Skip to main content
Log in

Rhizospheric streptomycetes as potential biocontrol agents of Fusarium and Armillaria pine rot and as PGPR for Pinus taeda

  • Published:
BioControl Aims and scope Submit manuscript

Abstract

Pinus taeda is one of the main timber trees in Brazil, occupying 1.8 million ha with an annual productivity of 25–30 m3 ha−1. Another important species is Araucaria angustifolia, belonging to the fragile Rainforest biome, which for decades has been a major source of timber in Brazil. Some diseases that affect the roots and/or the stem of these trees and cause “damping-off” of the seedlings, with economic and environmental losses for the forest sector, are caused by the plant pathogenic fungi Fusarium sp. or Armillaria sp. This research project intended to isolate actinobacteria from the Araucaria rhizosphere, which present an antagonistic effect against these fungi. After the selection of the best pathogen inhibitors, morphologic characteristics, enzyme production, and their effect on the growth of Pinus taeda were studied. The actinobacteria were tested for their antagonistic capacity against Fusarium sp. in Petri plates with PDA as substrate. The inhibition zone was measured after 3, 5, 7, and 10 days. Of all the isolates tested, only two of them maintained inhibition zones up to 4 mm for 10 days. The inhibition of Armillaria sp. was tested in liquid medium and also in Petri dishes through the evaluation of the number of the fungal rhizomorphs in dual culture with the actinobacteria. It was found that all five isolates were able to inhibit the rhizomorph production, with the best performance of the isolate A43, which was capable of inhibiting both fungi, Fusarium and Armillaria. In a greenhouse experiment, the effect of five isolates on the growth of Pinus taeda seedlings was tested. Plant height, stem diameter, root and shoot dry matter were determined. The Streptomyces isolate A43 doubled plant growth. These results may lead to the development of new technologies in the identification of still unknown bacterial metabolites and new management techniques to control forest plant diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Auer CG (2000) Doenças em Pinus no Brasil. IPEF 13:67–74

    Google Scholar 

  • Beg Q, Bhushan B, Kapoor M, Hoondal GS (2000) Production and characterization of thermostable xylanase and pectinase from Streptomyces sp. QG-11–3. J Ind Microbiol Biot 24:396–402

    Article  CAS  Google Scholar 

  • Benizri E, Baudoin E, Guckert A (2001) Root colonization by inoculated plant growth-promoting rhizobacteria. Biocontrol Sci Technol 11:557–574

    Article  Google Scholar 

  • Benton VL, Ehrlich J (1941) Variation in culture of several isolates of Armillaria mellea from western white pine. Phytopathology 31:803–811

    Google Scholar 

  • Berdy J (2005) Bioactive microbial metabolites. J Antibiot 58:1–26

    Article  PubMed  CAS  Google Scholar 

  • Bertin C, Yang X, Weston LA (2003) The role of root exudates and allelochemicals in the rhizosphere. Plant Soil 256:67–83

    Article  CAS  Google Scholar 

  • Bowen GD, Rovira AD (1999) The rhizosphere and its management to improve plant growth. Adv Agron 66:1–102

    Article  Google Scholar 

  • Brundrett M, Bougher N, Dell B, Grove T, Malajczuk N (1996) Working with mycorrhizas in forestry and agriculture. ACIAR, Canberra

    Google Scholar 

  • Cardoso EJBN, Freitas SS (1992) A rizosfera. In: Cardoso EJBN, Tsai SM, Neves PCP (eds) Microbiologia do solo. Sociedade Brasileira de Ciência do Solo, Campinas, pp 41–57

    Google Scholar 

  • Chater KF, Horinouchi S (2003) Signalling early developmental events in two highly diverged Streptomyces species. Mol Microbiol 48:9–15

    Article  PubMed  CAS  Google Scholar 

  • Conn VM, Franco CMM (2004) Effect of microbial inoculants on the indigenous actinobacterial endophyte population in the roots of wheat as determined by terminal restriction fragment length polymorphism. Appl Environ Microb 70:6407–6413

    Article  CAS  Google Scholar 

  • Crawford DL (1978) Lignocellulose decomposition by selected Streptomyces strains. Appl Environ Microb 35:1041–1045

    CAS  Google Scholar 

  • Crawford DL, Lynch JM, Whipps JM, Ousley MA (1993) Isolation and characterization of actinomycete antagonists of a fungal root pathogen. Appl Environ Microbiol 59:3899–3905

    PubMed  Google Scholar 

  • Cross T (1989) Growth and examination of actinomycetes: some guidelines. In: Willians ST, Sharpe ME, Holt JG (eds) Bergey’s manual of systematic bacteriology. Willians & Wilkins, Baltimore, pp 2340–2343

    Google Scholar 

  • de Azeredo LAI, Freire DMG, Soares RMA, Leite SGF, Coelho RRR (2004) Production and partial characterization of thermophilic proteases from Streptomyces sp. isolated from Brazilian cerrado soil. Enzyme Microb Technol 34:354–358

