Skip to main content

Evolution of Zebrafish as a Novel Pharmacological Model in Endocrine Research

  • Chapter
  • First Online:
Zebrafish Model for Biomedical Research

Abstract

Zebrafish is a powerful platform in the modern era of phenotype-based drug discovery and eminent vertebrate model to study disease progression and its pathophysiology. Zebrafish possess several advantages over rodent model including low cost, females that lay up to 300 eggs per week, the optical clarity of embryo, external fertilization, and highly amenable to transgenic modifications using various genetic toolkits. Zebrafish have almost 70% genetic homology with humans, and 82% of disease-causing human proteins are orthologue to zebrafish. The bottleneck in drug discovery is high cost, laborious, and time taking processes to generate hits. Zebrafish provide a novel option to overcome this bottleneck and have enabled rapid drug discovery in the area of cancer, cardiovascular diseases, endocrine diseases, and many more. However, zebrafish cannot completely replace the mammalian model in drug discovery, but it can form a bridge between cell-based assays and mammalian models, thus reducing the overall cost and time in lead generation. Therefore, in this chapter, we have discussed the role of zebrafish as an emerging vertebrate model in the area of endocrinology disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abraham E et al (2010) Targeted gonadotropin-releasing hormone-3 neuron ablation in zebrafish: effects on neurogenesis, neuronal migration, and reproduction. Endocrinology 151(1):332–340

    Article  CAS  PubMed  Google Scholar 

  • Afelik S, Jensen J (2013) Notch signaling in the pancreas: patterning and cell fate specification. Wiley Interdiscip Rev Dev Biol 2(4):531–544

    Article  CAS  PubMed  Google Scholar 

  • Afelik S, Chen Y, Pieler T (2006) Combined ectopic expression of Pdx1 and Ptf1a/p48 results in the stable conversion of posterior endoderm into endocrine and exocrine pancreatic tissue. Genes Dev 20(11):1441–1446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akimenko MA et al (2003) Old questions, new tools, and some answers to the mystery of fin regeneration. Dev Dyn 226(2):190–201

    Article  PubMed  Google Scholar 

  • Al-Awar A et al (2016) Experimental diabetes mellitus in different animal models. J Diabetes Res 2016:9051426

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Alexander C et al (2011) Combinatorial roles for BMPs and endothelin 1 in patterning the dorsal-ventral axis of the craniofacial skeleton. Development 138(23):5135–5146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alexandre-Heymann L et al (2019) Structure and function of the exocrine pancreas in patients with type 1 diabetes. Rev Endocr Metab Disord 20(2):129–149

    Article  PubMed  Google Scholar 

  • Alsop D, Vijayan M (2009) The zebrafish stress axis: molecular fallout from the teleost-specific genome duplication event. Gen Comp Endocrinol 161(1):62–66

    Article  CAS  PubMed  Google Scholar 

  • Alsop D, Ings JS, Vijayan MM (2009) Adrenocorticotropic hormone suppresses gonadotropin-stimulated estradiol release from zebrafish ovarian follicles. PLoS One 4(7):e6463

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Alvarez Y et al (2010) Predominant cone photoreceptor dysfunction in a hyperglycaemic model of non-proliferative diabetic retinopathy. Dis Model Mech 3(3–4):236–245

    Article  CAS  PubMed  Google Scholar 

  • Amacher SL (2008) Emerging gene knockout technology in zebrafish: zinc-finger nucleases. Brief Funct Genomic Proteomic 7(6):460–464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aman AJ, Fulbright AN, Parichy DM (2018) Wnt/β-catenin regulates an ancient signaling network during zebrafish scale development. elife 7

    Google Scholar 

  • Anderson RM et al (2009) Loss of Dnmt1 catalytic activity reveals multiple roles for DNA methylation during pancreas development and regeneration. Dev Biol 334(1):213–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson JL, Carten JD, Farber SA (2011) Zebrafish lipid metabolism: from mediating early patterning to the metabolism of dietary fat and cholesterol. Methods Cell Biol 101:111–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anık A et al (2015) Maturity-onset diabetes of the young (MODY): an update. J Pediatr Endocrinol Metab 28(3–4):251–263

    PubMed  Google Scholar 

  • Apschner A, Schulte-Merker S, Witten PE (2011) Not all bones are created equal - using zebrafish and other teleost species in osteogenesis research. Methods Cell Biol 105:239–255

    Article  PubMed  Google Scholar 

  • Apschner A et al (2014) Zebrafish enpp1 mutants exhibit pathological mineralization, mimicking features of generalized arterial calcification of infancy (GACI) and pseudoxanthoma elasticum (PXE). Dis Model Mech 7(7):811–822

    PubMed  PubMed Central  Google Scholar 

  • Argenton F, Zecchin E, Bortolussi M (1999) Early appearance of pancreatic hormone-expressing cells in the zebrafish embryo. Mech Dev 87(1–2):217–221

    Article  CAS  PubMed  Google Scholar 

  • Asadipooya K, Uy EM (2019) Advanced glycation end products (AGEs), receptor for AGEs, diabetes, and bone: review of the literature. J Endocr Soc 3(10):1799–1818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asharani PV et al (2012) Attenuated BMP1 function compromises osteogenesis, leading to bone fragility in humans and zebrafish. Am J Hum Genet 90(4):661–674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashikov A et al (2018) Integrating glycomics and genomics uncovers SLC10A7 as essential factor for bone mineralization by regulating post-Golgi protein transport and glycosylation. Hum Mol Genet 27(17):3029–3045

    Article  CAS  PubMed  Google Scholar 

  • Azetsu Y et al (2017) The sp7 gene is required for maturation of osteoblast-lineage cells in medaka (Oryzias latipes) vertebral column development. Dev Biol 431(2):252–262

    Article  CAS  PubMed  Google Scholar 

  • Bailey CJ, Turner RC (1996) Metformin. N Engl J Med 334(9):574–579

    Article  CAS  PubMed  Google Scholar 

  • Baldock PA, Eisman JA (2004) Genetic determinants of bone mass. Curr Opin Rheumatol 16(4):450–456

    Article  CAS  PubMed  Google Scholar 

  • Baron R, Hesse E (2012) Update on bone anabolics in osteoporosis treatment: rationale, current status, and perspectives. J Clin Endocrinol Metab 97(2):311–325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barrett R et al (2006) A rapid, high content, in vivo model of glucocorticoid-induced osteoporosis. Biotechnol J 1(6):651–655

    Article  CAS  PubMed  Google Scholar 

  • Bella J et al (2006) Conformational effects of Gly-X-Gly interruptions in the collagen triple helix. J Mol Biol 362(2):298–311

    Article  CAS  PubMed  Google Scholar 

  • Benchoula K et al (2019a) The promise of zebrafish as a model of metabolic syndrome. Exp Anim 68(4):407–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benchoula K et al (2019b) Optimization of hyperglycemic induction in zebrafish and evaluation of its blood glucose level and metabolite fingerprint treated with Psychotria malayana Jack Leaf extract. Molecules 24(8)

    Google Scholar 

  • Bergen DJM et al (2017) The Golgi matrix protein giantin is required for normal cilia function in zebrafish. Biol Open 6(8):1180–1189

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bergen DJM, Kague E, Hammond CL (2019) Zebrafish as an emerging model for osteoporosis: a primary testing platform for screening new Osteo-active compounds. Front Endocrinol (Lausanne) 10:6

    Article  Google Scholar 

  • Biemar F et al (2001) Pancreas development in zebrafish: early dispersed appearance of endocrine hormone expressing cells and their convergence to form the definitive islet. Dev Biol 230(2):189–203

    Article  CAS  PubMed  Google Scholar 

  • Blaine J, Chonchol M, Levi M (2015) Renal control of calcium, phosphate, and magnesium homeostasis. Clin J Am Soc Nephrol 10(7):1257–1272

    Article  CAS  PubMed  Google Scholar 

  • Bo L et al (2016) Iron deficiency anemia’s effect on bone formation in zebrafish mutant. Biochem Biophys Res Commun 475(3):271–276

    Article  CAS  PubMed  Google Scholar 

  • Borovina A et al (2010) Vangl2 directs the posterior tilting and asymmetric localization of motile primary cilia. Nat Cell Biol 12(4):407–412

    Article  CAS  PubMed  Google Scholar 

  • Bowen ME et al (2012) Efficient mapping and cloning of mutations in zebrafish by low-coverage whole-genome sequencing. Genetics 190(3):1017–1024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brito-Casillas Y, Melián C, Wägner AM (2016) Study of the pathogenesis and treatment of diabetes mellitus through animal models. Endocrinol Nutr 63(7):345–353

    Article  PubMed  Google Scholar 

  • Brooke NM, Garcia-Fernàndez J, Holland PW (1998) The ParaHox gene cluster is an evolutionary sister of the Hox gene cluster. Nature 392(6679):920–922

