Skip to main content
Log in

Isolation and Selection of Streptomyces Species from Semi-arid Agricultural Soils and Their Potential as Producers of Xylanases and Cellulases

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The Mezquital Valley (MV), Mexico, is a semi-arid region whose main economic activity is agriculture, this zone is characterized by the use of wastewater for crop irrigation. This condition has increased the amount nutrients in soils, organic carbon content and native microorganisms. The Streptomyces species are a group of saprophytic bacteria that represent between 20 and 60% of the total microbial population in soils, capable of producing metabolites of commercial importance. In this work, Streptomyces species were isolated from agricultural soils of the MV and was evaluated the production of endoglucanases (CMCase) and xylanases (Xyl) in Solid-State Cultivation (SSC). From soil samples, 73 possible strains of Streptomyces species were isolated for their ability to produce CMCase and Xyl in SSC. The study also included its characterization by morphological characteristics. Of the isolated microorganisms, 38 strains were selected as strong enzyme producers according to the measurement of the halo generated in plate and by growth on barley straw as only carbon source. Two different sizes of barley straw particle were tested, finding that the greatest enzymatic activity was observed in particle size 12. Three strains of Streptomyces species were chosen which presented the best catalytic capacities, a maximum of 100.69 AU Xyl/gram dry matter (gdm), 82 AU Xyl/gdm and 26.02 AU CMCase/gdm for strains 30, 28 and 12, respectively. The strains were identified by ribosomal gen16s sequence and identified as S. flavogriseus, S. virginiae and S. griseoaurantiacus. It is the first report of endogluconase and xylanolytic activity by S. virginiae isolated from a semi-arid soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Das S, Lyla PS, Khan SA (2008) Distribution and generic composition of culturable marine actinomycetes from the sediments of Indian continental slope of Bay of Bengal. Chin J Oceanol Limnol 26(2):166–177. https://doi.org/10.1007/s00343-008-0166-5

    Article  Google Scholar 

  2. Bhatti AA, Haq S, Bhat RA (2017) Actinomycetes benefaction role in soil and plant health. Micro Pathog 111:458–467. https://doi.org/10.1016/j.micpath.2017.09.036

    Article  CAS  Google Scholar 

  3. Bhakyashree K, Kannabiran K (2018) Actinomycetes mediated targeting of drug resistant MRSA pathogens. J King Saud Univ Sci. https://doi.org/10.1016/j.jksus.2018.04.034

    Article  Google Scholar 

  4. Messaoudi O, Bendahou M, Benamar I, Abdelwouhid DE (2015) Identification and preliminary characterization of non-polyene antibiotics secreted by new strain of actinomycete isolated from sebkha of Kenadsa, Algeria. Asian Pac J Trop Biomed 5(6):438–445. https://doi.org/10.1016/j.apjtb.2015.04.002

    Article  CAS  Google Scholar 

  5. Benhadj M, Gacemi-Kirane D, Menasria T, Guebla K, Ahmane Z (2018) Screening of rare actinomycetes isolated from natural wetland ecosystem (Fetzara Lake, northeastern Algeria) for hydrolytic enzymes and antimicrobial activities. J King Saud Univ Sci. https://doi.org/10.1016/j.jksus.2018.03.008

    Article  Google Scholar 

  6. Ouchari L, Boukeskasse A, Bouizgarne B, Ouhdouch Y (2019) Antimicrobial potential of actinomycetes isolated from the unexplored hot Merzouga desert and their taxonomic diversity. Biology Open 8(2):bio035410. https://doi.org/10.1242/bio.035410

    Article  PubMed  CAS  Google Scholar 

  7. Abdelmohsen UR, Grkovic T, Balasubramanian S, Kamel MS, Quinn RJ, Hentschel U (2015) Elicitation of secondary metabolism in actinomycetes. Biotechnol Adv 33(6):798–811. https://doi.org/10.1016/j.biotechadv.2015.06.003

