Skip to main content
Log in

Arabidopsis Brassinosteroid Mutants det2-1 and bin2-1 Display Altered Salt Tolerance

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Exogenous brassinosteroid (BR) has been reported to improve plant resistance to abiotic stress, but little is known about the role of endogenous BR in plant stress responses. In this study we investigated the involvement of endogenous BR in salt stress response using BR mutants det2-1 and bin2-1 of Arabidopsis. Seed germination and seedling growth of det2-1 and bin2-1 were more sensitive to salt stress than that of Columbia wild type (WT). The transcript levels of salt- and ABA-induced genes COR78 and P5CS1 were less induced in det2-1 than in WT under 200 mM NaCl. In addition, the basal proline level and, to a lesser extent, the proline level induced by 200 mM NaCl or 50 μM ABA in both det2-1 and bin2-1 was enhanced, resulting in decreased proline accumulation. On the other hand, exogenous 24-epibrassinolide (EBR) could enhance proline accumulation, promote root elongation of WT, and partially rescue the growth of det2-1 under salt stress. These results suggested that endogenous BR is positively involved in the plant response to salt stress in Arabidopsis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abraham E, Rigo G, Szekely G, Nagy R, Koncz C, Szabados L (2003) Light-dependent induction of proline biosynthesis by abscisic acid and salt stress is inhibited by brassinosteroid in Arabidopsis. Plant Mol Biol 51:363–372

    Article  CAS  PubMed  Google Scholar 

  • Anuradha S, Rao SSR (2001) Effect of brassinosteroids on salinity stress induced inhibition of seed germination and seedling growth of rice (Oryza sativa L.). Plant Growth Regul 33:151–153

    Article  CAS  Google Scholar 

  • Anuradha S, Rao SSR (2003) Application of brassinosteroids to rice seeds (Oryza sativa L.) reduced the impact of salt stress on growth, prevented photosynthetic pigment loss and increased nitrate reductase activity. Plant Growth Regul 40:29–32

    Article  CAS  Google Scholar 

  • Bates L, Waldren RP, Teare ID (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:107–205

    Article  Google Scholar 

  • Clouse SD, Sasse JM (1998) Brassinosteroids: essential regulators of plant growth and development. Annu Rev Plant Physiol Plant Mol Biol 49:427–451

    Article  CAS  PubMed  Google Scholar 

  • Dhaubhadel S, Browning KS, Gallie DR, Krishna P (2002) Brassinosteroid functions to protect the translational machinery and heat-shock protein synthesis following thermal stress. Plant J 29:681–691

    Article  CAS  PubMed  Google Scholar 

  • Friedrichsen DM, Nemhauser J, Muramitsu T, Maloof JN, Alonso J, Ecker JR, Furuya M, Chory J (2002) Three redundant brassinosteroid early response genes encode putative bHLH transcription factors required for normal growth. Genetics 162:1445–1456

    CAS  PubMed  Google Scholar 

  • Hare PD, Cress WA (1997) Metabolic implications of stress-induced proline accumulation in plants. Plant Growth Regul 21:79–102

    Article  CAS  Google Scholar 

  • Hayat S, Ali B, Aiman Hasan S, Ahmad A (2007) Brassinosteroid enhanced the level of antioxidants under cadmium stress in Brassica juncea. Environ Exp Bot 60:33–41

    Article  CAS  Google Scholar 

  • Hua XJ, Van De Cotte B, Van Montagu M, Verbruggen N (2001) The 5′ untranslated region of the At-P5R is involved in both transcriptional and post-transcriptional regulation. Plant J 26:157–169

    Article  CAS  PubMed  Google Scholar 

  • Kagale S, Divi UK, Krochko JE, Keller WA, Krishna P (2007) Brassinosteroid confers tolerance in Arabidopsis thaliana and Brassica napus to a range of abiotic stresses. Planta 225:353–364

    Article  CAS  PubMed  Google Scholar 

  • Knight H, Trewavas AJ, Knight MR (1997) Calcium signalling in Arabidopsis thaliana responding to drought and salinity. Plant J 12(5):1067–1078