    Article  CAS  PubMed  Google Scholar 

  • Brownlee M (2005) The pathobiology of diabetic complications: a unifying mechanism. Diabetes 54(6):1615–1625

    Article  CAS  PubMed  Google Scholar 

  • Brunt LH et al (2017) Wnt signalling controls the response to mechanical loading during zebrafish joint development. Development 144(15):2798–2809

    CAS  PubMed  PubMed Central  Google Scholar 

  • Buchan JG et al (2014) Kinesin family member 6 (kif6) is necessary for spine development in zebrafish. Dev Dyn 243(12):1646–1657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bujan L et al (2000) Increase in scrotal temperature in car drivers. Hum Reprod 15(6):1355–1357

    Article  CAS  PubMed  Google Scholar 

  • Busse B et al (2020) Zebrafish: an emerging model for orthopedic research. J Orthop Res 38(5):925–936

    Article  PubMed  Google Scholar 

  • Bussmann J, Schulte-Merker S (2011) Rapid BAC selection for tol2-mediated transgenesis in zebrafish. Development 138(19):4327–4332

    Article  CAS  PubMed  Google Scholar 

  • Capiotti KM et al (2014a) Persistent impaired glucose metabolism in a zebrafish hyperglycemia model. Comp Biochem Physiol B Biochem Mol Biol 171:58–65

    Article  CAS  PubMed  Google Scholar 

  • Capiotti KM et al (2014b) Hyperglycemia induces memory impairment linked to increased acetylcholinesterase activity in zebrafish (Danio rerio). Behav Brain Res 274:319–325

    Article  CAS  PubMed  Google Scholar 

  • Cassar S et al (2020) Use of zebrafish in drug discovery toxicology. Chem Res Toxicol 33(1):95–118

    Article  CAS  PubMed  Google Scholar 

  • Castañeda R et al (2017) Trigonelline promotes auditory function through nerve growth factor signaling on diabetic animal models. Phytomedicine 36:128–136

    Article  PubMed  CAS  Google Scholar 

  • Cattin L (2016) Diabetes Mellitus: etiology, pathophysiology and clinical classification. G Ital Nefrol 33:S68

    Google Scholar 

  • Chakraborty C et al (2009) Zebrafish: a complete animal model for in vivo drug discovery and development. Curr Drug Metab 10(2):116–124

    Article  CAS  PubMed  Google Scholar 

  • Charles JF, Ermann J, Aliprantis AO (2015) The intestinal microbiome and skeletal fitness: connecting bugs and bones. Clin Immunol 159(2):163–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Charles JF et al (2017) Utility of quantitative micro-computed tomographic analysis in zebrafish to define gene function during skeletogenesis. Bone 101:162–171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chatani M, Takano Y, Kudo A (2011) Osteoclasts in bone modeling, as revealed by in vivo imaging, are essential for organogenesis in fish. Dev Biol 360(1):96–109

    Article  CAS  PubMed  Google Scholar 

  • Cheah FS et al (2010) Tgfbeta3 regulation of chondrogenesis and osteogenesis in zebrafish is mediated through formation and survival of a subpopulation of the cranial neural crest. Mech Dev 127(7–8):329–344

    Article  CAS  PubMed  Google Scholar 

  • Chen B, Zheng YM, Zhang JP (2018) Comparative study of different diets-induced NAFLD models of zebrafish. Front Endocrinol (Lausanne) 9:366

    Article  Google Scholar 

  • Cheng Q et al (2017) Postmenopausal Iron overload exacerbated bone loss by promoting the degradation of type I collagen. Biomed Res Int 2017:1345193

    Article  PubMed  PubMed Central  Google Scholar 

  • Chico TJ, Ingham PW, Crossman DC (2008) Modeling cardiovascular disease in the zebrafish. Trends Cardiovasc Med 18(4):150–155

    Article  CAS  PubMed  Google Scholar 

  • Chu CY et al (2012) Overexpression of Akt1 enhances adipogenesis and leads to lipoma formation in zebrafish. PLoS One 7(5):e36474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clocquet AR et al (2000) Impaired insulin secretion and increased insulin sensitivity in familial maturity-onset diabetes of the young 4 (insulin promoter factor 1 gene). Diabetes 49(11):1856–1864

    Article  CAS  PubMed  Google Scholar 

  • Clouthier DE et al (2013) Understanding the basis of auriculocondylar syndrome: insights from human, mouse and zebrafish genetic studies. Am J Med Genet C Semin Med Genet 163c(4):306–317

    Article  PubMed  CAS  Google Scholar 

  • Conti PS et al (1996) PET and [18F]-FDG in oncology: a clinical update. Nucl Med Biol 23(6):717–735

    Article  CAS  PubMed  Google Scholar 

  • Coutinho AE, Chapman KE (2011) The anti-inflammatory and immunosuppressive effects of glucocorticoids, recent developments and mechanistic insights. Mol Cell Endocrinol 335(1):2–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Curado S et al (2007) Conditional targeted cell ablation in zebrafish: a new tool for regeneration studies. Dev Dyn 236(4):1025–1035

    Article  CAS  PubMed  Google Scholar 

  • Dai W et al (2015) High fat plus high cholesterol diet lead to hepatic steatosis in zebrafish larvae: a novel model for screening anti-hepatic steatosis drugs. Nutr Metab (Lond) 12:42

    Article  CAS  Google Scholar 

  • Dalgin G, Prince VE (2015) Differential levels of Neurod establish zebrafish endocrine pancreas cell fates. Dev Biol 402(1):81–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Vrieze E et al (2014) Prednisolone induces osteoporosis-like phenotype in regenerating zebrafish scales. Osteoporos Int 25(2):567–578

    Article  PubMed  CAS  Google Scholar 

  • de Vrieze E et al (2015) Identification of novel osteogenic compounds by an ex-vivo sp7:luciferase zebrafish scale assay. Bone 74:106–113

    Article  PubMed  CAS  Google Scholar 

  • Delaspre F et al (2015) Centroacinar cells are progenitors that contribute to endocrine pancreas regeneration. Diabetes 64(10):3499–3509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeLaurier A et al (2010) Zebrafish sp7:EGFP: a transgenic for studying otic vesicle formation, skeletogenesis, and bone regeneration. Genesis 48(8):505–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeLaurier A et al (2014) Role of mef2ca in developmental buffering of the zebrafish larval hyoid dermal skeleton. Dev Biol 385(2):189–199

    Article  CAS  PubMed  Google Scholar 

  • Delvecchio C, Tiefenbach J, Krause HM (2011) The zebrafish: a powerful platform for in vivo, HTS drug discovery. Assay Drug Dev Technol 9(4):354–361

    Article  CAS  PubMed  Google Scholar 

  • DeRossi C et al (2016) trappc11 is required for protein glycosylation in zebrafish and humans. Mol Biol Cell 27(8):1220–1234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Detrich HW 3rd, Westerfield M, Zon LI (1999) Overview of the zebrafish system. Methods Cell Biol 59:3–10

    Article  CAS  PubMed  Google Scholar 

  • Dienel GA et al (1997) Determination of local brain glucose level with [14C]methylglucose: effects of glucose supply and demand. Am J Phys 273(5):E839–E849

    CAS  Google Scholar 

  • Doufas AG, Mastorakos G (2000) The hypothalamic-pituitary-thyroid axis and the female reproductive system. Ann N Y Acad Sci 900:65–76

    Article  CAS  PubMed  Google Scholar 

  • Du SJ et al (2001) Visualizing normal and defective bone development in zebrafish embryos using the fluorescent chromophore calcein. Dev Biol 238(2):239–246

    Article  CAS  PubMed  Google Scholar 

  • Duke SO (2018) Glyphosate: the world’s most successful herbicide under intense scientific scrutiny. Pest Manag Sci 74(5):1025–1026

    Article  CAS  PubMed  Google Scholar 

  • Eames SC et al (2010) Blood sugar measurement in zebrafish reveals dynamics of glucose homeostasis. Zebrafish 7(2):205–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eames BF et al (2011) Mutations in fam20b and xylt1 reveal that cartilage matrix controls timing of endochondral ossification by inhibiting chondrocyte maturation. PLoS Genet 7(8):e1002246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eames SC et al (2013) Transgenic zebrafish model of the C43G human insulin gene mutation. J Diabetes Investig 4(2):157–167

    Article  CAS  PubMed  Google Scholar 

  • Elo B et al (2007) Larval zebrafish as a model for glucose metabolism: expression of phosphoenolpyruvate carboxykinase as a marker for exposure to anti-diabetic compounds. J Mol Endocrinol 38(4):433–440

    Article  CAS  PubMed  Google Scholar 

  • Epstein FH, Epstein JA (2005) A perspective on the value of aquatic models in biomedical research. Exp Biol Med (Maywood) 230(1):1–7

