yin, Y. (2009). Arabidopsis MYB30 is a direct target of BES1 and cooperates with BES1 to regulate brassinosteroid-induced gene expression. The Plant Journal, 58(2), 275–286. https://doi.org/10.1111/j.1365-313X.2008.03778.x

    Article  CAS  PubMed  Google Scholar 

  • Li, J., Li, Y., Chen, S., & An, L. (2010). Involvement of brassinosteroid signals in the floral-induction network of Arabidopsis. Journal of Experimental Botany, 61(15), 4221–4230. https://doi.org/10.1093/jxb/erq241

    Article  CAS  PubMed  Google Scholar 

  • Li, Q.-F., Wang, C., Jiang, L., Li, S., Sun, S. S. M., & He, J.-X. (2012). An interaction between BZR1 and DELLAs mediates direct signaling crosstalk between brassinosteroids and gibberellins in Arabidopsis. Science Signaling, 5(244), ra72. https://doi.org/10.1126/scisignal.2002908

    Article  CAS  PubMed  Google Scholar 

  • Liang, T., Mei, S., Shi, C., Yang, Y., Peng, Y., Ma, L., Wang, F., Li, X., Huang, X., Yin, Y., & Liu, H. (2018). UVR8 interacts with BES1 and BIM1 to regulate transcription and photomorphogenesis in Arabidopsis. Dev Cell, 44, 512–523.e5.

    Article  CAS  PubMed  Google Scholar 

  • Lima, J. V., & Lobato, A. K. S. (2017). Brassinosteroids improve photosystem II efficiency, gas exchange, antioxidant enzymes and growth of cowpea plants exposed to water deficit. Physiol Mol Biol Plants, 23(1), 59–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, T., Zhang, J., Wang, M., Wang, Z., Li, G., Qu, L., & Wang, G. (2007). Expression and functional analysis of ZmDWF4, an orthologue of Arabidopsis DWF4 from maize (Zea mays L.). Plant Cell Rep, 26, 2091–2099.

    Article  CAS  PubMed  Google Scholar 

  • Lu, F., Cui, X., Zhang, S., Jenuwein, T., & Cao, X. (2011). Arabidopsis REF6 is a histone H3 lysine 27 demethylase. Nat Genet, 43, 715–719.

    Article  CAS  PubMed  Google Scholar 

  • Makarevitch, I., Thompson, A., Muehlbauer, G. J., & Springer, N. M. (2012). Brd1 gene in maize encodes a brassinosteroid C-6 oxidase. PLoS One, 7, e30798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martínez, C., Espinosa-Ruíz, A., de Lucas, M., Bernardo-García, S., Franco-Zorrilla, J. M., & Prat, S. (2018). PIF4-induced BR synthesis is critical to diurnal and thermomorphogenic growth. EMBO J, 37, 37.

    Article  Google Scholar 

  • McCourt, P. (1999). Genetic analysis of hormone signaling. Annual Review of Plant Physiology and Plant Molecular Biology, 50(1), 219–243. https://doi.org/10.1146/annurev.arplant.50.1.219

    Article  CAS  PubMed  Google Scholar 

  • Morinaka, Y., Sakamoto, T., Inukai, Y., Agetsuma, M., Kitano, H., Ashikari, M., & Matsuoka, M. (2006). Morphological alteration caused by brassinosteroid insensitivity increases the biomass and grain production of rice. Plant Physiology, 141(3), 924. https://doi.org/10.1104/pp.106.077081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nam, K. H., & Li, J. (2002). BRI1/BAK1, a receptor kinase pair mediating brassinosteroid signaling. Cell, 110(2), 203–212. https://doi.org/10.1016/S0092-8674(02)00814-0

    Article  CAS  PubMed  Google Scholar 

  • Nazir, F., Fariduddin, Q., & Khan, T. A. (2020). Hydrogen peroxide as a signalling molecule in plants and its crosstalk with other plant growth regulators under heavy metal stress. Chemosphere, 252, 126486. https://doi.org/10.1016/j.chemosphere.2020.126486

