Skip to main content

Phosphate-Solubilizing Actinomycetes as Biofertilizers and Biopesticides: Bioformulations for Sustainable Agriculture

  • Chapter
  • First Online:
Microbial BioTechnology for Sustainable Agriculture Volume 1

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 33))

Abstract

Currently, there is a growing need of biofertilizers and biopesticides for sustainable agriculture, especially those formulated by using microorganisms or their products. Actinobacteria (actinomycetes) could display positive interaction with plants by acting as rhizosphere colonizers, endophytes, or symbionts. Numerous studies focused on their beneficial effects toward plants as growth promoters by mechanisms such as phosphate solubilization, production of phytohormones, decreasing ethylene production, or protection against phytopathogens (by production of siderophores, antibiotics, and lytic enzymes or by inducing systemic resistance). Thus, efficient strategies were developed to explore their potential in order to enhance plant fitness and crop yield. Since the last few decades, interest in actinomycetes able to solubilize insoluble phosphate forms is particularly increasing. However, these works are still not sufficient compared to that on the Gram-positive Bacillus and the Gram-negative Pseudomonas bacteria. In addition, actinomycetes with antagonistic effects against phytopathogens are largely isolated and their effects proved in greenhouses and/or field experiments. Although phosphate-solubilizing actinomycetes display high diversity, versatility and adaptation to harsh conditions, high metabolite production potential, and suitability to formulations, rare commercial compounds are available in markets. This chapter presents an overview of the diversity and importance of actinomycetes in natural and agricultural soils. It also presents recent knowledge on beneficial traits of phosphate-solubilizing actinomycetes to plants and their application as biofertilizers and/or biopesticides, with emphasis on actinobacteria-based formulations and obstacles that hinder their development and commercialization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdulla H (2009) Bioweathering and biotransformation of granitic rock minerals by actinomycetes. Microb Ecol 58:753–761

    Article  CAS  PubMed  Google Scholar 

  • Arora NK (2018) Agricultural sustainability and food security. Environ Sustain 1(3):1–3

    Article  Google Scholar 

  • Arora NK, Verma M, Prakash J, Mishra J (2016) Regulation of biopesticides: global concerns and policies. In: Arora NK, Mehnaz S, Balestrini R (eds) Bioformulations: for sustainable agriculture. Springer, New Delhi, pp 283–299

    Google Scholar 

  • Barka EA, Vatsa P, Sanchez L, Gaveau-Vaillant N, Jacquard C, Meier-Kolthoff JP, Klenk HP, Clément C, Ouhdouch Y, van Wezel GP (2016) Taxonomy, physiology, and natural products of Actinobacteria. Microbiol Mol Biol Rev 80:1–43

    Article  PubMed  Google Scholar 

  • Barreto TR, da Silva ACM, Soares ACF, de Souza JT (2008) Population densities and genetic diversity of actinomycetes associated to the rhizosphere of Theobroma cacao. Braz J Microbiol 39:464–470

    Article  PubMed  PubMed Central  Google Scholar 

  • Beausejour J, Agbessi S, Beaulieu C (2001) Geldanamycin producing strains as biocontrol agents against common scab of potato. Can J Microbiol 23:194

    Google Scholar 

  • Berdy J (2005) Bioactive microbial metabolites. J Antibiot 58:1–26

    Article  CAS  Google Scholar 

  • Bhatti AA, Haq S, Bhat RA (2017) Actinomycetes benefaction role in soil and plant health. Microb Pathog 111:458–467

    Article  CAS  PubMed  Google Scholar 

  • Boubekri K, Soumare A, Mardad I, Lyamlouli K, Hafidi M, Ouhdouch Y, Kouisni L (2021) The screening of potassium- and phosphate-solubilizing Actinobacteria and the assessment of their ability to promote wheat growth parameters. Microorganisms 9:470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouizgarne B (2013) Bacteria for plant growth promotion and disease management. In: Maheshwari D (ed) Bacteria in agrobiology: disease management. Springer, Berlin, Heidelberg, pp 15–47

    Chapter  Google Scholar 

  • Bouizgarne B, Ait Ben Aoumar A (2014) Diversity of plant associated Actinobacteria. In: Maheshwari DK (ed) Bacterial diversity in sustainable agriculture, vol 1. Springer, Cham, pp 41–99