    Article  CAS  Google Scholar 

  • Eyre DR, Weis MA (2013) Bone collagen: new clues to its mineralization mechanism from recessive osteogenesis imperfecta. Calcif Tissue Int 93(4):338–347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faillaci F et al (2018) Obese zebrafish: a small fish for a major human health condition. Animal Model Exp Med 1(4):255–265

    Article  PubMed  PubMed Central  Google Scholar 

  • Fei F et al (2017) Generation and phenotype analysis of zebrafish mutations of obesity-related genes lepr and mc4r. Sheng Li Xue Bao 69(1):61–69

    PubMed  Google Scholar 

  • Fiedler IAK et al (2018) Severely impaired bone material quality in Chihuahua zebrafish resembles classical dominant human osteogenesis imperfecta. J Bone Miner Res 33(8):1489–1499

    Article  CAS  PubMed  Google Scholar 

  • Field HA et al (2003) Formation of the digestive system in zebrafish. II Pancreas morphogenesis. Dev Biol 261(1):197–208

    Article  CAS  PubMed  Google Scholar 

  • Figà-Talamanca I et al (1992) Fertility and semen quality of workers exposed to high temperatures in the ceramics industry. Reprod Toxicol 6(6):517–523

    Article  PubMed  Google Scholar 

  • Fisher S, Jagadeeswaran P, Halpern ME (2003) Radiographic analysis of zebrafish skeletal defects. Dev Biol 264(1):64–76

    Article  CAS  PubMed  Google Scholar 

  • Flynn EJ 3rd, Trent CM, Rawls JF (2009) Ontogeny and nutritional control of adipogenesis in zebrafish (Danio rerio). J Lipid Res 50(8):1641–1652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forn-Cuní G et al (2015) Liver immune responses to inflammatory stimuli in a diet-induced obesity model of zebrafish. J Endocrinol 224(2):159–170

    Article  PubMed  CAS  Google Scholar 

  • Forum on Neuroscience and Nervous System Disorders (2014) The National Academies Collection: reports funded by National Institutes of Health. In: Improving and accelerating therapeutic development for nervous system disorders: workshop summary. National Academies Press, Washington, DC

    Google Scholar 

  • Furman BL (2015) Streptozotocin-induced diabetic models in mice and rats. Curr Protoc Pharmacol 70:5.47.1–5.47.20

    Article  Google Scholar 

  • Garbes L et al (2015) Mutations in SEC24D, encoding a component of the COPII machinery, cause a syndromic form of osteogenesis imperfecta. Am J Hum Genet 96(3):432–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gemberling M et al (2013) The zebrafish as a model for complex tissue regeneration. Trends Genet 29(11):611–620

    Article  CAS  PubMed  Google Scholar 

  • Ghaye AP et al (2015) Progenitor potential of nkx6.1-expressing cells throughout zebrafish life and during beta cell regeneration. BMC Biol 13:70

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gioia R et al (2017) The chaperone activity of 4PBA ameliorates the skeletal phenotype of Chihuahua, a zebrafish model for dominant osteogenesis imperfecta. Hum Mol Genet 26(15):2897–2911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gistelinck C et al (2018) Zebrafish type I collagen mutants faithfully recapitulate human type I collagenopathies. Proc Natl Acad Sci U S A 115(34):E8037–e8046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gleeson M, Connaughton V, Arneson LS (2007) Induction of hyperglycaemia in zebrafish (Danio rerio) leads to morphological changes in the retina. Acta Diabetol 44(3):157–163

    Article  CAS  PubMed  Google Scholar 

  • Glowacki J et al (1986) Osteoclasts can be induced in fish having an acellular bony skeleton. Proc Natl Acad Sci U S A 83(11):4104–4107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Governale LS (2015) Craniosynostosis. Pediatr Neurol 53(5):394–401

    Article  PubMed  Google Scholar 

  • Gray RS et al (2014) Loss of col8a1a function during zebrafish embryogenesis results in congenital vertebral malformations. Dev Biol 386(1):72–85

    Article  CAS  PubMed  Google Scholar 

  • Green J et al (2009) A gain of function mutation causing skeletal overgrowth in the rapunzel mutant. Dev Biol 334(1):224–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greenspan P, Mayer EP, Fowler SD (1985) Nile red: a selective fluorescent stain for intracellular lipid droplets. J Cell Biol 100(3):965–973

    Article  CAS  PubMed  Google Scholar 

  • Grimes DT et al (2016) Zebrafish models of idiopathic scoliosis link cerebrospinal fluid flow defects to spine curvature. Science 352(6291):1341–1344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grinspon RP, Rey RA (2019) Molecular characterization of XX maleness. Int J Mol Sci 20(23)

    Google Scholar 

  • Guo L et al (2016) Functional investigation of a non-coding variant associated with adolescent idiopathic scoliosis in zebrafish: elevated expression of the ladybird Homeobox gene causes body Axis deformation. PLoS Genet 12(1):e1005802

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gupta T, Mullins MC (2010) Dissection of organs from the adult zebrafish. J Vis Exp 37

    Google Scholar 

  • Gut P et al (2013) Whole-organism screening for gluconeogenesis identifies activators of fasting metabolism. Nat Chem Biol 9(2):97–104

    Article  CAS  PubMed  Google Scholar 

  • Hammond CL, Moro E (2012) Using transgenic reporters to visualize bone and cartilage signaling during development in vivo. Front Endocrinol (Lausanne) 3:91

    Article  Google Scholar 

  • Hammond CL, Schulte-Merker S (2009) Two populations of endochondral osteoblasts with differential sensitivity to hedgehog signalling. Development 136(23):3991–4000

    Article  CAS  PubMed  Google Scholar 

  • Han Z et al (2011) Effects of β-endosulfan on the growth and reproduction of zebrafish (Danio rerio). Environ Toxicol Chem 30(11):2525–2531

    Article  CAS  PubMed  Google Scholar 

  • Harris MP et al (2008) Zebrafish eda and edar mutants reveal conserved and ancestral roles of ectodysplasin signaling in vertebrates. PLoS Genet 4(10):e1000206

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hasumura T et al (2012) Green tea extract suppresses adiposity and affects the expression of lipid metabolism genes in diet-induced obese zebrafish. Nutr Metab (Lond) 9(1):73

    Article  Google Scholar 

  • Hayes M et al (2014) ptk7 mutant zebrafish models of congenital and idiopathic scoliosis implicate dysregulated Wnt signalling in disease. Nat Commun 5:4777

    Article  CAS  PubMed  Google Scholar 

  • He H et al (2018) Possible mechanisms of prednisolone-induced osteoporosis in zebrafish larva. Biomed Pharmacother 101:981–987

    Article  CAS  PubMed  Google Scholar 

  • Heckler K, Kroll J (2017) Zebrafish as a model for the study of microvascular complications of diabetes and their mechanisms. Int J Mol Sci 18(9)

    Google Scholar 

  • Heiden TC et al (2008) Molecular targets of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) within the zebrafish ovary: insights into TCDD-induced endocrine disruption and reproductive toxicity. Reprod Toxicol 25(1):47–57

    Article  CAS  PubMed  Google Scholar 

  • Henke K et al (2017) Genetic screen for postembryonic development in the zebrafish (Danio rerio): dominant mutations affecting adult form. Genetics 207(2):609–623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herbomel P, Thisse B, Thisse C (2001) Zebrafish early macrophages colonize cephalic mesenchyme and developing brain, retina, and epidermis through a M-CSF receptor-dependent invasive process. Dev Biol 238(2):274–288

    Article  CAS  PubMed  Google Scholar 

  • Herrera PL, Nepote V, Delacour A (2002) Pancreatic cell lineage analyses in mice. Endocrine 19(3):267–278

    Article  CAS  PubMed  Google Scholar 

  • Herzog W et al (2003) Adenohypophysis formation in the zebrafish and its dependence on sonic hedgehog. Dev Biol 254(1):36–49

    Article  CAS  PubMed  Google Scholar 

  • Holsberger DR, Cooke PS (2005) Understanding the role of thyroid hormone in Sertoli cell development: a mechanistic hypothesis. Cell Tissue Res 322(1):133–140

    Article  CAS  PubMed  Google Scholar 

  • Hölttä-Vuori M et al (2010) Zebrafish: gaining popularity in lipid research. Biochem J 429(2):235–242

    Article  PubMed  CAS  Google Scholar 

  • Howe K et al (2013) The zebrafish reference genome sequence and its relationship to the human genome. Nature 496(7446):498–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsu CC et al (2010) Inducible male infertility by targeted cell ablation in zebrafish testis. Mar Biotechnol (NY) 12(4):466–478

    Article  CAS  Google Scholar 

  • Hsu CC et al (2017) MicroRNA-27b depletion enhances endotrophic and intravascular lipid accumulation and induces adipocyte hyperplasia in zebrafish. Int J Mol Sci 19(1)