    Article  CAS  PubMed  Google Scholar 

  • Neff, M. M., Nguyen, S. M., Malancharuvil, E. J., Fujioka, S., Noguchi, T., Seto, H., Tsubuki, M., Honda, T., Takatsuto, S., Yoshida, S., & Chory, J. (1999). BAS1: A gene regulating brassinosteroid levels and light responsiveness in Arabidopsis. Proceedings of the National Academy of Sciences, 96(26), 15316. https://doi.org/10.1073/pnas.96.26.15316

  • Nolan, T. M., Brennan, B., Yang, M., Chen, J., Zhang, M., Li, Z., Wang, X., Bassham, D. C., Walley, J., & Yin, Y. (2017). Selective autophagy of BES1 mediated by DSK2 balances plant growth and survival. Dev Cell, 41, 33–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nolan, T. M., Vukašinović, N., Liu, D., Russinova, E., & Yin, Y. (2020). Brassinosteroids: Multidimensional regulators of plant growth, development, and stress responses. The Plant Cell, 32(2), 295–318. https://doi.org/10.1105/tpc.19.00335

    Article  CAS  PubMed  Google Scholar 

  • Oh, E., Zhu, J.-Y., & Wang, Z.-Y. (2012). Interaction between BZR1 and PIF4 integrates brassinosteroid and environmental responses. Nature Cell Biology, 14(8), 802–809. https://doi.org/10.1038/ncb2545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oh, E., Zhu, J.-Y., Bai, M.-Y., Arenhart, R. A., Sun, Y., & Wang, Z.-Y. (2014a). Cell elongation is regulated through a central circuit of interacting transcription factors in the Arabidopsis hypocotyl. elife, 3, 3.

    Article  Google Scholar 

  • Oh, E., Zhu, J.-Y., Ryu, H., Hwang, I., & Wang, Z.-Y. (2014b). Topless mediates brassinosteroid-induced transcriptional repression through interaction with BZR1. Nat Commun, 5, 4140.

    Article  CAS  PubMed  Google Scholar 

  • Planas-Riverola, A., Gupta, A., Betegón-Putze, I., Bosch, N., Ibañes, M., & Caño-Delgado, A. I. (2019). Brassinosteroid signaling in plant development and adaptation to stress. Development, 146(5), dev151894. https://doi.org/10.1242/dev.151894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prochazka, P., Štranc, P., Vostřel, J., Řehoř, J., Křováček, J., Brinar, J., & Pazderů, K. (2019). The influence of effective soybean seed treatment on root biomass formation and seed production. Plant Soil Environ, 65(12), 588–593.

    Article  CAS  Google Scholar 

  • Qu, T., Liu, R., Wang, W., An, L., Chen, T., Liu, G., & Zhao, Z. (2011). Brassinosteroids regulate pectin methylesterase activity and AtPME41 expression in Arabidopsis under chilling stress. Cryobiology, 63(2), 111–117. https://doi.org/10.1016/j.cryobiol.2011.07.003

    Article  CAS  PubMed  Google Scholar 

  • Ren, H., Willige, B. C., Jaillais, Y., Geng, S., Park, M. Y., Gray, W. M., & Chory, J. (2019). Brassinosteroid-signaling kinase 3, a plasma membrane-associated scaffold protein involved in early brassinosteroid signaling. PLoS Genet, 15, e1007904.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ryu, H., Kim, K., Cho, H., Park, J., Choe, S., & Hwang, I. (2007). Nucleocytoplasmic shuttling of BZR1 mediated by phosphorylation is essential in Arabidopsis brassinosteroid signaling. Plant Cell, 19, 2749–2762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryu, H., Cho, H., Bae, W., & Hwang, I. (2014). Control of early seedling development by BES1/TPL/HDA19-mediated epigenetic regulation of ABI3. Nat Commun, 5, 4138.