    Article  PubMed  CAS  Google Scholar 

  8. Atta HM (2015) Biochemical studies on antibiotic production from Streptomyces sp.: taxonomy, fermentation, isolation and biological properties. J Saudi Chem Soc 19:12–22. https://doi.org/10.1016/j.jscs.2011.12.011

    Article  Google Scholar 

  9. Weber T, Charusanti P, Musiol-Kroll EM, Jiang X, Tong Y, Kim HU, Lee SY (2015) Metabolic engineering of antibiotic factories: new tools for antibiotic production in actinomycetes. Trends Biotechnol 33(1):15–26

    Article  CAS  PubMed  Google Scholar 

  10. Mohan GM, Charya MAS (2012) Enzymatic activity of fresh water actinomycetes. Int Res J Pharm 3:193–197. https://doi.org/10.1016/j.tibtech.2014.10.009

    Article  CAS  Google Scholar 

  11. Choi SS, Kim HJ, Lee HS, Kim P, Kim ES (2015) Genome mining of rare actinomycetes and cryptic pathway awakening. Process Biochem 50(8):1184–1193. https://doi.org/10.1016/j.procbio.2015.04.008

    Article  CAS  Google Scholar 

  12. Varalakshmi T, Sekhar KM, Charyulu PBB (2014) Taxonomic studies and phylogenetic characterization of potential and pigmented antibiotic producing actinomycetes isolated from rhizosphere soils. Int J Pharm Pharm Sci 6(6):511–519

    Google Scholar 

  13. Shah AM, Rehman S, Hussain A, Mushtaq S, Rather MA, Shah A, Ahmad Z, Khan IA, Bhat KA, Hassan QP (2017) Antmicrobial investigation of selected soil actinomycetes isolated from unexplored regions of Kashmir Himalayas, India. Microb Pathog 110:93–99. https://doi.org/10.1016/j.micpath.2017.06.017

    Article  PubMed  CAS  Google Scholar 

  14. Mohammadipanah F, Wink J (2016) Actinobacteria from arid and desert habitats: diversity and biological activity. Front Microbiol 6:1541. https://doi.org/10.3389/fmicb.2015.01541

    Article  PubMed  PubMed Central  Google Scholar 

  15. Vieille C, Zeikus GJ (2001) Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol Mol Biol Rev 65(1):1–43. https://doi.org/10.1128/MMBR.65.1.1-43.2001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Bennur T, Kumar AR, Zinjarde S, Javdekar V (2015) Nocardiopsis species: incidence, ecological roles and adaptations. Microbiol Res 174:33–47. https://doi.org/10.1016/j.micres.2015.03.010

    Article  PubMed  Google Scholar 

  17. Johri JK, Surange S, Nautiyal CS (1999) Occurrence of salt, pH, and temperature-tolerant, phosphate-solubilizing bacteria in alkaline soils. Curr Microbiol 39(2):89–93. https://doi.org/10.1007/s002849900424

    Article  PubMed  CAS  Google Scholar 

  18. Gurovic MSV, Olivera NL (2017) Antibacterial producing actinomycetes from extra Andean Patagonia. J Arid Environ 144:216–219. https://doi.org/10.1016/j.jaridenv.2017.04.015

    Article  Google Scholar 

  19. Aouar L, Lerat S, Ouffroukh A, Boulahrouf A, Beaulieu C (2012) Taxonomic identification of rhizospheric actinobacteria isolated from Algerian semi-arid soil exhibiting antagonistic activities against plant fungal pathogens. Can J Plant Pathol 34(2):165–176. https://doi.org/10.1080/07060661.2012.681396

    Article  Google Scholar 

  20. Korayem AS, Abdelhafez AA, Zaki MM, Saleh EA (2015) Optimization of biosurfactant production by Streptomyces isolated from Egyptian arid soil using Plackett-Burman design. Ann Agric Sci 60(2):209–217. https://doi.org/10.1016/j.aoas.2015.09.001