    Google Scholar 

  • Hu SY et al (2010) Nitroreductase-mediated gonadal dysgenesis for infertility control of genetically modified zebrafish. Mar Biotechnol (NY) 12(5):569–578

    Article  CAS  Google Scholar 

  • Huang W et al (2007) Signaling and transcriptional regulation in osteoblast commitment and differentiation. Front Biosci 12:3068–3092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang HX et al (2018) Application of bone transgenic zebrafish in anti-osteoporosis chemical screening. Animal Model Exp Med 1(1):53–61

    Article  PubMed  PubMed Central  Google Scholar 

  • Hugo SE, Schlegel A (2017) A genetic screen for zebrafish mutants with hepatic steatosis identifies a locus required for larval growth. J Anat 230(3):407–413

    Article  CAS  PubMed  Google Scholar 

  • Hugo SE et al (2012) A monocarboxylate transporter required for hepatocyte secretion of ketone bodies during fasting. Genes Dev 26(3):282–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huhtaniemi I (2000) The Parkes lecture. Mutations of gonadotrophin and gonadotrophin receptor genes: what do they teach us about reproductive physiology? Reproduction 119(2):173–186

    Article  CAS  Google Scholar 

  • Huitema LF et al (2012) Entpd5 is essential for skeletal mineralization and regulates phosphate homeostasis in zebrafish. Proc Natl Acad Sci U S A 109(52):21372–21377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huo L et al (2018) Prednisolone induces osteoporosis-like phenotypes via focal adhesion signaling pathway in zebrafish larvae. Biol Open 7(7)

    Google Scholar 

  • Huycke TR, Eames BF, Kimmel CB (2012) Hedgehog-dependent proliferation drives modular growth during morphogenesis of a dermal bone. Development 139(13):2371–2380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Intine RV, Olsen AS, Sarras MP Jr (2013) A zebrafish model of diabetes mellitus and metabolic memory. J Vis Exp 72:e50232

    Google Scholar 

  • Iwasaki M et al (2018) Epidermal regulation of bone morphogenesis through the development and regeneration of osteoblasts in the zebrafish scale. Dev Biol 437(2):105–119

    Article  CAS  PubMed  Google Scholar 

  • Jafari A et al (2017) Legumain regulates differentiation fate of human bone marrow stromal cells and is altered in postmenopausal osteoporosis. Stem Cell Reports 8(2):373–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jagannathan-Bogdan M, Zon LI (2013) Hematopoiesis. Development 140(12):2463–2467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeney V (2017) Clinical impact and cellular mechanisms of iron overload-associated bone loss. Front Pharmacol 8:77

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jones KS et al (2008) A high throughput live transparent animal bioassay to identify non-toxic small molecules or genes that regulate vertebrate fat metabolism for obesity drug development. Nutr Metab (Lond) 5:23

    Article  CAS  Google Scholar 

  • Jurczyk A et al (2011) Dynamic glucoregulation and mammalian-like responses to metabolic and developmental disruption in zebrafish. Gen Comp Endocrinol 170(2):334–345

    Article  CAS  PubMed  Google Scholar 

  • Jurynec MJ et al (2018) A hyperactivating proinflammatory RIPK2 allele associated with early-onset osteoarthritis. Hum Mol Genet 27(13):2383–2391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kague E et al (2016) Osterix/Sp7 limits cranial bone initiation sites and is required for formation of sutures. Dev Biol 413(2):160–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kague E et al (2018) Zebrafish sp7 mutants show tooth cycling independent of attachment, eruption and poor differentiation of teeth. Dev Biol 435(2):176–184

    Article  CAS  PubMed  Google Scholar 

  • Kahn SE (2003) The relative contributions of insulin resistance and beta-cell dysfunction to the pathophysiology of type 2 diabetes. Diabetologia 46(1):3–19

    Article  CAS  PubMed  Google Scholar 

  • Kang YE et al (2016) The roles of adipokines, proinflammatory cytokines, and adipose tissue macrophages in obesity-associated insulin resistance in modest obesity and early metabolic dysfunction. PLoS One 11(4):e0154003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kanis JA et al (2019) European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int 30(1):3–44

    Article  CAS  PubMed  Google Scholar 

  • Kao KT, Sabin MA (2016) Type 2 diabetes mellitus in children and adolescents. Aust Fam Physician 45(6):401–406

    PubMed  Google Scholar 

  • Karbiener M et al (2009) microRNA miR-27b impairs human adipocyte differentiation and targets PPARgamma. Biochem Biophys Res Commun 390(2):247–251

    Article  CAS  PubMed  Google Scholar 

  • Kari G, Rodeck U, Dicker AP (2007) Zebrafish: an emerging model system for human disease and drug discovery. Clin Pharmacol Ther 82(1):70–80

    Article  CAS  PubMed  Google Scholar 

  • Kashimada K, Koopman P (2010) Sry: the master switch in mammalian sex determination. Development 137(23):3921–3930

    Article  CAS  PubMed  Google Scholar 

  • Kashyap V et al (2011) Epigenomic reorganization of the clustered Hox genes in embryonic stem cells induced by retinoic acid. J Biol Chem 286(5):3250–3260

    Article  CAS  PubMed  Google Scholar 

  • Kawakami K (2005) Transposon tools and methods in zebrafish. Dev Dyn 234(2):244–254

    Article  CAS  PubMed  Google Scholar 

  • Kesari KK, Agarwal A, Henkel R (2018) Radiations and male fertility. Reprod Biol Endocrinol 16(1):118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keys A et al (1972) Indices of relative weight and obesity. J Chronic Dis 25(6):329–343

    Article  CAS  PubMed  Google Scholar 

  • Khan MZ, He L, Zhuang X (2016) The emerging role of GPR50 receptor in brain. Biomed Pharmacother 78:121–128

    Article  CAS  PubMed  Google Scholar 

  • Kim WH et al (2012) Visualizing sweetness: increasingly diverse applications for fluorescent-tagged glucose bioprobes and their recent structural modifications. Sensors (Basel) 12(4):5005–5027

    Article  CAS  Google Scholar 

  • Kim SH et al (2015) A post-developmental genetic screen for zebrafish models of inherited liver disease. PLoS One 10(5):e0125980

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kimmel RA, Meyer D (2016) Zebrafish pancreas as a model for development and disease. Methods Cell Biol 134:431–461

    Article  CAS  PubMed  Google Scholar 

  • Kimmel CB et al (2010) Modes of developmental outgrowth and shaping of a craniofacial bone in zebrafish. PLoS One 5(3):e9475

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kimmel RA et al (2015) Diabetic pdx1-mutant zebrafish show conserved responses to nutrient overload and anti-glycemic treatment. Sci Rep 5:14241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kinkel MD, Prince VE (2009) On the diabetic menu: zebrafish as a model for pancreas development and function. BioEssays 31(2):139–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kinkel MD et al (2010) Intraperitoneal injection into adult zebrafish. J Vis Exp 42

    Google Scholar 

  • Knapik EW (2000) ENU mutagenesis in zebrafish--from genes to complex diseases. Mamm Genome 11(7):511–519

    Article  CAS  PubMed  Google Scholar 

  • Knopf F et al (2011) Bone regenerates via dedifferentiation of osteoblasts in the zebrafish fin. Dev Cell 20(5):713–724

    Article  CAS  PubMed  Google Scholar 

  • Kou I et al (2013) Genetic variants in GPR126 are associated with adolescent idiopathic scoliosis. Nat Genet 45(6):676–679

    Article  CAS  PubMed  Google Scholar 

  • Kronenberg HM (2003) Developmental regulation of the growth plate. Nature 423(6937):332–336

    Article  CAS  PubMed  Google Scholar 

  • Kuiper RV et al (2007) Toxicity of tetrabromobisphenol a (TBBPA) in zebrafish (Danio rerio) in a partial life-cycle test. Arch Toxicol 81(1):1–9

    Article  CAS  PubMed  Google Scholar 

  • Kwon RY, Watson CJ, Karasik D (2019) Using zebrafish to study skeletal genomics. Bone 126:37–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lahiri K et al (2005) Temperature regulates transcription in the zebrafish circadian clock. PLoS Biol 3(11):e351

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lancman JJ et al (2013) Specification of hepatopancreas progenitors in zebrafish by hnf1ba and wnt2bb. Development 140(13):2669–2679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Landgraf K et al (2017) Short-term overfeeding of zebrafish with normal or high-fat diet as a model for the development of metabolically healthy versus unhealthy obesity. BMC Physiol 17(1):4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Laue K et al (2008) Restriction of retinoic acid activity by Cyp26b1 is required for proper timing and patterning of osteogenesis during zebrafish development. Development 135(22):3775–3787

