Skip to main content

Eco-friendly Association of Plants and Actinomycetes

  • Chapter
  • First Online:
Symbiotic Soil Microorganisms

Part of the book series: Soil Biology ((SOILBIOL,volume 60))

Abstract

Actinomycetes are filamentous Gram-positive spore-forming largest dominant microbial population present in the soil. They are free-living rhizosphere colonizing bacteria and producers of bioactive metabolites which helps in improving the fertility of the soil, promote plant growth and development, provide biocontrol action against phytopathogens, and have the ability to withstand various environmental stress. Entophytic Actinobacteria are characterized as those that are contained within the internal structure of plants, making no obvious changes to their hosts. Entophytic actinobacteria consitute a huge part of the rhizosphere. The symbiotic association of Actinomycetes as endophytes have gained more importance because they are considered to be reservoir for potential novel bioactive compounds which finds in important applications in pharmaceutical and agricultural sectors. A notable significant feature of actinobacteria is its ability not to contaminate the environment, take active participation in pesticide degradation, phosphate solubilization, siderophores production, and nitrogen fixation. Microbial resource possesses a wide variety of plant growth potential thereby benefiting green and sustainable agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdel-Lateif K, Bogusz D, Hocher V (2012) The role of flavonoids in the establishment of plant roots endosymbioses with arbuscular mycorrhiza fungi, rhizobia and Frankia bacteria. Plant Signal Behav 7(6):636–641

    Article  CAS  Google Scholar 

  • Abreu-Tarazi MF, Navarrete AA, Andreote FD, Almeida CV, Tsai SM, Almeida M (2010) Endophytic bacteria in long-term in vitro cultivated “axenic” pineapple microplants revealed by PCR–DGGE. World J Microbiol Biotechnol 26(3):555–560

    Article  Google Scholar 

  • Alexander DB, Zuberer DA (1991) Use of chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria. Biol Fertil Soils 12(1):39–45

    Article  CAS  Google Scholar 

  • Ames RN (1989) Mycorrhiza development in onion in response to inoculation with chitin decomposing actinomycetes. New Phytol 112(3):423–427

    Article  Google Scholar 

  • Anandan R, Dharumadurai D, Manogaran GP (2016) An introduction to actinobacteria. In: Actinobacteria-basics and biotechnological applications. IntechOpen, London

    Google Scholar 

  • Aranibar JN, Anderson IC, Ringrose S, Macko SA (2003) Importance of nitrogen fixation in soil crusts of southern African arid ecosystems: acetylene reduction and stable isotope studies. J Arid Environ 54(2):345–358

    Article  Google Scholar 

  • Azcón-Aguilar C, Barea JM (1997) Arbuscular mycorrhizas and biological control of soil-borne plant pathogens–an overview of the mechanisms involved. Mycorrhiza 6(6):457–464

    Article  Google Scholar 

  • Babalola OO, Kirby BM, Roes-Hill L, Cook AE, Cary SC, Burton SG, Cowan DA (2009) Phylogenetic analysis of actinobacterial populations associated with Antarctic Dry Valley mineral soils. Environ Microbiol 11(3):566–576

    Article  CAS  Google Scholar 

  • Baker DD (1987) Relationships among pure cultured strains of Frankia based on host specificity. Physiol Plant 70(2):245–248

    Article  Google Scholar 

  • Baoune H, El Hadj-Khelil AO, Pucci G, Sineli P, Loucif L, Polti MA (2018) Petroleum degradation by endophytic Streptomyces spp. isolated from plants grown in contaminated soil of southern Algeria. Ecotoxicol Environ Saf 147:602–609

    Article  CAS  Google Scholar 

  • Benson DR, Brooks JM, Huang Y, Bickhart DM, Mastronunzio JE (2011) The biology of Frankia sp. strains in the post-genome era. Mol Plant-Microbe Interact 24(11):1310–1316

    Article  CAS  Google Scholar 

  • Berry AM, Mendoza-Herrera A, Guo YY, Hayashi J, Persson T, Barabote R, Demchenko K, Zhang S, Pawlowski K (2011) New perspectives on nodule nitrogen assimilation in actinorhizal symbioses. Funct Plant Biol 38(9):645–652

    Article  CAS  Google Scholar 

  • Bhattacharyya PN (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350

    Article  CAS  Google Scholar 

  • Bhatti AA, Haq S, Bhat RA (2017) Actinomycetes benefaction role in soil and plant health. Microb Pathog 111:458–467

    Article  CAS  Google Scholar 

  • Carpenter-Boggs L, Loynachan TE, Stahl PD (1995) Spore germination of Gigaspora margarita stimulated by volatiles of soil-isolated actinomycetes. Soil Biol Biochem 27(11):1445–1451

    Article  CAS  Google Scholar 

  • Cervantes E, Rodriguez-Barrueco C (1992) 22 relationships between the mycorrhizal and actinorhizal symbioses in non-legumes. In: Methods in microbiology, vol 24. Academic, Amsterdam, pp 417–432