    Article  Google Scholar 

  21. Yeager CM, Gallegos-Graves LV, Dunbar J, Hesse CN, Daligault H, Kuske CR (2017) Polysaccharide degradation capability of Actinomycetales soil isolates from a semiarid grassland of the Colorado Plateau. Appl Environ Microbiol 83(6):e03020–e3116. https://doi.org/10.1128/aem.03020-16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. González-Méndez B, Webster R, Fiedler S, Loza-Reyes E, Hernández JM, Ruíz-Suárez LG, Siebe C (2015) Short-term emissions of CO2 and N2O in response to periodic flood irrigation with waste water in the Mezquital Valley of Mexico. Atmos Environ 101:116–124. https://doi.org/10.1016/j.atmosenv.2014.10.048

    Article  CAS  Google Scholar 

  23. Sánchez-González A, Chapela-Lara M, Germán-Venegas E, Fuentes-García R, del Río-Portilla F, Siebe C (2017) Changes in quality and quantity of soil organic matter stocks resulting from wastewater irrigation in formerly forested land. Geoderma 306:99–107. https://doi.org/10.1016/j.geoderma.2017.07.009

    Article  CAS  Google Scholar 

  24. Montelongo-Reyes MM, Otazo-Sánchez EM, Romo-Gómez C, Gordillo-Martínez AJ, Galindo-Castillo E (2015) GHG and black carbon emission inventories from Mezquital Valley: the main energy provider for Mexico Megacity. Sci Total Environ 527:455–464. https://doi.org/10.1016/j.scitotenv.2015.03.129

    Article  PubMed  CAS  Google Scholar 

  25. Broszat M, Nacke H, Blasi R, Siebe C, Huebner J, Daniel R, Grohmann E (2014) Wastewater irrigation increases abundance of potentially harmful Gammaproteobacteria in soils from Mezquital Valley, Mexico. Appl Environ Microbiol 80(17):5282–5291. https://doi.org/10.1128/AEM.01295-14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Lüneberg K, Schneider D, Siebe C, Daniel R (2018) Drylands soil bacterial community is affected by land use change and different irrigation practices in the Mezquital Valley, México. Sci Rep 8(1):1413. https://doi.org/10.1038/s41598-018-19743-x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Diario Oficial de la Federación. Norma Oficial Mexicana: NOM 021-SEMARNAT-2000 (2002) Que establece las especificaciones de fertilidad, salinidad y clasificación de suelos. Estudios, muestreo y análisis. México

  28. Hayakawa M (2008) Studies on the isolation and distribution of rare actinomycetes in soil. Actinomycetologica 22:12–19. https://doi.org/10.3209/saj.SAJ220103

    Article  Google Scholar 

  29. Oskay AM, Üsame T, Cem A (2004) Antibacterial activity of some actinomycetes isolated from farming soils of Turkey. Afr J Biotechnol 3(9):441–446. https://doi.org/10.5897/AJB2004.000-2087

    Article  Google Scholar 

  30. Shirling EB, Gottlieb D (1966) Method for characterization of Streptomyces species. Int J Syst Bacteriol 16(3):313–340

    Article  Google Scholar 

  31. Malisorn K, Nikhome K (2014) Isolation and screening of actinomycetes from soil for their enzymatic and antifungal activity. Khon Kaen Agric J 42(4):151–156

    Google Scholar 

  32. Jaralla EM, Al-Dabbagh NN, Hameed N, Abdul-Hussain N (2014) Screening for enzymatic production ability and antimicrobial activity of actinomycetes isolated from soil in Hillah/Iraq. J Pharm Biol Sci 9:42–47

    Google Scholar 

  33. Nakamura S, Wakabayashi K, Nakai R, Aono R, Horikoshi K (1993) Purification and some properties of an alkaline xylanase from alkaliphilic Bacillus sp. strain 41 M-1. Appl Environ Microbiol 59(7):2311–2316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Abdel-Sater MA, El-Said AHM (2001) Xylan-decomposing fungi and xylanolytic activity in agricultural and industrial wastes. Int Biodeter Biodegr 47(1):15–21. https://doi.org/10.1016/S0964-8305(00)00113-X