    Article  CAS  PubMed  Google Scholar 

  • Koh S, Lee SC, Kim MK, Koh JH, Lee S, An G, Choe S, Kim SR (2007) T-DNA tagged knockout mutation of rice OsGSK1, an orthologue of Arabidopsis BIN2, with enhanced tolerance to various abiotic stresses. Plant Mol Biol 65:453–466

    Article  CAS  PubMed  Google Scholar 

  • Li J, Jin H (2006) Regulation of brassinosteroid signaling. Trends Plant Sci 12:37–41

    Article  CAS  PubMed  Google Scholar 

  • Li J, Nagpal P, Vitart V, McMorris TC, Chory J (1996) A role for brassinosteroids light-dependent development of Arabidopsis. Science 272:398–401

    Article  CAS  PubMed  Google Scholar 

  • Li J, Nam KH, Vafeados D, Chory J (2001) BIN2, a new brassinosteroid-insensitive locus in Arabidopsis. Plant Physiol 127:14–22

    Article  CAS  PubMed  Google Scholar 

  • Lin PC, Hwang SG, Endo A, Okamoto M, Koshib T, Cheng WH (2007) Ectopic expression of ABSCISIC ACID2/GLUCOSE INSENSITIVE1 in Arabidopsis promotes seed dormancy and stress tolerance. Plant Physiol 143:745–758

    Article  CAS  PubMed  Google Scholar 

  • Mizoguchi T, Ichimura K, Shinozaki K (1997) Environmental stress response in plants: the role of mitogen-activated protein kinases. Trends Biotechnol 15:15–19

    Article  CAS  PubMed  Google Scholar 

  • Müssig C, Fischer S, Altmann T (2001) Brassinosteroid-regulated gene expression. Plant Physiol 129:1241–1251

    Article  Google Scholar 

  • Neff MM, Nguyen SM, Malancharuvil E, Fujioka S, Noguchi T, Seto H, Tsubuki M, Honda T, Takatsuto S, Yoshida S, Chory J (1999) BAS1: a gene regulating brassinosteroid levels and light responsiveness in Arabidopsis. Proc Natl Acad Sci USA 96:15316–15323

    Article  CAS  PubMed  Google Scholar 

  • Nemhauser JL, Mockler TC, Chory J (2004) Interdependency of brassinosteroid and auxin signaling in Arabidopsis. PLOS Biol 2:1460–1471

    Article  CAS  Google Scholar 

  • Ogweno JO, Song XS, Shi K, Hu WH, Mao WH, Zhou YH, Yu JQ, Nogués S (2008) Brassinosteroids alleviate heat-induced inhibition of photosynthesis by increasing carboxylation efficiency and enhancing antioxidant systems in Lycopersicon esculentum. J Plant Growth Regul 27:49–57

    Article  CAS  Google Scholar 

  • Parre E, Ghars MA, Leprince AS, Thiery L, Lefebvre D, Bordenave M, Richard L, Mazars C, Abdelly C, Savouré A (2007) Calcium signaling via phospholipase C is essential for proline accumulation upon ionic but not nonionic hyperosmotic stresses in Arabidopsis. Plant Physiol 144:503–512

    Article  CAS  PubMed  Google Scholar 

  • Savouré A, Jauoa S, Hua XJ, Ardiles W, van Montague M, Verbruggen N (1995) Isolation, characterization, and chromosomal location of a gene encoding the △1-pyrroline-5-carboxylate synthetase in Arabidopsis thaliana. FEBS Lett 372:13–19

    Article  PubMed  Google Scholar 

  • Savouré A, Hua XJ, Bertauche N, Van Montagu M, Verbruggen N (1997) Abscisic acid-independent and abscisic acid-dependent regulation of proline biosynthesis following cold and osmotic stresses in Arabidopsis thaliana. Mol Gen Genet 254:104–109

    Article  PubMed  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K, Sekiz M (2003) Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol 6:410–417