    Article  CAS  Google Scholar 

  • Doyle JT, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Elliot MA, Talbot NJ (2004) Building filaments in the air: aerial morphogenesis in bacteria and fungi. Curr Opin Microbiol 7:594–601

    Article  PubMed  CAS  Google Scholar 

  • El-Tarabily KA, Hardy GESJ, Sivasithamparam K, Hussein AM, Kurtböke DI (1997) The potential for the biological control of cavity-spot disease of carrots, caused by Pythium coloratum, by streptomycete and non-streptomycete actinomycetes. New Phytol 137:495–507

    Article  Google Scholar 

  • Ewing B, Hillier L, Wendl MC, Green P (1998) Basecalling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res 8:175–185

    PubMed  CAS  Google Scholar 

  • Fan TW-M, Lane AN, Shenker M, Bartley JP, Crowley D, Higashi RM (2001) Comprehensive chemical profiling of gramineous plant root exudates using high-resolution NMR and MS. Phytochemistry 57:209–221

    Article  PubMed  CAS  Google Scholar 

  • Glick BR, Penrose DM, Ma W (2001) Bacterial promotion of plant growth. Biotechnol Adv 19:135–138

    Article  PubMed  CAS  Google Scholar 

  • Gomes RC, Semêdo LTAS, Soares RMA, Alviano CS, Linhares LF, Coelho RRR (2000) Chitinolytic activity of actinomycetes from a cerrado soil and their potential in biocontrol. Lett Appl Microbiol 30:146–150

    Article  PubMed  CAS  Google Scholar 

  • Gomes NSB, Auer CG, Grigoletti G Jr (2007) Crescimento in vitro de isolados de Armillaria sp. obtidos de Pinus elliottii var. elliottii sob várias temperaturas. Summa Phytopathol 33:187–189

    Article  Google Scholar 

  • Groth I, Vettermann R, Schuetze B, Schumann P, Saiz-Jimenez C (1999) Actinomycetes in karstic caves of northern Spain (Altamira and Tito Bustillo). J Microbiol Meth 3:115–122

    Article  Google Scholar 

  • Holt JG, Krieg NR, Sneath PHA, Stale JT, Williams ST (1994) Bergey’s manual of determinative bacteriology, 9th edn. Williams and Wilkins, Baltimore, p 787

    Google Scholar 

  • Hsu SC, Lockwood JL (1975) Powdered chitin agar as selective medium for enumeration of actinomycetes in water and soil. Appl Microbiol 29:422–426

    PubMed  CAS  Google Scholar 

  • Jensen PR, Mincer TJ, Williams PG, Fenical W (2005) Marine actinomycete diversity and natural product discovery. Antonie Van Leeuwenhoek 87:43–48

    Article  PubMed  CAS  Google Scholar 

  • Jiang ZQ, Deng W, Li XT, Ai ZL, Li LT, Kusakabe I (2005) Characterization of a novel, ultra-large xylanolytic complex (xylanosome) from Streptomyces olivaceoviridis E-86. Enzyme Microb Tech 36:923–929

    Article  CAS  Google Scholar 

  • Lee JL, Hwang BK (2002) Diversity of antifungal actinomycetes in various vegetative soils of Korea. Can J Microbiol 48:407–417

    Article  PubMed  CAS  Google Scholar 

  • Lehr NA, Schrey SD, Bauer R, Hampp R, Tarkka MT (2007) Suppression of plant defence response by a mycorrhiza helper bacterium. New Phytol 174:892–903

    Article  PubMed  CAS  Google Scholar 

  • Lehr NA, Schrey SD, Hampp R, Tarkka MT (2008) Root inoculation with a forest soil streptomycete leads to locally and systemically increased resistance against phytopathogens in Norway spruce. New Phytol 177:965–976

    Article  PubMed  Google Scholar 

  • Levitan AA (1967) In vitro antibacterial activity of Kasugamycin. Applied Microbiology 15:750–753

    PubMed  CAS  Google Scholar 

  • Maier A, Riedlinger J, Fiedler H-P, Hampp R (2004) Actinomycetales bacteria from a spruce stand: characterization and effects on growth of root symbiotic and plant parasitic soil fungi in dual culture. Mycol Progr 3:129–136

    Article  Google Scholar 

  • Marx DH (1969) The influence of ectotrophic mycorrhizal fungi on the resistance of pine roots to pathogenic infections. I. Antagonism of mycorrhizal fungi to root pathogenic fungi and soil bacteria. Phytopathology 59:153–163

    Google Scholar 

  • Merzaeva OV, Shirokikh IG (2006) Colonization of plant rhizosphere by actinomycetes of different genera. Microbiology 75:226–230

    Article  CAS  Google Scholar 

  • Miyadoh S (1993) Research on antibiotic screening in Japan over the last decade: a producing microorganisms approach. Actinomycetologica 7:100–106