    Article  CAS  PubMed  Google Scholar 

  • Laue K et al (2011) Craniosynostosis and multiple skeletal anomalies in humans and zebrafish result from a defect in the localized degradation of retinoic acid. Am J Hum Genet 89(5):595–606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lawrence EA et al (2018) The mechanical impact of col11a2 loss on joints; col11a2 mutant zebrafish show changes to joint development and function, which leads to early-onset osteoarthritis. Philos Trans R Soc Lond Ser B Biol Sci 373(1759)

    Google Scholar 

  • Lecka-Czernik B (2017) Diabetes, bone and glucose-lowering agents: basic biology. Diabetologia 60(7):1163–1169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JH et al (2011) Synthesis of a new fluorescent small molecule probe and its use for in vivo lipid imaging. Chem Commun (Camb) 47(26):7500–7502

    Article  CAS  Google Scholar 

  • Lee J et al (2013) Development of a highly visual, simple, and rapid test for the discovery of novel insulin mimetics in living vertebrates. ACS Chem Biol 8(8):1803–1814

    Article  CAS  PubMed  Google Scholar 

  • Li N et al (2009) Tracking gene expression during zebrafish osteoblast differentiation. Dev Dyn 238(2):459–466

    Article  CAS  PubMed  Google Scholar 

  • Li Q et al (2010) The abcc6a gene expression is required for normal zebrafish development. J Invest Dermatol 130(11):2561–2568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li M et al (2014) Overnutrition induces β-cell differentiation through prolonged activation of β-cells in zebrafish larvae. Am J Physiol Endocrinol Metab 306(7):E799–E807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li R et al (2019) Mechanosensitive pathways involved in cardiovascular development and homeostasis in zebrafish. J Vasc Res 56(6):273–283

    Article  CAS  PubMed  Google Scholar 

  • Lin CH, Hwang PP (2016) The control of calcium metabolism in zebrafish (Danio rerio). Int J Mol Sci 17(11)

    Google Scholar 

  • Lin JW et al (2004) Differential requirement for ptf1a in endocrine and exocrine lineages of developing zebrafish pancreas. Dev Biol 274(2):491–503

    Article  CAS  PubMed  Google Scholar 

  • Lin HJ et al (2013) Development of Cre-loxP technology in zebrafish to study the regulation of fish reproduction. Fish Physiol Biochem 39(6):1525–1539

    Article  CAS  PubMed  Google Scholar 

  • Liu YZ et al (2003) Molecular studies of identification of genes for osteoporosis: the 2002 update. J Endocrinol 177(2):147–196

    Article  CAS  PubMed  Google Scholar 

  • Liu Y et al (2013) Transcriptional regulation of episodic glucocorticoid secretion. Mol Cell Endocrinol 371(1–2):62–70

    Article  CAS  PubMed  Google Scholar 

  • Lleras-Forero L, Winkler C, Schulte-Merker S (2020) Zebrafish and medaka as models for biomedical research of bone diseases. Dev Biol 457(2):191–205

    Article  CAS  PubMed  Google Scholar 

  • Lo KH et al (2011) Hypoxia impairs primordial germ cell migration in zebrafish (Danio rerio) embryos. PLoS One 6(9):e24540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopes FM et al (2014) Effect of glyphosate on the sperm quality of zebrafish Danio rerio. Aquat Toxicol 155:322–326

    Article  CAS  PubMed  Google Scholar 

  • Lue Y et al (2000) Testicular heat exposure enhances the suppression of spermatogenesis by testosterone in rats: the “two-hit” approach to male contraceptive development. Endocrinology 141(4):1414–1424

    Article  CAS  PubMed  Google Scholar 

  • Luzio A et al (2016) Effects of 17α-ethinylestradiol at different water temperatures on zebrafish sex differentiation and gonad development. Aquat Toxicol 174:22–35

    Article  CAS  PubMed  Google Scholar 

  • Ma Y et al (2012) Disruption of endocrine function in in vitro H295R cell-based and in in vivo assay in zebrafish by 2,4-dichlorophenol. Aquat Toxicol 106-107:173–181

    Article  CAS  PubMed  Google Scholar 

  • Maack G, Segner H (2003) Morphological development of the gonads in zebrafish. J Fish Biol 62(4):895–906

    Article  Google Scholar 

  • Mackay EW, Apschner A, Schulte-Merker S (2015) Vitamin K reduces hypermineralisation in zebrafish models of PXE and GACI. Development 142(6):1095–1101

    Article  CAS  PubMed  Google Scholar 

  • MacRae CA, Peterson RT (2015) Zebrafish as tools for drug discovery. Nat Rev Drug Discov 14(10):721–731

    Article  CAS  PubMed  Google Scholar 

  • Maddison LA et al (2015) Skeletal muscle insulin resistance in zebrafish induces alterations in β-cell number and glucose tolerance in an age- and diet-dependent manner. Am J Physiol Endocrinol Metab 308(8):E662–E669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahdipour E, Salmasi Z, Sabeti N (2019) Potential of stem cell-derived exosomes to regenerate β islets through Pdx-1 dependent mechanism in a rat model of type 1 diabetes. J Cell Physiol 234(11):20310–20321

    Article  CAS  PubMed  Google Scholar 

  • Malecki MT et al (1999) Mutations in NEUROD1 are associated with the development of type 2 diabetes mellitus. Nat Genet 23(3):323–328

    Article  CAS  PubMed  Google Scholar 

  • Mandviwala T, Khalid U, Deswal A (2016) Obesity and cardiovascular disease: a risk factor or a risk marker? Curr Atheroscler Rep 18(5):21

    Article  PubMed  CAS  Google Scholar 

  • Manna PR et al (2001) Assessment of mechanisms of thyroid hormone action in mouse Leydig cells: regulation of the steroidogenic acute regulatory protein, steroidogenesis, and luteinizing hormone receptor function. Endocrinology 142(1):319–331

    Article  CAS  PubMed  Google Scholar 

  • Maradonna F et al (2013) Probiotic supplementation promotes calcification in Danio rerio larvae: a molecular study. PLoS One 8(12):e83155

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marín-Juez R et al (2014) Hyperinsulinemia induces insulin resistance and immune suppression via Ptpn6/Shp1 in zebrafish. J Endocrinol 222(2):229–241

    Article  PubMed  CAS  Google Scholar 

  • Mariotti M, Carnovali M, Banfi G (2015) Danio rerio: the Janus of the bone from embryo to scale. Clin Cases Miner Bone Metab 12(2):188

    PubMed  PubMed Central  Google Scholar 

  • Martin WK et al (2019) High-throughput video processing of heart rate responses in multiple wild-type embryonic zebrafish per imaging field. Sci Rep 9(1):145

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martinovic D et al (2009) Hypoxia alters gene expression in the gonads of zebrafish (Danio rerio). Aquat Toxicol 95(4):258–272

    Article  CAS  PubMed  Google Scholar 

  • McMenamin SK et al (2013) Dwarfism and increased adiposity in the gh1 mutant zebrafish vizzini. Endocrinology 154(4):1476–1487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meguro S, Hasumura T (2018) Fish oil suppresses body fat accumulation in zebrafish. Zebrafish 15(1):27–32

    Article  CAS  PubMed  Google Scholar 

  • Michel M et al (2016) Leptin signaling regulates glucose homeostasis, but not adipostasis, in the zebrafish. Proc Natl Acad Sci U S A 113(11):3084–3089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minchin JE et al (2015) Plexin D1 determines body fat distribution by regulating the type V collagen microenvironment in visceral adipose tissue. Proc Natl Acad Sci U S A 112(14):4363–4368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mirzaei M et al (2020) Epidemiology of diabetes mellitus, pre-diabetes, undiagnosed and uncontrolled diabetes in Central Iran: results from Yazd health study. BMC Public Health 20(1):166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Misu A et al (2016) Two different functions of Connexin43 confer two different bone phenotypes in zebrafish. J Biol Chem 291(24):12601–12611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitchell RE et al (2013) New tools for studying osteoarthritis genetics in zebrafish. Osteoarthr Cartil 21(2):269–278

    Article  CAS  Google Scholar 

  • Moens CB et al (2008) Reverse genetics in zebrafish by TILLING. Brief Funct Genomic Proteomic 7(6):454–459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moro E et al (2012) In vivo Wnt signaling tracing through a transgenic biosensor fish reveals novel activity domains. Dev Biol 366(2):327–340

    Article  CAS  PubMed  Google Scholar 

  • Moss JB et al (2009) Regeneration of the pancreas in adult zebrafish. Diabetes 58(8):1844–1851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moulton JD (2017) Using Morpholinos to control gene expression. Curr Protoc Nucleic Acid Chem 68(1):4.30.1–4.30.29