    Article  CAS  PubMed  Google Scholar 

  • Singh I, Shono M (2005) Physiological and molecular effects of 24-epibrassinolide, a brassinosteroid on thermotolerance of tomato. Plant Growth Regul 47:111–119

    Article  CAS  Google Scholar 

  • Steber CM, McCourt P (2001) A role for brassinosteroids in germination in Arabidopsis. Plant Physiol 125:763–769

    Article  CAS  PubMed  Google Scholar 

  • Strizhov N, Ábraham E, Okresz L, Blickling S, Zilberstein A, Schell J, Koncz C, Szabados L (1997) Differential expression of two P5CS genes controlling proline accumulation during salt-stress requires ABA and is regulated by ABA1, ABI1 and AXR2 in Arabidopsis. Plant J 12:557–569

    Article  CAS  PubMed  Google Scholar 

  • Takahashi F, Yoshida R, Ichimura K, Mizoguchi T, Seo S, Yonezawa M, Maruyama K, Yamaguchi-Shinozaki K, Shinozaki K (2007) The mitogen-activated protein kinase cascade MKK3–MPK6 is an important part of the jasmonate signal transduction pathway in Arabidopsis. Plant Cell 19:805–818

    Article  CAS  PubMed  Google Scholar 

  • Thiery L, Leprince AS, Lefebvre D, Ghars MA, Debarbieux E, Savouré A (2004) Phospholipase D is a negative regulator of proline biosynthesis in Arabidopsis thaliana. J Biol Chem 279:14812–14818

    Article  CAS  PubMed  Google Scholar 

  • Turk EM, Fujioka S, Hideharu S, Shimada Y, Takatsuto S, Yoshida S, Wang H, Torres QI, Ward JM, Murthy G, Zhang J, Walker JC, Neff MM (2005) BAS1 and SOB7 act redundantly to modulate Arabidopsis photomorphogenesis via unique brassinosteroid inactivation mechamisms. Plant J 42:23–43

    Article  CAS  PubMed  Google Scholar 

  • Vardhini BV, Rao SSR (2003) Amelioration of osmotic stress by brassinosteroids on seed germination and seedling growth of three varieties of sorghum. Plant Growth Regul 41:25–31

    Article  CAS  Google Scholar 

  • Walia H, Wilson C, Condamine P, Liu X, Ismail AM, Close TJ (2007) Large-scale expression profiling and physiological characterization of jasmonic acid-mediated adaptation of barley to salinity stress. Plant Cell Environ 30:410–421

    Article  CAS  PubMed  Google Scholar 

  • Wang ZY, He JX (2004) Brassinosteroid signal transduction—choices of signals and receptors. Trends Plant Sci 9:92–96

    Google Scholar 

  • Wang Y, Liu C, Li K, Sun F, Hu H, Li X, Zhao Y, Han C, Zhang W, Duan Y, Liu M, Li X (2007) Arabidopsis EIN2 modulates stress response through abscisic acid response pathway. Plant Mol Biol 64:633–644

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57:781–803

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Jia W, Yang J, Ismail AM (2006) Role of ABA in integrating plant responses to drought and salt stresses. Field Crops Res 97:111–119

    Article  Google Scholar 

  • Zhang S, Cai Z, Wang X (2009) The primary signaling outputs of brassinosteroids are regulated by abscisic acid signaling. Proc Natl Acad Sci U S A 106:4543–4548

    Article  CAS  PubMed  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. Zhiyong Wang (Stanford University) and Dr. Jun Zhao (The Chinese Academy of Agriculture Sciences) for providing Arabidopsis mutant seeds. This work was supported by the Chinese National Key Basic Research Project (#2006CB100100) from the Ministry of Science and Technology of China and the Hundred Talent Program of the Chinese Academy of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuejun Hua.

Additional information

Haitao Zeng and Qi Tang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeng, H., Tang, Q. & Hua, X. Arabidopsis Brassinosteroid Mutants det2-1 and bin2-1 Display Altered Salt Tolerance. J Plant Growth Regul 29, 44–52 (2010). https://doi.org/10.1007/s00344-009-9111-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-009-9111-x

Keywords

Navigation