    Article  CAS  Google Scholar 

  35. Porsuk I, Özakin S, Balí B, Yilmaz EI (2013) A cellulase-free, thermoactive, and alkali xylanase production by terrestrial Streptomyces sp. CA24. Turk J Biol 37(3):370–375

    CAS  Google Scholar 

  36. Miller GL, Blum R, Glannon WE, Burton AL (1960) Measurement of carboxymethylcellulase activity. Anal Biochem 1(2):127–132. https://doi.org/10.1016/0003-2697(60)90004-X

    Article  CAS  Google Scholar 

  37. Loera O, Córdova J (2003) Improvement of xylanase production by a parasexual cross between Aspergillus niger strains. Braz Arch Biol Technol 46(2):177–181. https://doi.org/10.1590/S1516-8913200300020000

    Article  CAS  Google Scholar 

  38. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1016/0003-2697(76)90527-3

    Article  PubMed  CAS  Google Scholar 

  39. Wilson K (2001) Preparation of genomic DNA from bacteria. Curr Prot Mol Biol 56(1):2–4. https://doi.org/10.1002/0471142727.mb0204s56

    Article  Google Scholar 

  40. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882. https://doi.org/10.1093/nar/25.24.4876

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  42. Tavaré S (1986) Some probabilistic and statistical problems in the analysis of DNA sequences. Lect Math Life Sci (Am Math Soc) 17:57–86

    Google Scholar 

  43. Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9(8):772. https://doi.org/10.1038/nmeth.2109

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Hozzein WN, Abuelsoud W, Wadaan MAM, Shuikan AM, Selim S, Al Jaouni S, AbdElgawad H (2019) Exploring the potential of actinomycetes in improving soil fertility and grain quality of economically important cereals. Sci Total Environ 651:2787–2798. https://doi.org/10.1016/j.scitotenv.2018.10.048

    Article  PubMed  CAS  Google Scholar 

  45. Salehghamari E, Soleimani M, Tafacori V (2015) Antibacterial activity of some actinomycetes isolated from soils of Alborz province Iran. Prog Biol Sci 5(2):159–167

    Google Scholar 

  46. Pérez-Corral DA, García-González NY, Gallegos-Morales G, Ruiz-Cisneros MF, Berlanga-Reyes DI, Rios-Velasco C (2015) Isolation of actinomycetes associated to apple trees rhizosphere antagonistic to Fusarium equiseti. Rev Mex Cienc Agríc 6(7):1629–1638

    Google Scholar 

  47. Khamna S, Yokota A, Peberdy JF, Lumyong S (2009) Actinomycetes isolated from medicinal plant rhizosphere soils: diversity and screening of antifungal compounds, indole-3-acetic acid and siderophore production. World J Microbiol Biotechnol 25(4):649–655. https://doi.org/10.1007/s11274-008-9933-x

    Article  CAS  Google Scholar 

  48. Friedel JK, Langer T, Siebe C, Stahr K (2000) Effects of long-term waste water irrigation on soil organic matter, soil microbial biomass and its activities in central Mexico. Biol Fert Soils 31:414–421. https://doi.org/10.1007/s003749900188

    Article  Google Scholar 

  49. Adrover M, Moyà G, Vadell J (2017) Seasonal and depth variation of soil chemical and biological properties in alfalfa crops irrigated with treated wastewater and saline groundwater. Geoderma 286:54–63. https://doi.org/10.1016/j.geoderma.2016.10.024

    Article  CAS  Google Scholar 

  50. Hidri Y, Bouziri L, Maron PA, Anane M, Jedidi N, Hassan A, Ranjard L (2010) Soil DNA evidence for altered microbial diversity after long-term application of municipal wastewater. Agron Sustain Dev 30:423–431. https://doi.org/10.1051/agro/2009038

    Article  CAS  Google Scholar 

  51. Bastida F, Torres IF, Romero-Trigueros C, Baldrian P, Větrovský T, Bayona JM, Alarcón JJ, Hernández T, García C, Nicolás E (2017) Combined effects of reduced irrigation and water quality on the soil microbial community of a citrus orchard under semi-arid conditions. Soil Biol Biochem 104:226–237. https://doi.org/10.1016/j.soilbio.2016.10.024