    Chapter  Google Scholar 

  • Bouizgarne B, Ouhdouch Y (2017) Management of tomato foot and root rot (TFRR) by biocontrol agents with emphasis on factors affecting its effectiveness. In: Kumar V, Kumar M, Sharma S, Prasad R (eds) Probiotics and plant health. Springer, Singapore, pp 1–19

    Google Scholar 

  • Bouizgarne B, Oufdou K, Ouhdouch Y (2015) Actinorhizal and Rhizobial–legume symbioses for alleviation of abiotic stresses. In: Arora NK (ed) Plant microbes symbiosis: applied facets. Springer, New Delhi, pp 273–295

    Google Scholar 

  • Breton A, Theilleux J, Sanglier JJ, Viobis G (1989) Organismes producteurs: biologie, taxonomie et écologie. In: Larpent JP, Sanglier JJ (eds) Biotechnologies des antibiotiques. Masson, Paris, pp 33–70

    Google Scholar 

  • Castañeda-Cisneros YE, Mercado-Flores Y, Anducho-Reyes MA, Álvarez-Cervantes J, Ponce-Lira B, Evangelista-Martínez Z, Téllez-Jurado A (2020) Isolation and selection of Streptomyces species from semi-arid agricultural soils and their potential as producers of xylanases and cellulases. Curr Microbiol 77:3460–3472

    Article  CAS  PubMed  Google Scholar 

  • Chouyia FE, Romano I, Fechtali T, Fagnano M, Fiorentino N, Visconti D, Idbella M, Ventorino V, Pepe O (2020) P-solubilizing Streptomyces roseocinereus MS1B15 with multiple plant growth-promoting traits enhance barley development and regulate rhizosphere microbial population. Front Plant Sci 11:1137

    Article  PubMed  PubMed Central  Google Scholar 

  • Cook RJ, Sitton JW, Haglund WA (1987) Influence of soil treatments on growth and yield of wheat and implications for control of Pythium root rot. Phytopathology 77:1192–1198

    Article  Google Scholar 

  • Corrêa DBA, do Amaral DT, da Silva MJ, Destéfano SAL (2021) Streptomyces brasiliscabiei, a new species causing potato scab in South Brazil. Antonie Van Leeuwenhoek. https://doi.org/10.1007/s10482-021-01566-y

  • Crawford DL, Lynch JM, Whipps JM, Ousley MA (1993) Isolation and characterization of Actinomycetes antagonists of a fungal root pathogen. Appl Environ Microbiol 59:3899–3905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Oliveira MIF, da Silva MG, Van Der Sand ST (2010) Anti-phytopathogen potential of endophytic actinobacteria isolated from tomato plants (Lycopersicon esculentum) in southern Brazil, and characterization of Streptomyces sp. R18(6), a potential biocontrol agent. Res Microbiol 161:565–572

    Article  PubMed  Google Scholar 

  • de Vasconcellos RLF, Cardoso EJBN (2009) Rhizospheric streptomycetes as potential biocontrol agents of fusarium and Armillaria pine rot and as PGPR for Pinus taeda. BioControl 54:807–816

    Article  Google Scholar 

  • Debananda SN, Suchitra S, Salam N (2009) Screening of actinomycete isolates from niche habitats in Manipur for antibiotic activity. Am J Biochem Biotech 5(4):221–225

    Article  Google Scholar 

  • Dicko AH, Babana AH, Kassogué A, Fané R, Nantoumé D, Ouattara D, Dao S (2018) A Malian native plant growth promoting Actinomycetes based biofertilizer improves maize growth and yield. Symbiosis 75(3):267–275

    Article  Google Scholar 

  • El-Tarabily KA, Sivasithamparam K (2006) Non-streptomycete Actinomycetes as biocontrol agents of soil-borne fungal plant pathogens and as plant growth promoters. Soil Biol Biochem 38:1505–1520

    Article  CAS  Google Scholar 

  • El-Tarabily KA, Nassar AH, Sivasithamparam K (2008) Promotion of growth of bean (Phaseolus vulgaris L.) in a calcareous soil by a phosphate solubilizing rhizosphere-competent isolate of Micromonospora endolithica. Appl Soil Ecol 39:161–171

    Article  Google Scholar 

  • Farhat MB, Boukhris I, Chouayekh H (2015) Mineral phosphate solubilization by Streptomyces sp. CTM396 involves the excretion of gluconic acid and is stimulated by humic acids. FEMS Microbiol Lett 362(5):fnv008