    Google Scholar 

  • Costa FG, Zucchi TD, Melo ISD (2013) Biological control of phytopathogenic fungi by endophytic actinomycetes isolated from maize (Zea mays L.). Braz Arch Biol Technol 56(6):948–955

    Article  Google Scholar 

  • Das S, Lyla PS, Khan SA (2008) Distribution and generic composition of culturable marine actinomycetes from the sediments of Indian continental slope of Bay of Bengal. Chin J Oceanol Limnol 26(2):166–177

    Article  Google Scholar 

  • De Bary A (1866) Morphologie und physiologie der pilze, flechten und myxomyceten. Engelmann, Leipzig

    Book  Google Scholar 

  • Diagne N, Arumugam K, Ngom M, Nambiar-Veetil M, Franche C, Narayanan KK, Laplaze L (2013) Use of Frankia and actinorhizal plants for degraded lands reclamation. Biomed Res Int 2013:948258

    Article  CAS  Google Scholar 

  • Dimkpa CO, Merten D, Svatoš A, Büchel G, Kothe E (2009) Siderophores mediate reduced and increased uptake of cadmium by Streptomyces tendae F4 and sunflower (Helianthus annuus), respectively. J Appl Microbiol 107(5):1687–1696

    Article  CAS  Google Scholar 

  • Doumbou C, Hamby Salove M, Crawford D, Beaulieu C (2001) Actinomycetes, promising tools to control plant diseases and to promote plant growth. Phytoprotection 82(3):85–102. https://doi.org/10.7202/706219ar.

    Article  Google Scholar 

  • Fett WA, Osman SF, Dunn MF (1987) Auxin production by plant-pathogenic Pseudomonads and Xanthomonads. Appl Environ Microbiol 53(8):1839–1845. https://doi.org/10.1371/journal.pone.0119867

    Article  CAS  Google Scholar 

  • Flores FJ, Rincón J, Martín JF (2003) Characterization of the iron-regulated desA promoter of Streptomyces pilosus as a system for controlled gene expression in actinomycetes. Microb Cell Factories 2(1):5

    Article  Google Scholar 

  • Flores-Gallegos AC, Nava-Reyna E (2019) Plant growth-promoting microbial enzymes. In: Enzymes in food biotechnology. Academic, Amsterdam, pp 521–534

    Chapter  Google Scholar 

  • Franco-Correa M, Chavarro-Anzola V (2016) Actinobacteria as plant growth promoting rhizobacteria. In: Actinobacteria-basis and biotechnological application. InTech, Croatia, pp 249–270

    Google Scholar 

  • Franco-Correa M, Quintana A, Duque C, Suarez C, Rodríguez MX, Barea JM (2010) Evaluation of actinomycete strains for key traits related with plant growth promotion and mycorrhiza helping activities. Appl Soil Ecol 45(3):209–217

    Article  Google Scholar 

  • Froussart E, Bonneau J, Franche C, Bogusz D (2016) Recent advances in actinorhizal symbiosis signaling. Plant Mol Biol 90(6):613–622

    Article  CAS  Google Scholar 

  • Fuentes-Ramirez LE, Caballero-Mellado J (2005) Bacterial biofertilizers. In: PGPR: biocontrol and biofertilization. Springer, Dordrecht, pp 143–172

    Google Scholar 

  • George M, Anjumol A, George G, Hatha AM (2012) Distribution and bioactive potential of soil actinomycetes from different ecological habitats. Afr J Microbiol Res 6(10):2265–2271

    Article  Google Scholar 

  • Giovannetti M, Sbrana C, Avio L (2002) Arbuscular mycorrhizal fungal mycelium: from germlings to hyphal networks. In: In Mycorrhizal technology in agriculture. Birkhäuser, Basel, pp 49–58

    Chapter  Google Scholar 

  • Gomes RC, Semedo LTAS, Soares RMA, Linhares LF, Ulhoa CJ, Alviano CS, Coelho RRR (2001) Purification of a thermostable endochitinase from Streptomyces RC1071 isolated from a cerrado soil and its antagonism against phytopathogenic fungi. J Appl Microbiol 90(4):653–661

    Article  CAS  Google Scholar 

  • Gtari M, Benson DR, Nouioui I, Dawson JO, Ghodhbane-Gtari F (2019a) 19th International Meeting on Frankia and Actinorhizal Plants.