    Article  CAS  Google Scholar 

  52. Meddeb-Mouelhi F, Moisan JK, Beauregard M (2014) A comparison of plate assay methods for detecting extracellular cellulase and xylanase activity. Enzyme Microb Technol 66:16–19. https://doi.org/10.1016/j.enzmictec.2014.07.004

    Article  PubMed  CAS  Google Scholar 

  53. Kasana RC, Salwan R, Dhar H, Dutt S, Gulati A (2008) A rapid and easy method for the detection of microbial cellulases on agar plates using Gram’s iodine. Curr Microbiol 57:503–507. https://doi.org/10.1007/s00284-008-9276-8

    Article  PubMed  CAS  Google Scholar 

  54. Guo H, Hong C, Zhang C, Zheng B, Jiang D, Qin W (2018) Bioflocculants production from a cellulase-free xylanase-producing Pseudomonas boreopolis G22 by degrading biomass and its application in cost-effective harvest of microalgae. Bioresour Technol 255:171–179. https://doi.org/10.1016/j.biortech.2018.01.082

    Article  PubMed  CAS  Google Scholar 

  55. Ruijssenaars HJ, Hartmans S (2001) Plate screening methods for the detection of polysaccharase-producing microorganisms. Appl Microbiol Biotechnol 55:143–149. https://doi.org/10.1007/s002530000477

    Article  PubMed  CAS  Google Scholar 

  56. Ping L, Wang M, Yuan X, Cui F, Huang D, Sun W, Zou B, Huo S, Wang H (2018) Production and characterization of a novel acidophilic and thermostable xylanase from Thermoascus aurantiacus. Int J Biol Macromol 109:1270–1279. https://doi.org/10.1016/j.ijbiomac.2017.11.130

    Article  PubMed  CAS  Google Scholar 

  57. Peng R, He Z, Gou T, Du J, Li H (2019) Detection of parameters in solid state fermentation of Monascus by near infrared spectroscopy. Infrared Phys Technol 96:244–250. https://doi.org/10.1016/j.infrared.2018.11.030

    Article  CAS  Google Scholar 

  58. Soccol CR, da Costa ESF, Letti LAJ, Karp SG, Woiciechowski AL, de Souza Vandenberghe LP (2017) Recent biotechnology research and innovation developments and innovations in solid state fermentation. Biotechnol Res Innov 1(1):52–71. https://doi.org/10.1016/j.biori.2017.01.002

    Article  Google Scholar 

  59. Behera SS, Ray RC (2016) Solid state fermentation for production of microbial cellulases: recent advances and improvement strategies. Int J Biol Macromol 86:656–669. https://doi.org/10.1016/j.ijbiomac.2015.10.090

    Article  PubMed  CAS  Google Scholar 

  60. Leite P, Salgado JM, Venâncio A, Domínguez JM, Belo I (2016) Ultrasounds pretreatment of olive pomace to improve xylanase and cellulase production by solid-state fermentation. Bioresour Technol 214:737–746. https://doi.org/10.1016/j.biortech.2016.05.028

    Article  PubMed  CAS  Google Scholar 

  61. Chen CH, Yao JY, Yang B, Lee HL, Yuan SF, Hsieh HY, Liang PH (2019) Engineer multi-functional cellulase/xylanase/β-glucosidase with improved efficacy to degrade rice straw. Bioresour Technol Rep 5:170–177. https://doi.org/10.1016/j.biteb.2019.01.008

    Article  Google Scholar 

  62. Ramamoorthy NK, Sambavi TR, Renganathan S (2019) A study on cellulase production from a mixture of lignocellulosic wastes. Process Biochem 83:148–158. https://doi.org/10.1016/j.procbio.2019.05.006