    Article  CAS  PubMed  Google Scholar 

  • Sahni, S., Prasad, B. D., Liu, Q., Grbic, V., Sharpe, A., Singh, S. P., & Krishna, P. (2016). Overexpression of the brassinosteroid biosynthetic gene DWF4 in Brassica Napus simultaneously increases seed yield and stress tolerance. Scientific Reports, 6(1), 28298. https://doi.org/10.1038/srep28298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakamoto, T., et al. (2006). Erect leaves caused by brassinosteroid deficiency increase biomass production and grain yield in rice. Nat Biotechnol, 24, 105–109.

    Article  CAS  PubMed  Google Scholar 

  • Salazar-Henao, J. E., Lehner, R., Betegón-Putze, I., Vilarrasa-Blasi, J., & Caño-Delgado, A. I. (2016). BES1 regulates the localization of the brassinosteroid receptor BRL3 within the provascular tissue of the Arabidopsis primary root. J Exp Bot, 67(17), 4951–4961.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarwat, M., Naqvi, A. R., Ahmad, P., Ashraf, M., & Akram, N. A. (2013). Phytohormones and microRNAs as sensors and regulators of leaf senescence: Assigning macro roles to small molecules. Biotechnol Adv, 31(8), 1153–1171.

    Article  CAS  PubMed  Google Scholar 

  • Serna, M., Hernández, F., Coll, F., & Amorós, A. (2012). Brassinosteroid analogues effect on yield and quality parameters of field-grown lettuce (Lactuca sativa L.). Sci Hortic, 143, 29–37.

    Article  CAS  Google Scholar 

  • Shahid, M. A., Pervez, M. A., Balal, R. M., Mattson, N. S., Rashid, A., Ahmad, R., … Abbas, T. (2011). Brassinosteroid (24-epibrassinolide) enhances growth and alleviates the deleterious effects induced by salt stress in pea (‘Pisum sativum’L.). Aust J Crop Sci, 5(5), 500–510.

    CAS  Google Scholar 

  • Shi, Y. H., Zhu, S. W., Mao, X. Z., Feng, J. X., Qin, Y. M., Zhang, L., … Zhu, Y. X. (2006). Transcriptome profiling, molecular biological and physiological studies reveal a major role for ethylene in cotton fiber cell elongation. Plant Cell, 18(3), 651–664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimada, S., Komatsu, T., Yamagami, A., Nakazawa, M., Matsui, M., Kawaide, H., Natsume, M., Osada, H., Asami, T., & Nakano, T. (2015). Formation and dissociation of the BSS1 protein complex regulates plant development via brassinosteroid signaling. Plant Cell, 27, 375–390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sirhindi, G., Kumar, S., Bhardwaj, R., & Kumar, M. (2009). Effects of 24-epibrassinolide and 28-homobrassinolide on the growth and antioxidant enzyme activities in the seedlings of Brassica Juncea L. Physiol Mol Biol Plants, 15(4), 335–341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun, Y., Fan, X.-Y., Cao, D.-M., Tang, W., He, K., Zhu, J.-Y., He, J.-X., Bai, M.-Y., Zhu, S., Eunkyoo, O., Patil, S., Kim, T.-W., Ji, H., Wong, W. H., Rhee, S. Y., & Wang, Z.-Y. (2010). Integration of brassinosteroid signal transduction with the transcription network for plant growth regulation in Arabidopsis. Developmental Cell, 19(5), 765–777. https://doi.org/10.1016/j.devcel.2010.10.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Susila, T., Reddy, S. A., Rajkumar, M., Padmaja, G., & Rao, P. V. (2012). Effects of sowing date and spraying of brassinosteroid on yield and fruit quality characters of watermelon. World Journal of Agricultural Sciences, 8(3), 223–228.