    Article  CAS  Google Scholar 

  • Mouthaan J et al (2014) The role of acute cortisol and DHEAS in predicting acute and chronic PTSD symptoms. Psychoneuroendocrinology 45:179–186

    Article  CAS  PubMed  Google Scholar 

  • Naderi M, Wong MY, Gholami F (2014) Developmental exposure of zebrafish (Danio rerio) to bisphenol-S impairs subsequent reproduction potential and hormonal balance in adults. Aquat Toxicol 148:195–203

    Article  CAS  PubMed  Google Scholar 

  • Nam YH et al (2015) Synergistic potentials of coffee on injured pancreatic islets and insulin action via KATP Channel blocking in zebrafish. J Agric Food Chem 63(23):5612–5621

    Article  CAS  PubMed  Google Scholar 

  • Navik U et al (2019) Dietary supplementation of methyl donor l-methionine alters epigenetic modification in type 2 diabetes. Mol Nutr Food Res 63(23):e1801401

    Article  PubMed  CAS  Google Scholar 

  • Neuhauss SC et al (1996) Mutations affecting craniofacial development in zebrafish. Development 123:357–367

    Article  CAS  PubMed  Google Scholar 

  • Nichols JT et al (2016) Ligament versus bone cell identity in the zebrafish hyoid skeleton is regulated by mef2ca. Development 143(23):4430–4440

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ninov N, Borius M, Stainier DY (2012) Different levels of notch signaling regulate quiescence, renewal and differentiation in pancreatic endocrine progenitors. Development 139(9):1557–1567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nitschke Y, Rutsch F (2012) Generalized arterial calcification of infancy and pseudoxanthoma elasticum: two sides of the same coin. Front Genet 3:302

    Article  PubMed  PubMed Central  Google Scholar 

  • Ofer L et al (2019) A novel nonosteocytic regulatory mechanism of bone modeling. PLoS Biol 17(2):e3000140

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ogura Y et al (2015) A functional SNP in BNC2 is associated with adolescent idiopathic scoliosis. Am J Hum Genet 97(2):337–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oh S et al (2010) Antidiabetic and antiobesity effects of Ampkinone (6f), a novel small molecule activator of AMP-activated protein kinase. J Med Chem 53(20):7405–7413

    Article  CAS  PubMed  Google Scholar 

  • Oh SK et al (2015) Pannexin 3 is required for normal progression of skeletal development in vertebrates. FASEB J 29(11):4473–4484

    Article  CAS  PubMed  Google Scholar 

  • Oka T et al (2010) Diet-induced obesity in zebrafish shares common pathophysiological pathways with mammalian obesity. BMC Physiol 10:21

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Olsen AS, Sarras MP Jr, Intine RV (2010) Limb regeneration is impaired in an adult zebrafish model of diabetes mellitus. Wound Repair Regen 18(5):532–542

    Article  PubMed  PubMed Central  Google Scholar 

  • Olsen AS et al (2012) Heritable transmission of diabetic metabolic memory in zebrafish correlates with DNA hypomethylation and aberrant gene expression. Diabetes 61(2):485–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oyelaja-Akinsipo OB, Dare EO, Katare DP (2020) Protective role of diosgenin against hyperglycaemia-mediated cerebral ischemic brain injury in zebrafish model of type II diabetes mellitus. Heliyon 6(1):e03296

    Article  PubMed  PubMed Central  Google Scholar 

  • Park J et al (2007) Development of a cy3-labeled glucose bioprobe and its application in bioimaging and screening for anticancer agents. Angew Chem Int Ed Engl 46(12):2018–2022

    Article  CAS  PubMed  Google Scholar 

  • Park J et al (2014) Impact of molecular charge on GLUT-specific cellular uptake of glucose bioprobes and in vivo application of the glucose bioprobe, GB2-Cy3. Chem Commun (Camb) 50(66):9251–9254

    Article  CAS  Google Scholar 

  • Parsons MJ et al (2009) Notch-responsive cells initiate the secondary transition in larval zebrafish pancreas. Mech Dev 126(10):898–912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pasqualetti S et al (2015) Alendronate rescued osteoporotic phenotype in a model of glucocorticoid-induced osteoporosis in adult zebrafish scale. Int J Exp Pathol 96(1):11–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paul S et al (2016) Ihha induces hybrid cartilage-bone cells during zebrafish jawbone regeneration. Development 143(12):2066–2076

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peng X et al (2017) Fatty acid oxidation in zebrafish adipose tissue is promoted by 1α,25(OH)(2)D(3). Cell Rep 19(7):1444–1455

    Article  CAS  PubMed  Google Scholar 

  • Peterson RT et al (2008) Use of non-mammalian alternative models for neurotoxicological study. Neurotoxicology 29(3):546–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piprek RP (2010) Molecular and cellular machinery of gonadal differentiation in mammals. Int J Dev Biol 54(5):779–786

    Article  CAS  PubMed  Google Scholar 

  • Pisharath H et al (2007) Targeted ablation of beta cells in the embryonic zebrafish pancreas using E. coli nitroreductase. Mech Dev 124(3):218–229

    Article  CAS  PubMed  Google Scholar 

  • Pizzorno J (2018) Environmental toxins and infertility. Integr Med (Encinitas) 17(2):8–11

    Google Scholar 

  • Poss KD, Shen J, Keating MT (2000) Induction of lef1 during zebrafish fin regeneration. Dev Dyn 219(2):282–286

    Article  CAS  PubMed  Google Scholar 

  • Prince VE, Anderson RM, Dalgin G (2017) Zebrafish pancreas development and regeneration: fishing for diabetes therapies. Curr Top Dev Biol 124:235–276

    Article  CAS  PubMed  Google Scholar 

  • Rae MT et al (2007) Thyroid hormone signaling in human ovarian surface epithelial cells. J Clin Endocrinol Metab 92(1):322–327

    Article  CAS  PubMed  Google Scholar 

  • Raisz LG (2005) Pathogenesis of osteoporosis: concepts, conflicts, and prospects. J Clin Invest 115(12):3318–3325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramos-Lopez E et al (2007) CYP2R1 (vitamin D 25-hydroxylase) gene is associated with susceptibility to type 1 diabetes and vitamin D levels in Germans. Diabetes Metab Res Rev 23(8):631–636

    Article  CAS  PubMed  Google Scholar 

  • Riu A et al (2014) Halogenated bisphenol-a analogs act as obesogens in zebrafish larvae (Danio rerio). Toxicol Sci 139(1):48–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rocke J et al (2009) The zebrafish as a novel tool for cardiovascular drug discovery. Recent Pat Cardiovasc Drug Discov 4(1):1–5

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez-Marí A et al (2005) Characterization and expression pattern of zebrafish anti-Müllerian hormone (Amh) relative to sox9a, sox9b, and cyp19a1a, during gonad development. Gene Expr Patterns 5(5):655–667

    Article  PubMed  CAS  Google Scholar 

  • Rodríguez-Marí A et al (2010) Sex reversal in zebrafish fancl mutants is caused by Tp53-mediated germ cell apoptosis. PLoS Genet 6(7):e1001034

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Roehl HH (2018) Linking wound response and inflammation to regeneration in the zebrafish larval fin. Int J Dev Biol 62:473–477

    Article  CAS  PubMed  Google Scholar 

  • Sadler KC et al (2005) A genetic screen in zebrafish identifies the mutants vps18, nf2 and foie gras as models of liver disease. Development 132(15):3561–3572

    Article  CAS  PubMed  Google Scholar 

  • Salinger AP, Justice MJ (2008) Mouse mutagenesis using N-Ethyl-N-Nitrosourea (ENU). CSH Protoc 2008:pdb.prot4985

    PubMed  Google Scholar 

  • Saltiel AR, Olefsky JM (2017) Inflammatory mechanisms linking obesity and metabolic disease. J Clin Invest 127(1):1–4

    Article  PubMed  PubMed Central  Google Scholar 

  • Sarras MP Jr et al (2014) Inhibition of poly-ADP ribose polymerase enzyme activity prevents hyperglycemia-induced impairment of angiogenesis during wound healing. Wound Repair Regen 22(5):666–670

    Article  PubMed  Google Scholar 

  • Schilling TF, Kimmel CB (1997) Musculoskeletal patterning in the pharyngeal segments of the zebrafish embryo. Development 124(15):2945–2960

    Article  CAS  PubMed  Google Scholar 

  • Schilling TF et al (1996) Jaw and branchial arch mutants in zebrafish I: branchial arches. Development 123:329–344

    Article  CAS  PubMed  Google Scholar 

  • Schlegel A, Stainier DY (2006) Microsomal triglyceride transfer protein is required for yolk lipid utilization and absorption of dietary lipids in zebrafish larvae. Biochemistry 45(51):15179–15187