    Article  CAS  Google Scholar 

  63. Ang SK, Shaza EM, Adibah Y, Suraini AA, Madihah MS (2013) Production of cellulases and xylanase by Aspergillus fumigatus SK1 using untreated oil palm trunk through solid state fermentation. Process Biochem 48(9):1293–1302. https://doi.org/10.1016/j.procbio.2013.06.019

    Article  CAS  Google Scholar 

  64. De Castro RJS, Sato HH (2015) Enzyme production by solid state fermentation: general aspects and an analysis of the physicochemical characteristics of substrates for agro-industrial wastes valorization. Waste Biomass Valoriz 6:1085–1093. https://doi.org/10.1007/s12649-015-9396-x

    Article  CAS  Google Scholar 

  65. Hansen GH, Lübeck M, Frisvad JC, Lübeck PS, Andersen B (2015) Production of cellulolytic enzymes from ascomycetes: comparison of solid state and submerged fermentation. Process Biochem 50(9):1327–1341. https://doi.org/10.1016/j.procbio.2015.05.017

    Article  CAS  Google Scholar 

  66. Nascimento RP, Coelho RRR, Marques S, Alves L, Gırio FM, Bon EPS, Amaral-Collaço MT (2002) Production and partial characterisation of xylanase from Streptomyces sp. strain AMT-3 isolated from Brazilian cerrado soil. Enzyme Microb Technol 31:549–555. https://doi.org/10.1016/S0141-0229(02)00150-3

    Article  CAS  Google Scholar 

  67. Kumar A, Gupta R, Shrivastava B, Khasa YP, Kuhad RC (2012) Xylanase production from an alkalophilic actinomycete isolate Streptomyces sp. RCK-2010, its characterization and application in saccharification of second generation biomass. J Mol Catal B 74:170–177. https://doi.org/10.1016/j.molcatb.2011.10.001

    Article  CAS  Google Scholar 

  68. Ting ASY, Hermanto A, Peh KL (2014) Indigenous actinomycetes from empty fruit bunch compost of oil palm: evaluation on enzymatic and antagonistic properties. Biocatal Agric Biotechnol 3(4):310–315. https://doi.org/10.1016/j.bcab.2014.03.004

    Article  Google Scholar 

  69. Zhang D, Luo Y, Chu S, Zhi Y, Wang B, Zhou P (2016) Enhancement of cellulase and xylanase production using pH-shift and dissolved oxygen control strategy with Streptomyces griseorubens JSD-1. Appl Biochem Biotechnol 178:338–352. https://doi.org/10.1007/s12010-015-1875-9

    Article  PubMed  CAS  Google Scholar 

  70. De Sales AN, de Souza AC, Moutta RDO, Ferreira-Leitão VS, Schwan RF, Dias DR (2017) Use of lignocellulose biomass for endoxylanase production by Streptomyces termitum. Prep Biochem Biotechnol 47(5):505–512. https://doi.org/10.1080/10826068.2016.1275015

    Article  PubMed  CAS  Google Scholar 

  71. Srivastava KC (1993) Properties of thermostable hemicellulolytic enzymes from Thermomonospora strain 29 grown in solid state fermentation on coffee processing solid waste. Biotechnol Adv 11(3):441–465. https://doi.org/10.1016/0734-9750(93)90013-D

    Article  PubMed  CAS  Google Scholar 

  72. Beg QK, Bhushan B, Kapoor M, Hoondal GS (2000) Enhanced production of a thermostable xylanase from Streptomyces sp. QG-11-3 and its application in biobleaching of eucalyptus kraft pulp. Enzyme Microb Technol 27:459–466. https://doi.org/10.1016/S0141-0229(00)00231-3

    Article  PubMed  CAS  Google Scholar 

  73. Bajaj BK, Singh NP (2010) Production of xylanase from an alkalitolerant Streptomyces sp. 7b under solid-state fermentation, its purification, and characterization. Appl Biochem Biotechnol 162:1804–1818. https://doi.org/10.1007/s12010-010-8960-x