    CAS  Google Scholar 

  • Symons, G. M., Davies, C., Shavrukov, Y., Dry, I. B., Reid, J. B., & Thomas, M. R. (2006). Grapes on steroids. Brassinosteroids are involved in grape berry ripening. Plant Physiol, 140(1), 150–158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szekeres, M., Németh, K., Koncz-Kálmán, Z., Mathur, J., Kauschmann, A., Altmann, T., Rédei, G. P., Nagy, F., Schell, J., & Koncz, C. (1996). Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and de-etiolation in Arabidopsis. Cell, 85(2), 171–182. https://doi.org/10.1016/s0092-8674(00)81094-6

    Article  CAS  PubMed  Google Scholar 

  • Tang, W., Deng, Z., Oses-Prieto, J. A., Suzuki, N., Zhu, S., Zhang, X., Burlingame, A. L., & Wang, Z.-Y. (2008). Proteomics studies of brassinosteroid signal transduction using prefractionation and two-dimensional DIGE. Molecular & Cellular Proteomics, 7(4), 728. https://doi.org/10.1074/mcp.M700358-MCP200

    Article  CAS  Google Scholar 

  • Tang, W., Yuan, M., Wang, R., Yang, Y., Wang, C., Oses-Prieto, J. A., Kim, T.-W., Zhou, H.-W., Deng, Z., Gampala, S. S., Gendron, J. M., Jonassen, E. M., Lillo, C., DeLong, A., Burlingame, A. L., Sun, Y., & Wang, Z.-Y. (2011). PP2A activates brassinosteroid-responsive gene expression and plant growth by dephosphorylating BZR1. Nature Cell Biology, 13(2), 124–131. https://doi.org/10.1038/ncb2151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian, Y., et al. (2018). Hydrogen peroxide positively regulates brassinosteroid signaling through oxidation of the Brassinazole-resistant 1 transcription factor. Nat Commun, 9, 1063.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tunc-Ozdemir, M., & Jones, A. M. (2017). BRL3 and AtRGS1 cooperate to fine tune growth inhibition and ROS activation. PLoS One, 12(5), e0177400.

    Article  PubMed  PubMed Central  Google Scholar 

  • Varduini, V. B., Seet, S., & Ram Rao, A. (2001). Effect of brassinosteroids on growth and yield of tomato (Lycopersicon esculentum mill.) under field conditions. Proceedings Plant Growth Regulation of Social America, 24, 101–106.

    Google Scholar 

  • Vardhini, B. V., Sujatha, E., & Rao, S. S. R. (2011). Studies on the effect of brassinosteroids on the qualitative changes in the storage roots of radish. Asian Australas J Plant Sci Biotechnol, 5(1), 27–30.

    Google Scholar 

  • Vert, G., & Chory, J. (2006). Downstream nuclear events in brassinosteroid signalling. Nature, 441(7089), 96–100. https://doi.org/10.1038/nature04681

    Article  CAS  PubMed  Google Scholar 

  • Vogler, F., Schmalzl, C., Englhart, M., Bircheneder, M., & Sprunck, S. (2014). Brassinosteroids promote Arabidopsis pollen germination and growth. Plant Reproduction, 27(3), 153–167. https://doi.org/10.1007/s00497-014-0247-x

    Article  CAS  PubMed  Google Scholar 

  • Wan, L., Zhang, F., Zhang, L., Liu, L., Chen, C., Ma, N., & Zhang, C (2017) Brassinosteroids promote physiological maturity and seed development of winter oilseed rape (Brassica napus L.). Oil Crop Science, 1(2), 122.

    Google Scholar 

  • Wang, H., Ma, L.-G., Li, J.-M., Zhao, H.-Y., & Deng, X. W. (2001). Direct interaction of Arabidopsis cryptochromes with COP1 in light control development. Science, 294(5540), 154. https://doi.org/10.1126/science.1063630

    Article  CAS  PubMed  Google Scholar 

  • Wang, Z.-Y., Nakano, T., Gendron, J., He, J., Chen, M., Vafeados, D., Yang, Y., Fujioka, S., Yoshida, S., Asami, T., & Chory, J. (2002). Nuclear-localized BZR1 mediates brassinosteroid-induced growth and feedback suppression of brassinosteroid biosynthesis. Developmental Cell, 2(4), 505–513. https://doi.org/10.1016/S1534-5807(02)00153-3

    Article  CAS  PubMed  Google Scholar 

  • Wang, X., & Chory, J. (2006). Brassinosteroids regulate dissociation of BKI1, a negative regulator of BRI1 signaling, from the plasma membrane. Science, 313, 1118–1122.