    Article  CAS  PubMed  Google Scholar 

  • Fiske CH, Subbarow Y (1925) The colorimetric determination of phosphorus. J Biol Chem 66:375–400

    Article  CAS  Google Scholar 

  • Food and Agriculture Organization of the United Nations, FAO (2017) The future of food and agriculture—trends and challenges. FAO, Rome. ISBN 978-92-5-109551-5

    Google Scholar 

  • Franco C, Michelsen P, Percy N, Conn V, Listiana E, Moll S, Loria R, Coombs J (2007) Actinobacterial endophytes for improved crop performance. Aust Plant Pathol 36:524–531

    Article  Google Scholar 

  • Franco-Correa M, Quintana A, Duque C, Suarez C, Rodríguez MX, Barea JM (2010) Evaluation of actinomycete strains for key traits related with plant growth promotion and mycorrhiza helping activities. Appl Soil Ecol 45:209–217

    Article  Google Scholar 

  • Gong X, Xiang W, Cao XYY, Hao Y, Li L, Wang Q, Zou H, Qian C (2020) Microbispora cellulosiformans sp. nov., a novel actinomycete with cellulase activity isolated from soil in the cold region. Antonie Van Leeuwenhoek 113:2053–2062

    Article  CAS  PubMed  Google Scholar 

  • Goodfellow M, Williams ST (1983) Ecology of actinomycetes. Annu Rev Microbiol 37:189–216

    Article  CAS  PubMed  Google Scholar 

  • Gopalakrishnan S, Pande S, Sharma M, Humayun P, Kiran BK, Sandeep D, Vidya MS, Deepthi K, Rupela O (2011) Evaluation of actinomycete isolates obtained from herbal vermicompost for biological control of fusarium wilt of chickpea. Crop Prot 30:1070–1078

    Article  CAS  Google Scholar 

  • Gopalakrishnan S, Srinivas V, Vidya SM, Rathore A (2013) Plant growth-promoting activities of Streptomyces spp. in sorghum and rice. SpringerPlus 2:574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gopalakrishnan S, Vadlamudi S, Bandikinda P, Sathya A, Vijayabharathi R, Rupela O, Himabindu K, Katta K, Varshney RK (2014) Evaluation of Streptomyces strains isolated from herbal vermicompost for their plant growth-promotion traits in rice. Microbiol Res 169:40–48

    Article  CAS  PubMed  Google Scholar 

  • Gosal SK, Kaur J, Kaur J (2020) Microbial biotechnology: a key to sustainable agriculture. In: Kumar M, Kumar V, Prasad R (eds) Phyto-microbiome in stress regulation. Springer, Singapore, pp 219–243

    Chapter  Google Scholar 

  • Gupta N, Sahoo D, Basak U (2010) Evaluation of in vitro solubilization potential of phosphate solubilising Streptomyces isolated from phyllosphere of Heritiera fomes (mangrove). Afr J Microbiol Res 4:136–142

    CAS  Google Scholar 

  • Hamby MK, Crawford DL (2000) The enhancement of plant growth by selected Streptomyces species. In: American Society for Microbiology, 100th General Meeting, Los Angeles, CA. Abstract no: 567

    Google Scholar 

  • Hasegawa S, Meguro A, Shimizu M, Nishimura T, Toyoda K, Shiraishi T, Kunoh H (2008) Two bioassay methods to evaluate root-accelerating activity of Streptomyces sp. MBR52 metabolites. Actinomycetologica 22:42–45

    Article  Google Scholar 

  • Hoberg E, Marschner P, Lieberei R (2005) Organic acid exudation and pH changes by Gordonia sp. and Pseudomonas fluorescens grown with P adsorbed to goethite. Microbiol Res 160:177–187

    Article  CAS  PubMed  Google Scholar 

  • Hong T-Y, Cheng C-W, Huang J-W, Meng M (2002) Isolation and biochemical characterization of an endo-1,3-β-glucanase from Streptomyces sioyaensis containing a C-terminal family 6 carbohydrate-binding module that binds to 1,3-β-glucan. Microbiology 148:1151–1159

    Article  CAS  PubMed  Google Scholar 

  • Hudec C, Novinscak A, Filion M (2021) Diversity and virulence of Streptomyces spp. causing potato common scab in Prince Edward Island, Canada. Phytopathology 111:617–626