    Article  CAS  PubMed  Google Scholar 

  • Schlombs K, Wagner T, Scheel J (2003) Site-1 protease is required for cartilage development in zebrafish. Proc Natl Acad Sci U S A 100(24):14024–14029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schulz RW et al (2018) Endocrine and paracrine regulation of zebrafish spermatogenesis: the Sertoli cell perspective. Animal Reproduction (AR) 12(1):81–87

    Google Scholar 

  • Schwend T, Loucks EJ, Ahlgren SC (2010) Visualization of Gli activity in craniofacial tissues of hedgehog-pathway reporter transgenic zebrafish. PLoS One 5(12):e14396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seth A, Stemple DL, Barroso I (2013) The emerging use of zebrafish to model metabolic disease. Dis Model Mech 6(5):1080–1088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shang EH, Yu RM, Wu RS (2006) Hypoxia affects sex differentiation and development, leading to a male-dominated population in zebrafish (Danio rerio). Environ Sci Technol 40(9):3118–3122

    Article  CAS  PubMed  Google Scholar 

  • Sheiner EK et al (2003) Effect of occupational exposures on male fertility: literature review. Ind Health 41(2):55–62

    Article  CAS  PubMed  Google Scholar 

  • Shibuya H et al (2018) Multi-center clinical evaluation of streptozocin-based chemotherapy for advanced pancreatic neuroendocrine tumors in Japan: focus on weekly regimens and monotherapy. Cancer Chemother Pharmacol 82(4):661–668

    Article  CAS  PubMed  Google Scholar 

  • Shimizu T et al (2005) Interaction of Wnt and caudal-related genes in zebrafish posterior body formation. Dev Biol 279(1):125–141

    Article  CAS  PubMed  Google Scholar 

  • Shin E, Hong BN, Kang TH (2012) An optimal establishment of an acute hyperglycemia zebrafish model. African Journal of Pharmacy Pharmacology 6(42):2922–2928

    Article  CAS  Google Scholar 

  • Shuster A et al (2012) The clinical importance of visceral adiposity: a critical review of methods for visceral adipose tissue analysis. Br J Radiol 85(1009):1–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siegfried KR, Nüsslein-Volhard C (2008) Germ line control of female sex determination in zebrafish. Dev Biol 324(2):277–287

    Article  CAS  PubMed  Google Scholar 

  • Singh SP, Holdway JE, Poss KD (2012) Regeneration of amputated zebrafish fin rays from de novo osteoblasts. Dev Cell 22(4):879–886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sokoloff L et al (1977) The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem 28(5):897–916

    Article  CAS  PubMed  Google Scholar 

  • Song Y, Cone RD (2007) Creation of a genetic model of obesity in a teleost. FASEB J 21(9):2042–2049

    Article  CAS  PubMed  Google Scholar 

  • Sousa S et al (2011) Differentiated skeletal cells contribute to blastema formation during zebrafish fin regeneration. Development 138(18):3897–3905

    Article  CAS  PubMed  Google Scholar 

  • Sousa SB et al (2014) Gain-of-function mutations in the phosphatidylserine synthase 1 (PTDSS1) gene cause Lenz-Majewski syndrome. Nat Genet 46(1):70–76

    Article  CAS  PubMed  Google Scholar 

  • Sousa ML et al (2015) Morphological and molecular effects of cortisol and ACTH on zebrafish stage I and II follicles. Reproduction 150(5):429–436

    Article  CAS  PubMed  Google Scholar 

  • Spicer OS et al (2016) Targeted mutagenesis of the Hypophysiotropic Gnrh3 in zebrafish (Danio rerio) reveals no effects on reproductive performance. PLoS One 11(6):e0158141

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Spoorendonk KM et al (2008) Retinoic acid and Cyp26b1 are critical regulators of osteogenesis in the axial skeleton. Development 135(22):3765–3774

    Article  CAS  PubMed  Google Scholar 

  • Spranger J (1998) The type XI collagenopathies. Pediatr Radiol 28(10):745–750

    Article  CAS  PubMed  Google Scholar 

  • Stewart TL, Ralston SH (2000) Role of genetic factors in the pathogenesis of osteoporosis. J Endocrinol 166(2):235–245

    Article  CAS  PubMed  Google Scholar 

  • Stoffers DA et al (1997) Early-onset type-II diabetes mellitus (MODY4) linked to IPF1. Nat Genet 17(2):138–139

    Article  CAS  PubMed  Google Scholar 

  • Suarez-Bregua P et al (2017) Pth4, an ancient parathyroid hormone lost in eutherian mammals, reveals a new brain-to-bone signaling pathway. FASEB J 31(2):569–583

    Article  CAS  PubMed  Google Scholar 

  • Tabassum N et al (2015) Fishing for Nature's hits: establishment of the zebrafish as a model for screening antidiabetic natural products. Evid Based Complement Alternat Med 2015:287847

    Article  PubMed  PubMed Central  Google Scholar 

  • Tan SY et al (2019) Type 1 and 2 diabetes mellitus: a review on current treatment approach and gene therapy as potential intervention. Diabetes Metab Syndr 13(1):364–372

    Article  PubMed  Google Scholar 

  • Teng CS et al (2018) Altered bone growth dynamics prefigure craniosynostosis in a zebrafish model of Saethre-Chotzen syndrome. elife 7

    Google Scholar 

  • Thakur PC et al (2011) Lack of de novo phosphatidylinositol synthesis leads to endoplasmic reticulum stress and hepatic steatosis in cdipt-deficient zebrafish. Hepatology 54(2):452–462

    Article  CAS  PubMed  Google Scholar 

  • Thomas P et al (2007) Widespread endocrine disruption and reproductive impairment in an estuarine fish population exposed to seasonal hypoxia. Proc Biol Sci 274(1626):2693–2701

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tian J et al (2019) Deficiency of lrp4 in zebrafish and human LRP4 mutation induce aberrant activation of jagged-notch signaling in fin and limb development. Cell Mol Life Sci 76(1):163–178

    Article  CAS  PubMed  Google Scholar 

  • Tiefenbach J et al (2010) A live zebrafish-based screening system for human nuclear receptor ligand and cofactor discovery. PLoS One 5(3):e9797

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tingaud-Sequeira A, Ouadah N, Babin PJ (2011) Zebrafish obesogenic test: a tool for screening molecules that target adiposity. J Lipid Res 52(9):1765–1772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tiso N, Moro E, Argenton F (2009) Zebrafish pancreas development. Mol Cell Endocrinol 312(1–2):24–30

    Article  CAS  PubMed  Google Scholar 

  • To TT et al (2012) Rankl-induced osteoclastogenesis leads to loss of mineralization in a medaka osteoporosis model. Development 139(1):141–150

    Article  CAS  PubMed  Google Scholar 

  • To TT et al (2015) An adult osteopetrosis model in medaka reveals the importance of osteoclast function for bone remodeling in teleost fish. Comp Biochem Physiol C Toxicol Pharmacol 178:68–75

    Article  CAS  PubMed  Google Scholar 

  • Tseng YC et al (2009) Specific expression and regulation of glucose transporters in zebrafish ionocytes. Am J Physiol Regul Integr Comp Physiol 297(2):R275–R290

    Article  CAS  PubMed  Google Scholar 

  • Tsigos C, Chrousos GP (2002) Hypothalamic-pituitary-adrenal axis, neuroendocrine factors and stress. J Psychosom Res 53(4):865–871

    Article  PubMed  Google Scholar 

  • Uchida D et al (2004) An aromatase inhibitor or high water temperature induce oocyte apoptosis and depletion of P450 aromatase activity in the gonads of genetic female zebrafish during sex-reversal. Comp Biochem Physiol A Mol Integr Physiol 137(1):11–20

    Article  PubMed  CAS  Google Scholar 

  • Uren Webster TM et al (2014) Effects of glyphosate and its formulation, roundup, on reproduction in zebrafish (Danio rerio). Environ Sci Technol 48(2):1271–1279

    Article  CAS  PubMed  Google Scholar 

  • Uren-Webster TM et al (2010) Mechanisms of toxicity of di(2-ethylhexyl) phthalate on the reproductive health of male zebrafish. Aquat Toxicol 99(3):360–369

    Article  CAS  PubMed  Google Scholar 

  • Van den Hurk R, Resink J (1992) Male reproductive system as sex pheromone producer in teleost fish. J Exp Zool 261(2):204–213

    Article  Google Scholar 

  • van Dijk FS et al (2013) PLS3 mutations in X-linked osteoporosis with fractures. N Engl J Med 369(16):1529–1536

    Article  PubMed  CAS  Google Scholar 

  • Vargas A, Bustos-Obregón E, Hartley R (2011) Effects of hypoxia on epididymal sperm parameters and protective role of ibuprofen and melatonin. Biol Res 44(2):161–167