    Article  CAS  PubMed  Google Scholar 

  • Wang, H., Yang, C., Zhang, C., Wang, N., Lu, D., Wang, J., Zhang, S., Wang, Z.-X., Ma, H., & Wang, X. (2011). Dual role of BKI1 and 14-3-3 s in brassinosteroid Signaling to link receptor with transcription factors. Developmental Cell, 21(5), 825–834. https://doi.org/10.1016/j.devcel.2011.08.018

    Article  CAS  PubMed  Google Scholar 

  • Wang, Z.-Y., Bai, M.-Y., Eunkyoo, O., & Zhu, J.-Y. (2012). Brassinosteroid signaling network and regulation of photomorphogenesis. Annual Review of Genetics, 46(1), 701–724. https://doi.org/10.1146/annurev-genet-102209-163450

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y., Sun, S., Zhu, W., Jia, K., Yang, H., & Wang, X. (2013). Strigolactone/MAX2-induced degradation of brassinosteroid transcriptional effector BES1 regulates shoot branching. Dev Cell, 27, 681–688.

    Article  CAS  PubMed  Google Scholar 

  • Wang, X., Chen, J., Xie, Z., Liu, S., Nolan, T., Ye, H., Zhang, M., Guo, H., Schnable, P. S., Li, Z., & Yin, Y. (2014). Histone lysine methyltransferase SDG8 is involved in brassinosteroid-regulated gene expression in Arabidopsis thaliana. Mol Plant, 7, 1303–1315.

    Article  CAS  PubMed  Google Scholar 

  • Wang, W., et al. (2018). Photoexcited CRYPTOCHROME1 interacts with dephosphorylated BES1 to regulate brassinosteroid signaling and photomorphogenesis in Arabidopsis. Plant Cell, 30, 1989–2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, C.-y., Trieu, A., Radhakrishnan, P., Kwok, S. F., Harris, S., Zhang, K., Wang, J., Wan, J., Zhai, H., Takatsuto, S., Matsumoto, S., Fujioka, S., Feldmann, K. A., & Pennell, R. I. (2008). Brassinosteroids regulate grain filling in rice. The Plant Cell, 20(8), 2130–2145. https://doi.org/10.1105/tpc.107.055087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, C. Y., et al. (2008). Brassinosteroids regulate grain filling in rice. Plant Cell, 20, 2130–2145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, G., Wang, X., Li, X., Kamiya, Y., Otegui, M. S., & Chory, J. (2011). Methylation of a phosphatase specifies dephosphorylation and degradation of activated brassinosteroid receptors. Science Signaling, 4(172), ra29. https://doi.org/10.1126/scisignal.2001258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia, X.-J., Wang, Y.-J., Zhou, Y.-H., Tao, Y., Mao, W.-H., Shi, K., Asami, T., Chen, Z., & Jing-Quan, Y. (2009). Reactive oxygen species are involved in brassinosteroid-induced stress tolerance in cucumber. Plant Physiology, 150(2), 801. https://doi.org/10.1104/pp.109.138230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie, Z., Nolan, T., Jiang, H., Tang, B., Zhang, M., Li, Z., & Yin, Y. (2019). The AP2/ERF transcription factor TINY modulates brassinosteroid-regulated plant growth and drought responses in Arabidopsis. Plant Cell, 31, 1788–1806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu, F., Xi, Z. M., Zhang, H., Zhang, C. J., & Zhang, Z. W. (2015). Brassinosteroids are involved in controlling sugar unloading in Vitis vinifera ‘Cabernet Sauvignon’ berries during véraison. Plant Physiol Biochem, 94, 197–208.