    Article  PubMed  CAS  Google Scholar 

  74. Singh R, Kapoor V, Kumar V (2012) Utilization of agro-industrial wastes for the simultaneous production of amylase and xylanase by thermophilic actinomycetes. Braz J Microbiol 43(4):1545–1552. https://doi.org/10.1590/S1517-83822012000400039

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Vivek N, Nair LM, Mohan B, Nair SC, Sindhu R, Pandey A, Shurpali N, Binod P (2019) Bio-butanol production from rice straw-Recent trends, possibilities, and challenges. Bioresour Technol Rep. https://doi.org/10.1016/j.biteb.2019.100224

    Article  Google Scholar 

  76. Dixit PP, Deshmukh AM (2016) Xylanase from Streptomyces hygroscopicus under solid state fermentation. Int J Adv Biotechnol Res 7(1):38–46

    CAS  Google Scholar 

  77. Zhang F, Zhu Z, Wang B, Wang P, Yu G, Wu M, Chen W, Ran W, Shen Q (2013) Optimization of Trichoderma harzianum T-E5 biomass and determining the degradation sequence of biopolymers by FTIR in solid-state fermentation. Ind Crop Prod 49:619–627. https://doi.org/10.1016/j.indcrop.2013.05.037

    Article  CAS  Google Scholar 

  78. Badhan A, Ribeiro GO Jr, Jones DR, Wang Y, Abbott DW, Di Falco M, Tsang A, McAllister TA (2018) Identification of novel enzymes to enhance the ruminal digestion of barley straw. Biores Technol 260:76–84. https://doi.org/10.1016/j.biortech.2018.03.086

    Article  CAS  Google Scholar 

  79. Ishaque M, Kluepfel D (1981) Production of xylanolytic enzymes by Streptomyces flavogriseus. Biotechnol Lett 3(9):481–486. https://doi.org/10.1007/BF00147558

    Article  CAS  Google Scholar 

  80. Mackenzie CR, Bilous D, Johnson KG (1984) Purification and characterization of an exoglucanase from Streptomyces flavogriseus. Can J Microbiol 30:1171–1178. https://doi.org/10.1139/m84-183

    Article  PubMed  CAS  Google Scholar 

  81. Chen WP, Anderson AW, Han YW (1979) Extraction of glucose isomerase from Streptomyces flavogriseus. Appl Environ Microbiol 37(4):785–787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kluepfel D, Biron L, Ishaque M (1980) Simultaneous production of cellulose complex and glucose isomerase by Streptomyces flavogriseus. Biotechnol Lett 2(7):309–314. https://doi.org/10.1007/BF00172643

    Article  CAS  Google Scholar 

  83. Srivastava R, Ali SS, Srivastava BS (1991) Cloning of xylanase gene of Streptomyces flavogriseus in Escherichia coli and bacteriophage λ-induced lysis for the release of cloned enzyme. FEMS Microbial Lett 78(2–3):201–206. https://doi.org/10.1111/j.1574-6968.1991.tb04443.x

    Article  CAS  Google Scholar 

  84. Pennacchio A, Ventorino V, Cimini D, Pepe O, Schiraldi C, Inverso M, Faraco V (2018) Isolation of new cellulase and xylanase producing strains and application to lignocellulosic biomasses hydrolysis and succinic acid production. Bioresour Technol 259:325–333. https://doi.org/10.1016/j.biortech.2018.03.027

    Article  PubMed  CAS  Google Scholar 

  85. Chu FJ, Lin CW, Yet-Po I, Wu CH, Chen DH (2012) Hydrolysis of bamboo cellulose and cellulase characteristics by Streptomyces griseoaurantiacus ZQBC691. J Taiwan Inst Chem Eng 43(2):220–225. https://doi.org/10.1016/j.jtice.2011.08.004

    Article  CAS  Google Scholar 

  86. Kumar AK (2015) UV mutagenesis treatment for improved production of endoglucanase and β-glucosidase from newly isolated thermotolerant actinomycetes Streptomyces griseoaurantiacus. Bioresour Bioprocess 2(1):22. https://doi.org/10.1186/s40643-015-0052-x