    Article  PubMed  Google Scholar 

  • Jobin G, Couture G, Goyer C, Brzezinski R, Beaulieu C (2005) Streptomycete spores entrapped in chitosan beads as a novel biocontrol tool against common scab of potato. Appl Microbiol Biotechnol 68:104–110

    Article  CAS  PubMed  Google Scholar 

  • Jog R, Nareshkumar G, Rajkumar S (2012) Plant growth promoting potential and soil enzyme production of the most abundant Streptomyces spp. from wheat rhizosphere. J Appl Microbiol 113:1154–1164

    Article  CAS  PubMed  Google Scholar 

  • Jog R, Pandya M, Nareshkumar G, Rajkumar S (2014) Mechanism of phosphate solubilization and antifungal activity of Streptomyces spp. isolated from wheat roots and rhizosphere and their application in improving plant growth. Microbiology 160:778–788

    Article  CAS  PubMed  Google Scholar 

  • Johnson SE, Loepper RH (2006) Role of organic acids in phosphate mobilization from iron oxide. Soil Sci Soc Am J 70:222–234

    Article  CAS  Google Scholar 

  • Juma NG, Tabatabai MA (1988) Phosphatase activity in corn and soybean roots: conditions for assay and effects of metals. Plant and Soil 107:39–47

    Article  CAS  Google Scholar 

  • Khamna S, Yokota A, Lumyong S (2009) Actinomycetes isolated from medicinal plant rhizosphere soils: diversity and screening of antifungal compounds, indole-3-acetic acid and siderophore production. World J Microbiol Biotechnol 25:649–655

    Article  CAS  Google Scholar 

  • Kortemaa H, Rita H, Haahtela K, Smolander A (1994) Root colonization ability of antagonistic Streptomyces griseoviridis. Plant and Soil 163:77–83

    Article  Google Scholar 

  • Kortemaa H, Pennanen A, Smolander A, Haahtela K (1997) Distribution of antagonistic Streptomyces griseoviridis in rhizosphere and non-rhizosphere sand. J Phytopathol 145:137–143

    Article  Google Scholar 

  • Kumar A, Kumar A, Patel H (2018) Role of microbes in phosphorus availability and acquisition by plants. Int J Curr Microbiol App Sci 7:1344–1347

    Article  CAS  Google Scholar 

  • Lacombe-Harvey M-È, Brzezinski R, Beaulieu C (2018) Chitinolytic functions in actinobacteria: ecology, enzymes, and evolution. Appl Microbiol Biotechnol 102:7219–7230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Law JW-F, Ser H-L, Khan TM, Chuah L-H, Pusparajah P, Chan K-G, Goh B-H, Lee L-H (2017) The potential of Streptomyces as biocontrol agents against the rice blast fungus, Magnaporthe oryzae (Pyricularia oryzae). Front Microbiol 8:3

    Article  PubMed  PubMed Central  Google Scholar 

  • Linderman RG, Moore LW, Baker KF, Cooksey DA (1983) Strategies for detecting and characterizing systems for biological control of soilborne plant pathogens. Plant Dis 67:1058–1064

    Article  Google Scholar 

  • Loria R, Coombs J, Yoshida M, Kers J, Bukhalid R (2003) A paucity of bacterial root diseases: Streptomyces succeeds where others fail. Physiol Mol Plant Pathol 62:65–72

    Article  Google Scholar 

  • Ludwig W, Euzéby J, Whitman WB (2012) Taxonomic outline of the phylum Actinobacteria. In: Goodfellow M, Kämpfer P, Busse H-J, Trujillo ME, Suzuki K, Ludwig W, Whitman WB (eds) Bergey’s manual of systematic bacteriology, vol 5, 2nd edn. Springer, New York, pp 29–31

    Chapter  Google Scholar 

  • Mahadevan B, Crawford DL (1997) Properties of the chitinase of the biocontrol agent Streptomyces lydicus WYEC108. Enzyme Microb Technol 20:489–493

    Article  CAS  Google Scholar 

  • Mehta S, Nautiyal CS (2001) An efficient method for qualitative screening of phosphate-solubilizing bacteria. Curr Microbiol 43:51–56

    Article  CAS  PubMed  Google Scholar 

  • Merzaeva OV, Shirokikh IG (2006) Colonization of plant rhizosphere by actinomycetes of different genera. Microbiology 75:226–230