    Article  CAS  PubMed  Google Scholar 

  • Yamamuro, C., Ihara, Y., Wu, X., Noguchi, T., Fujioka, S., Takatsuto, S., Ashikari, M., Kitano, H., & Matsuoka, M. (2000). Loss of function of a rice brassinosteroid insensitive1 homolog prevents internode elongation and bending of the lamina joint. The Plant Cell, 12(9), 1591–1606. https://doi.org/10.1105/tpc.12.9.1591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, M., Li, C., Cai, Z., Hu, Y., Nolan, T., Yu, F., Yin, Y., Xie, Q., Tang, G., & Wang, X. (2017). SINAT E3 ligases control the light-mediated stability of the brassinosteroid-activated transcription factor BES1 in Arabidopsis. Dev Cell, 41, 47–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye, Q., Zhu, W., Li, L., Zhang, S., Yin, Y., Ma, H., & Wang, X. (2010). Brassinosteroids control male fertility by regulating the expression of key genes involved in Arabidopsis anther and pollen development. Proceedings of the National Academy of Sciences of the United States of America, 107(13), 6100–6105. https://doi.org/10.1073/pnas.0912333107

    Article  PubMed  PubMed Central  Google Scholar 

  • Ye, H., Li, L., Guo, H., & Yin, Y. (2012). MYBL2 is a substrate of GSK3-like kinase BIN2 and acts as a corepressor of BES1 in brassinosteroid signaling pathway in Arabidopsis. Proc Natl Acad Sci U S A, 109, 20142–20147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye, H., et al. (2017). RD26 mediates crosstalk between drought and brassinosteroid signaling pathways. Nat Commun, 8, 14573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin, Y., Wang, Z.-Y., Mora-Garcia, S., Li, J., Yoshida, S., Asami, T., & Chory, J. (2002). BES1 accumulates in the nucleus in response to brassinosteroids to regulate gene expression and promote stem elongation. Cell, 109(2), 181–191. https://doi.org/10.1016/S0092-8674(02)00721-3

    Article  CAS  PubMed  Google Scholar 

  • Yin, Y., Vafeados, D., Tao, Y., Yoshida, S., Asami, T., & Chory, J. (2005). A new class of transcription factors mediates brassinosteroid-regulated gene expression in Arabidopsis. Cell, 120(2), 249–259. https://doi.org/10.1016/j.cell.2004.11.044

    Article  CAS  PubMed  Google Scholar 

  • Yoshida, T., Mogami, J., & Yamaguchi-Shinozaki, K. (2014). ABA-dependent and ABA-independent signaling in response to osmotic stress in plants. Curr Opin Plant Biol, 21, 133–139.

    Article  CAS  PubMed  Google Scholar 

  • Yu, X., Li, L., Li, L., Guo, M., Chory, J., & Yin, Y. (2008). Modulation of brassinosteroid-regulated gene expression by Jumonji domain-containing proteins ELF6 and REF6 in Arabidopsis. Proc Natl Acad Sci U S A, 105, 7618–7623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu, X., Li, L., Zola, J., Aluru, M., Ye, H., Foudree, A., Guo, H., Anderson, S., Aluru, S., Liu, P., Rodermel, S., & Yin, Y. (2011). A brassinosteroid transcriptional network revealed by genome-wide identification of BESI target genes in Arabidopsis thaliana. The Plant Journal, 65(4), 634–646. https://doi.org/10.1111/j.1365-313X.2010.04449.x

    Article  CAS  PubMed  Google Scholar 

  • Yusuf, M., Fariduddin, Q., Khan, T. A., & Hayat, S. (2017). Epibrassinolide reverses the stress generated by combination of excess aluminum and salt in two wheat cultivars through altered proline metabolism and antioxidants. South African Journal of Botany, 112, 391–398. https://doi.org/10.1016/j.sajb.2017.06.034