    Article  Google Scholar 

  87. Iizuka H, Kawaminami T (1969) Studies on xylanase from microorganisms. Agric Biol Chem 33(9):1257–1263. https://doi.org/10.1080/00021369.1969.10859468

    Article  CAS  Google Scholar 

  88. Macagnan D, Romeiro RDS, Pomella AWV, de Souza JT (2008) Production of lytic enzymes and siderophores, and inhibition of germination of basidiospores of Moniliophthora (ex Crinipellis) perniciosa by phylloplane actinomycetes. Biol Control 47:309–314. https://doi.org/10.1016/j.biocontrol.2008.08

    Article  CAS  Google Scholar 

  89. Anzai Y, Watanabe J (1997) 16S rRNA gene sequence analysis of Streptomyces lavendulae and Streptomyces virginiae strains. Actinomycetologica 11(1):15–19. https://doi.org/10.3209/saj.11_15

    Article  CAS  Google Scholar 

  90. Long K, Lu Z, Wu S, Peng L (2012) Screening and identification of an actinomycete antagonistic to pepper bacterial wilt. J Henan Agric Sci 41(11):92–95

    Google Scholar 

  91. Petricková K, Chronáková A, Zelenka T, Chrudimský T, Pospísil S, Petrícek M, Kristufek V (2015) Evolution of cyclizing 5-aminolevulinate synthases in the biosynthesis of actinomycete secondary metabolites: outcomes for genetic screening techniques. Front Microbiol 6:814. https://doi.org/10.3389/fmicb.2015.00814

    Article  PubMed  PubMed Central  Google Scholar 

  92. Dezfully NK, Ramanayaka JG (2015) Isolation, identification and evaluation of antimicrobial activity of Streptomyces flavogriseus, strain ACTK2 from soil sample of Kodagu, Karnataka State (India). Jundishapur J Microbiol 8(2):e15107.7

    Google Scholar 

  93. Yang N, Sun C (2016) The inhibition and resistance mechanisms of actinonin, isolated from marine Streptomyces sp. NHF165, against Vibrio anguillarum. Front Microbiol 7:1467. https://doi.org/10.3389/fmicb.2016.01467

    Article  PubMed  PubMed Central  Google Scholar 

  94. Yu J, Zhang L, Liu Q, Qi X, Ji Y, Kim BS (2015) Isolation and characterization of actinobacteria from Yalujiang coastal wetland, North China. Asian Pac J Trop Biomed 5(7):555–560. https://doi.org/10.1016/j.apjtb.2015.04.007

    Article  CAS  Google Scholar 

  95. ShanW ZhouY, Liu H, Yu X (2018) Horticultural biology and metabolomics center, Haixia Institute of Science and Technology. Fujian Agriculture and Forestry University, China

    Google Scholar 

Download references

Acknowledgements

This work was carried out with the support received by the National Council of Science and Technology (CONACyT) with registration 557540 and to the PhD scholarship awarded by ConacyT No. 467187. The authors are grateful to Ing. Jaime Ortega Bernal for providing access to the experimental platform of Cinta Larga, Mixquiahuala, Hidalgo.

Author information

Authors and Affiliations

Authors

Contributions

YEC: Methodology, Validation, Formal analysis, Writing-original draft. YM: Validation, Data curation, Visualization. MAA: Software, Formal analysis, Validation. JÁ: Methodology, Investigation. BP: Term, Conceptualization, Methodology, Visualization. ZE: Term, Methodology, Visualization, Investigation. AT: Term, Conceptualization, Writing-Review & Editing, Supervision, Funding acquisition.

Corresponding author

Correspondence to A. Téllez-Jurado.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castañeda-Cisneros, Y.E., Mercado-Flores, Y., Anducho-Reyes, M.A. et al. Isolation and Selection of Streptomyces Species from Semi-arid Agricultural Soils and Their Potential as Producers of Xylanases and Cellulases. Curr Microbiol 77, 3460–3472 (2020). https://doi.org/10.1007/s00284-020-02160-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-020-02160-7

Navigation