    Article  CAS  Google Scholar 

  • Mun B-G, Lee W-H, Kang S-M, Lee S-U, Lee S-M, Lee DY, Shahid M, Yun B-W, Lee I-N (2020) Streptomyces sp. LH 4 promotes plant growth and resistance against Sclerotinia sclerotiorum in cucumber via modulation of enzymatic and defense pathways. Plant and Soil 448:87–103

    Google Scholar 

  • Nair MG, Putnam AR, Mishra SK, Mulks MH, Taft WH, Keller JE, Miller JR, Zhu PP, Meinhart JD, Lynn DG (1989) Faeriefungin: a new broad-spectrum antibiotic from Streptomyces griseus var. autotrophicus. J Nat Prod 52:797–809

    Article  CAS  PubMed  Google Scholar 

  • Nautiyal CS (1999) An efficient microbiological growth médium for screening phosphate solubilizing microorganisms. FEMS Microbiol Lett 170:265–270

    Article  CAS  PubMed  Google Scholar 

  • Nimnoi P, Ruanpanun P (2020) Suppression of root-knot nematode and plant growth promotion of chili (Capsicum flutescens L.) using co-inoculation of Streptomyces spp. Biol Control 145:104244

    Article  CAS  Google Scholar 

  • Ningthoujam DS, Sanasam S, Tamreihao K, Nimaichand S (2009) Antagonistic activities of local actinomycete isolates against rice fungal pathogens. Afr J Microbiol Res 3:737–742

    Google Scholar 

  • Poovarasan S, Mohandas S, Paneerselvam P, Saritha B, Ajay KM (2013) Mycorrhizae colonizing actinomycetes promote plant growth and control bacterial blight disease of pomegranate (Punica granatum L. cv Bhagwa). Crop Prot 53:175–181

    Article  Google Scholar 

  • Postma J, Clematis F, Nijhuis EH, Someus E (2013) Efficacy of four phosphate-mobilizing bacteria applied with an animal bone charcoal formulation in controlling Pythium aphanidermatum and fusarium oxysporum f. sp. radices lycopersici in tomato. Biol Control 67:284–291

    Article  CAS  Google Scholar 

  • Reza-Ghorbani-Nasrabadi GR, Alikhani HA, Hamedi J (2012) Identification and determination of extracellular phytate-degrading activity in actinomycetes. World J Microbiol Biotechnol 28:2601–2608

    Article  CAS  Google Scholar 

  • Richardson AE, Lynch JP, Ryan PR, Delhaize E, Smith FA, Smith SE, Harvey PR, Ryan MH, Veneklaas EJ, Lambers H, Oberson A, Culvenor RA, Simpson RJ (2011) Plant and microbial strategies to improve the phosphorus efficiency of agriculture. Plant and Soil 349:121–156

    Article  CAS  Google Scholar 

  • Rothrock CS, Gottlieb D (1984) Role of antibiosis in antagonism of Streptomyces hygroscopicus var geldanus to Rhizoctonia solani in soil. Can J Microbiol 30:1440–1447

    Article  Google Scholar 

  • Sabaratnam S, Traquair JA (2002) Mechanism of antagonism by Streptomyces griseocarneus (strain Di944) against fungal pathogens of greenhouse-grown tomato transplants. Can J Plant Pathol 37:197–211

    Article  CAS  Google Scholar 

  • Sadeghi A, Karimi E, Dahaji PA, Javid MG, Dalvand Y, Askari H (2012) Plant growth promoting activity of an auxin and siderophore producing isolate of Streptomyces under saline soil conditions. World J Microbiol Biotechnol 28:1503–1509

    Article  CAS  PubMed  Google Scholar 

  • Satyaprakash M, Nikitha T, Reddi EUB, Sadhana B, Vani SS (2017) A review on phosphorous and phosphate solubilising bacteria and their role in plant nutrition. Int J Curr Microbiol App Sci 6:2133–2144

    Article  CAS  Google Scholar 

  • Sheng XF, He LY, Zhou L, Shen YY (2009) Characterization of Microbacterium sp. F10a and its role in polycyclic aromatic hydrocarbon removal in low-temperature soil. Can J Microbiol 55:529–535