    Article  CAS  Google Scholar 

  • Zeng, H., Tang, Q., & Hua, X. (2010). Arabidopsis brassinosteroid mutants Det2-1 and Bin2-1 display altered salt tolerance. Journal of Plant Growth Regulation, 29(1), 44–52. https://doi.org/10.1007/s00344-009-9111-x

    Article  CAS  Google Scholar 

  • Zhang, A., Zhang, J., Zhang, J., Ye, N., Zhang, H., Tan, M., & Jiang, M. (2011). Nitric oxide mediates brassinosteroid-induced ABA biosynthesis involved in oxidative stress tolerance in maize leaves. Plant and Cell Physiology, 52(1), 181–192. https://doi.org/10.1093/pcp/pcq187

    Article  CAS  PubMed  Google Scholar 

  • Zhang, S., Hu, J., Zhang, Y., Xie, X. J., & Knapp, A. (2007). Seed priming with brassinolide improves lucerne (Medicago sativa L.) seed germination and seedling growth in relation to physiological changes under salinity stress. Aust J Agric Res, 58(8), 811–815.

    Article  CAS  Google Scholar 

  • Zhang, C., Bai, M.-y., & Chong, K. (2014a). Brassinosteroid-mediated regulation of agronomic traits in rice. Plant Cell Reports, 33(5), 683–696. https://doi.org/10.1007/s00299-014-1578-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, H., Zhang, J., Wei, P., Zhang, B., Gou, F., Feng, Z., Mao, Y., Yang, L., Zhang, H., Xu, N., & Zhu, J.-K. (2014b). The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnology Journal, 12(6), 797–807. https://doi.org/10.1111/pbi.12200

    Article  CAS  PubMed  Google Scholar 

  • Zhou, Y., Xia, X., Yu, G., Wang, J., Wu, J., Wang, M., Yang, Y., Shi, K., Yu, Y., Chen, Z., Gan, J., & Jingquan, Y. (2015). Brassinosteroids play a critical role in the regulation of pesticide metabolism in crop plants. Scientific Reports, 5(1), 9018. https://doi.org/10.1038/srep09018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou, J., Liu, D., Wang, P., Ma, X., Lin, W., Chen, S., Mishev, K., Lu, D., Kumar, R., Vanhoutte, I., Meng, X., He, P., Russinova, E., & Shan, L. (2018). Regulation of Arabidopsis brassinosteroid receptor BRI1 endocytosis and degradation by plant U-box PUB12/PUB13-mediated ubiquitination. Proceedings of the National Academy of Sciences, 115(8), E1906. https://doi.org/10.1073/pnas.1712251115

  • Zhu, Z., Zhang, Z., Qin, G., & Tian, S. (2010). Effects of brassinosteroids on postharvest disease and senescence of jujube fruit in storage. Postharvest Biol Technol, 56(1), 50–55.

    Article  CAS  Google Scholar 

  • Zhu, J. Y., Li, Y., Cao, D. M., Yang, H., Oh, E., Bi, Y., Zhu, S., & Wang, Z. Y. (2017). The F-box protein KIB1 mediates brassinosteroid-induced inactivation and degradation of GSK3-like kinases in Arabidopsis. Mol Cell, 66, 648–657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou, L. J., Deng, X. G., Zhang, L. E., Zhu, T., Tan, W. R., Muhammad, A., … Lin, H. H. (2018). Nitric oxide as a signaling molecule in brassinosteroid-mediated virus resistance to cucumber mosaic virus in Arabidopsis thaliana. Physiol Plant, 163(2), 196–210.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dubey, R., Tiwari, D. (2022). Molecular Mechanism of Brassinosteroids in Boosting Crop Yield. In: Khan, M.T.A., Yusuf, M., Qazi, F., Ahmad, A. (eds) Brassinosteroids Signalling. Springer, Singapore. https://doi.org/10.1007/978-981-16-5743-6_16

Download citation

Publish with us

Policies and ethics