    Article  CAS  PubMed  Google Scholar 

  • Vekic J et al (2019) Obesity and dyslipidemia. Metabolism 92:71–81

    Article  CAS  PubMed  Google Scholar 

  • Velasco-Santamaría YM, Handy RD, Sloman KA (2011) Endosulfan affects health variables in adult zebrafish (Danio rerio) and induces alterations in larvae development. Comp Biochem Physiol C Toxicol Pharmacol 153(4):372–380

    Article  PubMed  CAS  Google Scholar 

  • Venkatesh B et al (2014) Elephant shark genome provides unique insights into gnathostome evolution. Nature 505(7482):174–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vickers KC et al (2013) MicroRNA-27b is a regulatory hub in lipid metabolism and is altered in dyslipidemia. Hepatology 57(2):533–542

    Article  CAS  PubMed  Google Scholar 

  • Villamizar N et al (2012) Impact of daily thermocycles on hatching rhythms, larval performance and sex differentiation of zebrafish. PLoS One 7(12):e52153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vishwanath B, Srinivasa K, Shankar MV (2014) Raine syndrome. Indian J Hum Genet 20(1):72–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vogel G (2000) Zebrafish earns its stripes in genetic screens. Science 288(5469):1160–1161

    Article  CAS  PubMed  Google Scholar 

  • Volkova K et al (2015) Developmental exposure of zebrafish (Danio rerio) to 17α-ethinylestradiol affects non-reproductive behavior and fertility as adults, and increases anxiety in unexposed progeny. Horm Behav 73:30–38

    Article  CAS  PubMed  Google Scholar 

  • Wada N et al (2005) Hedgehog signaling is required for cranial neural crest morphogenesis and chondrogenesis at the midline in the zebrafish skull. Development 132(17):3977–3988

    Article  CAS  PubMed  Google Scholar 

  • Wang X et al (2007) The timing and extent of ‘juvenile ovary’phase are highly variable during zebrafish testis differentiation. J Fish Biol 70:33–44

    Article  Google Scholar 

  • Wang Y et al (2011) Genetic inducible fate mapping in larval zebrafish reveals origins of adult insulin-producing β-cells. Development 138(4):609–617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang YJ et al (2015) Fate mapping of ptf1a-expressing cells during pancreatic organogenesis and regeneration in zebrafish. Dev Dyn 244(6):724–735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang N et al (2020a) Timosaponin AIII attenuates inflammatory injury in AGEs-induced osteoblast and alloxan-induced diabetic osteoporosis zebrafish by modulating the RAGE/MAPK signaling pathways. Phytomedicine 75:153247

    Article  CAS  PubMed  Google Scholar 

  • Wang X et al (2020b) Effects of streptozotocin on pancreatic islet β-cell apoptosis and glucose metabolism in zebrafish larvae. Fish Physiol Biochem 46(3):1025–1038

    Article  CAS  PubMed  Google Scholar 

  • Weigele J, Franz-Odendaal TA (2016) Functional bone histology of zebrafish reveals two types of endochondral ossification, different types of osteoblast clusters and a new bone type. J Anat 229(1):92–103

    Article  PubMed  PubMed Central  Google Scholar 

  • Williams MB, Watts SA (2019) Current basis and future directions of zebrafish nutrigenomics. Genes Nutr 14:34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Witten PE, Huysseune A (2009) A comparative view on mechanisms and functions of skeletal remodelling in teleost fish, with special emphasis on osteoclasts and their function. Biol Rev Camb Philos Soc 84(2):315–346

    Article  PubMed  Google Scholar 

  • Witten PE et al (2017) Small teleost fish provide new insights into human skeletal diseases. Methods Cell Biol 138:321–346

    Article  CAS  PubMed  Google Scholar 

  • Xi Y et al (2013) Characterization of zebrafish mutants with defects in bone calcification during development. Biochem Biophys Res Commun 440(1):132–136

    Article  CAS  PubMed  Google Scholar 

  • Xu PF et al (2010) Setdb2 restricts dorsal organizer territory and regulates left-right asymmetry through suppressing fgf8 activity. Proc Natl Acad Sci U S A 107(6):2521–2526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan YL et al (2012) Duplicated zebrafish co-orthologs of parathyroid hormone-related peptide (PTHrP, Pthlh) play different roles in craniofacial skeletogenesis. J Endocrinol 214(3):421–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J et al (2009) Aspects of the control of phosphoenolpyruvate carboxykinase gene transcription. J Biol Chem 284(40):27031–27035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang BY et al (2018) Different physiological roles of insulin receptors in mediating nutrient metabolism in zebrafish. Am J Physiol Endocrinol Metab 315(1):E38–e51

    Article  CAS  PubMed  Google Scholar 

  • Yee NS, Yusuff S, Pack M (2001) Zebrafish pdx1 morphant displays defects in pancreas development and digestive organ chirality, and potentially identifies a multipotent pancreas progenitor cell. Genesis 30(3):137–140

    Article  CAS  PubMed  Google Scholar 

  • Yee NS, Lorent K, Pack M (2005) Exocrine pancreas development in zebrafish. Dev Biol 284(1):84–101

    Article  CAS  PubMed  Google Scholar 

  • Yin L et al (2015) Multiplex conditional mutagenesis using transgenic expression of Cas9 and sgRNAs. Genetics 200(2):431–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yokobori E et al (2011) Stimulatory effect of intracerebroventricular administration of orexin a on food intake in the zebrafish Danio rerio. Peptides 32(7):1357–1362

    Article  CAS  PubMed  Google Scholar 

  • Yoon Y et al (2013) High cholesterol diet induces IL-1β expression in adult but not larval zebrafish. PLoS One 8(6):e66970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu RM et al (2012) Leptin-mediated modulation of steroidogenic gene expression in hypoxic zebrafish embryos: implications for the disruption of sex steroids. Environ Sci Technol 46(16):9112–9119

    Article  CAS  PubMed  Google Scholar 

  • Yu T et al (2017) A vertebrate-specific and essential role for osterix in osteogenesis revealed by gene knockout in the teleost medaka. Development 144(2):265–271

    CAS  PubMed  Google Scholar 

  • Yuan L, Ziegler R, Hamann A (2002) Inhibition of phosphoenolpyruvate carboxykinase gene expression by metformin in cultured hepatocytes. Chin Med J 115(12):1843–1848

    CAS  PubMed  Google Scholar 

  • Yun SI et al (2009) Glucocorticoid induces apoptosis of osteoblast cells through the activation of glycogen synthase kinase 3beta. J Bone Miner Metab 27(2):140–148

    Article  CAS  PubMed  Google Scholar 

  • Zancan I et al (2015) Glucocerebrosidase deficiency in zebrafish affects primary bone ossification through increased oxidative stress and reduced Wnt/β-catenin signaling. Hum Mol Genet 24(5):1280–1294

    Article  CAS  PubMed  Google Scholar 

  • Zang L et al (2015) Repeated blood collection for blood tests in adult zebrafish. J Vis Exp 102:e53272

    Google Scholar 

  • Zang L, Shimada Y, Nishimura N (2017) Development of a novel zebrafish model for type 2 diabetes mellitus. Sci Rep 7(1):1461

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zang L, Maddison LA, Chen W (2018) Zebrafish as a model for obesity and diabetes. Front Cell Dev Biol 6:91

    Article  PubMed  PubMed Central  Google Scholar 

  • Zecchin E et al (2007) Distinct delta and jagged genes control sequential segregation of pancreatic cell types from precursor pools in zebrafish. Dev Biol 301(1):192–204

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y et al (2002) Mechanical properties of skeletal bone in gene-mutated stöpsel(dtl28d) and wild-type zebrafish (Danio rerio) measured by atomic force microscopy-based nanoindentation. Bone 30(4):541–546

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y et al (2017) Correction: ATP6V1H deficiency impairs bone development through activation of MMP9 and MMP13. PLoS Genet 13(2):e1006624

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang W et al (2018a) Novel and rapid osteoporosis model established in zebrafish using high iron stress. Biochem Biophys Res Commun 496(2):654–660

    Article  CAS  PubMed  Google Scholar 

  • Zhang M et al (2018b) Blockade of receptors of advanced glycation end products ameliorates diabetic osteogenesis of adipose-derived stem cells through DNA methylation and Wnt signalling pathway. Cell Prolif 51(5):e12471

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou J et al (2015) Rapid analysis of hypolipidemic drugs in a live zebrafish assay. J Pharmacol Toxicol Methods 72:47–52

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Navik, U., Rawat, P.S., Allawadhi, P., Khurana, A., Banothu, A.K., Bharani, K.K. (2022). Evolution of Zebrafish as a Novel Pharmacological Model in Endocrine Research. In: Bhandari, P.R., Bharani, K.K., Khurana, A. (eds) Zebrafish Model for Biomedical Research . Springer, Singapore. https://doi.org/10.1007/978-981-16-5217-2_6

Download citation

Publish with us

Policies and ethics