    Article  CAS  PubMed  Google Scholar 

  • Shih H-D, Liu Y-C, Hsu F-L, Mulabagal V, Dodda R, Huang J-W (2003) Fungichromin: a substance from Streptomyces padanus with inhibitory effects on Rhizoctonia solani. J Agric Food Chem 51:95–99

    Article  CAS  PubMed  Google Scholar 

  • Shirling E, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340

    Article  Google Scholar 

  • Smith J, Putnam A, Nair M (1990) In vitro control of fusarium diseases of Asparagus officinalis L. with a Streptomyces or its polyene antibiotic, Faeriefungin. J Agric Food Chem 38:1729–1733

    Article  Google Scholar 

  • Soares ACF, Da Silva C, Da Silva M, Perez JO (2007) Production of streptomycete inoculum in sterilized rice. Sci Agric 64:641–644

    Article  Google Scholar 

  • Suárez-Moreno ZR, Vinchira-Villarraga DM, Vergara-Morales DI, Castellanos L, Ramos FA, Guarnaccia C, Degrassi G, Venturi V, Moreno-Sarmiento N (2019) Plant-growth promotion and biocontrol properties of three Streptomyces spp. isolates to control bacterial rice pathogens. Front Microbiol 10:290

    Article  PubMed  PubMed Central  Google Scholar 

  • Tahvoven R (1988) Microbial control of plant diseases with Streptomyces spp. EPPO Bull 18:55–59

    Article  Google Scholar 

  • Tamreihao K, Ningthoujam DS, Nimaichand S, Singh ES, Reena P, Singh SH, Nongthomba U (2016) Biocontrol and plant growth promoting activities of a Streptomyces corchorusii strain UCR3-16 and preparation of powder formulation for application as biofertilizer agents for rice plant. Microbiol Res 192:260–270

    Article  CAS  PubMed  Google Scholar 

  • Tao G, Tian S, Cai M, Xie G (2008) Phosphate solubilizing and mineralizing abilities of bacteria isolated from soils. Pedosphere 18:515–523

    Article  CAS  Google Scholar 

  • The Nobel Prize in Physiology or Medicine (1952). NobelPrize.org. Nobel Media AB 2021. https://www.nobelprize.org/prizes/medicine/1952/summary/

  • Tokala RK, Strap JL, Jung MC, Crawford DL, Salove MH, Deobald LA, Bailey FJ, Morra MJ (2002) Novel plant-microbe rhizosphere interaction involving Streptomyces lydicus WYEC108 and the pea plant (Pisum sativum). Appl Environ Microbiol 68:2161–2171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trejo-Estrada S, Paszczynski A, Crawford D (1998) Antibiotics and enzymes produced by the biocontrol agent Streptomyces violaceusniger YCED-9. J Ind Microbiol Biotechnol 21:81–90

    Article  CAS  Google Scholar 

  • Vargas Hoyos HA, Chiaramonte JB, Barbosa-Casteliani AG, Fernandez Morais J, Perez-Jaramillo JE, Nobre Santos S, Nascimento Queiroz SC, Soares Melo I (2021) An Actinobacterium strain from soil of cerrado promotes phosphorus solubilization and plant growth in soybean plants. Front Bioeng Biotechnol 22(9):579906

    Article  Google Scholar 

  • Vurukonda SSKP, Giovanardi D, Stefani E (2018) Plant growth promoting and biocontrol activity of Streptomyces spp. as endophytes. Int J Mol Sci 19:952

    Article  CAS  PubMed Central  Google Scholar 

  • Wacksman SA, Woodruff HB (1940) The soil as a source of microorganisms antagonistics to disease producing bacteria. In: Bergey’s manual of systematic bacteriology, vol 4. Williams & Wilkins, pp 2333–2648

    Google Scholar 

  • Yuan WM, Crawford D (1995) Characterization of Streptomyces lydicus WYEC108 as a potential biocontrol agent against fungal root and seed rots. Appl Environ Microbiol 61:3119–3128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brahim Bouizgarne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bouizgarne, B. (2022). Phosphate-Solubilizing Actinomycetes as Biofertilizers and Biopesticides: Bioformulations for Sustainable Agriculture. In: Arora, N.K., Bouizgarne, B. (eds) Microbial BioTechnology for Sustainable Agriculture Volume 1. Microorganisms for Sustainability, vol 33. Springer, Singapore. https://doi.org/10.1007/978-981-16-4843-4_13

Download citation

Publish with us

Policies and ethics