    Article  Google Scholar 

  • Norovsuren ZH, Oborotov GV, Zenova GM, Aliev RA, Zvyagintsev DG (2007) Haloalkaliphilic actinomycetes in soils of Mongolian desert steppes. Biol Bull 34:417–422

    Article  Google Scholar 

  • Pometto AL, Crawford DL (1986) Effects of pH on lignin and cellulose degradation by Streptomyces viridosporus. Appl Environ Microb 52:246–250

    CAS  Google Scholar 

  • Prévost K, Couture G, Shipley B, Brzezinski R, Beaulieu C (2006) Effect of chitosan and a biocontrol streptomycete on field and potato tuber bacterial communities. BioControl 51:533–546

    Article  CAS  Google Scholar 

  • Priscu JC, Adams EE, Lyons WB, Voytek MA, Mogk DW, Brown RL, McKay CP, Takacs CD, Welch KA, Wolf CF, Kirshtein JD, Avci R (1999) Geomicrobiology of subglacial ice above Lake Vostok, Antarctica. Science 286:2141–2144

    Article  PubMed  CAS  Google Scholar 

  • Reponen TA, Gazenko SV, Grinshpun AS, Willeke K, Cole EC (1998) Characteristics of airborne actinomycete spores. Appl Environ Microb 64:3807–3812

    CAS  Google Scholar 

  • Sabaratnam S, Traquair JA (2002) Formulation of a Streptomyces biocontrol agent for the suppression of rhizoctonia damping-off in tomato transplants. Biol Control 23:245–253

    Article  CAS  Google Scholar 

  • Schrey SD, Schellhammer M, Ecke M, Hampp R, Tarkka MT (2005) Mycorrhiza helper bacterium Streptomyces AcH 505 induces differential gene expression in the ectomycorrhizal fungus Amanita muscaria. New Phytol 168:205–216

    Article  PubMed  CAS  Google Scholar 

  • Shekhar N, Bhattacharya D, Kumar D, Gupta K (2006) Biocontrol of wood-rotting fungi with Streptomyces violaceusniger XL-2. Can J Microbiol 52:805–808

    Article  PubMed  CAS  Google Scholar 

  • Soares ACF, Sousa CS, Garrido MS, Perez JO (2007) Production of Streptomyces inoculum in sterilized rice. Sci Agric 64:641–644

    Article  Google Scholar 

  • Sousa CS, Soares ACF, Garrido MS (2008) Characterization of streptomycetes with potential to promote plant growth and biocontrol. Sci Agric 65:50–55

    Article  Google Scholar 

  • Stamford TLM, Stamford NP, Coelho LCBB, Araújo JM (2001) Production and characterization of a thermostable α-amylase from Nocardiopsis sp. endophyte of yam bean. Bioresource Technol 76:137–141

    Article  CAS  Google Scholar 

  • Suzuki K, Nagai K, Shimizu Y, Suzuki Y (1994) Search for actinomycetes in screening for new bioactive compounds. Actinomycetologica 8:122–127

    Article  CAS  Google Scholar 

  • Sztajer H, Maliszewska I, Wieczorek J (1988) Production of exogenous lipases by bacteria, fungi, and actinomycetes. Enzyme Microb Tech 10:492–497

    Article  CAS  Google Scholar 

  • Taechowisan T, Peberdy JF, Lumyong S (2003) Isolation of endophytic actinomycetes from selected plants and their antifungal activity. World J Microbiol Biotechnol 19:381–385

    Article  CAS  Google Scholar 

  • Tanaka YT, Omura S (1993) Agroactive compounds of microbial origin. Annu Rev Microbiol 47:57–87

    Article  PubMed  CAS  Google Scholar 

  • Tokala RK, Strap JL, Jung CM, Crawford DL, Salove MH, Deobald LA, Bailey JF, Morra MJ (2002) Novel plant–microbe rhizosphere interaction involving Streptomyces lydicus WYEC108 and the pea plant (Pisum sativum). Appl Environ Microbiol 68:2161–2171

    Article  PubMed  CAS  Google Scholar 

  • Weller DM (1988) Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Ann Rev Phytopathol 26:379–407

    Article  Google Scholar 

  • Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487–511

    PubMed  CAS  Google Scholar 

  • Wood PJ (1980) Specify in the interactions of direct dyes with polysaccharides. Carbohydr Res 85:271–287

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elke Jurandy Bran Nogueira Cardoso.

Additional information

Handling Editor: Reijo Karjalainen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Vasconcellos, R.L.F., Cardoso, E.J.B.N. Rhizospheric streptomycetes as potential biocontrol agents of Fusarium and Armillaria pine rot and as PGPR for Pinus taeda . BioControl 54, 807–816 (2009). https://doi.org/10.1007/s10526-009-9226-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10526-009-9226-9

Keywords

Navigation