    Google Scholar 

  • Gtari M, Nouioui I, Sarkar I, Ghodhbane-Gtari F, Tisa LS, Sen A, Klenk HP (2019b) An update on the taxonomy of the genus Frankia Brunchorst, 1886, 174 AL. Antonie Van Leeuwenhoek 112(1):5–21

    Article  Google Scholar 

  • Hardoim PR, van Overbeek LS, van Elsas JD (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16(10):463–471

    Article  CAS  Google Scholar 

  • Hasegawa S, Meguro A, Shimizu M, Nishimura T, Kunoh H (2006) Endophytic actinomycetes and their interactions with host plants. Actinomycetologica 20(2):72–81

    Article  CAS  Google Scholar 

  • Hoster F, Schmitz JE, Daniel R (2005) Enrichment of chitinolytic microorganisms: isolation and characterization of a chitinase exhibiting antifungal activity against phytopathogenic fungi from a novel Streptomyces strain. Appl Microbiol Biotechnol 66(4):434–442

    Article  CAS  Google Scholar 

  • Jeon JS, Lee SS, Kim HY, Ahn TS, Song HG (2003) Plant growth promotion in soil by some inoculated microorganisms. J Microbiol 41(4):271–276

    CAS  Google Scholar 

  • Jiang Y, Li WJ, Xu P, Tang SK, Xu LH (2006) Study on Actinomycete diversity under salt and alkaline environments. Wei Sheng Wu Xue Bao 46:191–195. https://doi.org/10.1038/sj/jim/7000176

    Article  CAS  Google Scholar 

  • Kamal R, Gusain YS, Kumar V (2014) Interaction and symbiosis of AM fungi, actinomycetes and plant growth promoting rhizobacteria with plants: strategies for the improvement of plants health and defense system. Int J Curr Microbial Appl Sci 3(7):564–585

    Google Scholar 

  • Karthikeyan N, Pandiyan K, Sahu PK, Srinivasan R, Singh UB (2018) Actinomycetes: a promising tool for plant growth promotion and disease control. Int J Curr Microbiol App Sci 7(7):2418–2429

    Article  CAS  Google Scholar 

  • Kuffner M, De Maria S, Puschenreiter M, Fallmann K, Wieshammer G, Gorfer M, Strauss J, Rivelli AR, Sessitsch A (2010) Culturable bacteria from Zn-and Cd-accumulating Salix caprea with differential effects on plant growth and heavy metal availability. J Appl Microbiol 108(4):1471–1484

    Article  CAS  Google Scholar 

  • Kuster E (1968) Taxonomy of soil actinomycetes and related organisms. In: Ecology of soil bacteria. Liverpool University press, Liverpool, pp 322–336

    Google Scholar 

  • Liu JH, Reid DM (1992) Adventitious rooting in hypocotyls of sunflower (Helianthus annuus) seedlings. IV. The role of changes in endogenous free and conjugated indole-3-acetic acid. Physiol Plant 86(2):285–292

    Article  CAS  Google Scholar 

  • López Nicolás JI, Acosta M, Sánchez-Bravo J (2004) Role of basipetal auxin transport and lateral auxin movement in rooting and growth of etiolated lupin hypocotyls. Physiol Plant 121(2):294–304

    Article  CAS  Google Scholar 

  • Mahdi SS, Hassan GI, Samoon SA, Rather HA, Dar SA, Zehra B (2010) Bio-fertilizers in organic agriculture. J Phytology 2

    Google Scholar 

  • Metcalfe AC, Williamson N, Krsek M, Wellington EM (2003) Molecular diversity within chitinolytic actinomycetes determined by in situ analysis. Actinomycetologica 17(1):18–22

    Article  CAS  Google Scholar 

  • Molano A, Algecira N, Bernal J, Franco-Correa M (2000) Evaluación y Selección de un Medio de Cultivo a partir de Actinomycetes. In: Memorias del II Congreso Internacional de Microbiología Industrial. Pontificia Universidad Javeriana, Mayo, pp 10–12

    Google Scholar 

  • Nehl DB, Knox OG (2006) Significance of bacteria in the rhizosphere. In: Microbial activity in the Rhizoshere. Springer, Berlin, Heidelberg, pp 89–119

    Chapter  Google Scholar 

  • Neilands JB (1995) Siderophores: structure and function of microbial iron transport compounds. J Biol Chem 270(45):26723–26726

    Article  CAS  Google Scholar 

  • Olanrewaju OS, Babalola OO (2019a) Streptomyces: implications and interactions in plant growth promotion. Appl Microbiol Biotechnol 103(3):1179–1188

    Article  CAS  Google Scholar 

  • Olanrewaju OS, Babalola OO (2019b) Streptomyces: implications and interactions in plant growth promotion. Appl Microbiol Biotechnol 103(3):1179–1188

    Article  CAS  Google Scholar 

  • Ostrowski M, Jakubowska A (2008) Identification of enzyme activity that conjugates indole-3-acetic acid to aspartate in immature seeds of pea (Pisum sativum). J Plant Physiol 165(5):564–569

    Article  CAS  Google Scholar 

  • Pathom-Aree W, Stach JE, Ward AC, Horikoshi K, Bull AT, Goodfellow M (2006) Diversity of actinomycetes isolated from challenger deep sediment (10,898 m) from the Mariana Trench. Extremophiles 10(3):181–189. https://doi.org/10.1007/s00792-005-0482-z

    Article  CAS  Google Scholar 

  • Pawlowski K, Demchenko KN (2012) The diversity of actinorhizal symbiosis. Protoplasma 249(4):967–979

    Article  Google Scholar 

  • Pemila ECR (2018) Actinomycetes: dependable tool for sustainable agriculture. Curr Invest Agri Curr Res 1(5):128–130. https://doi.org/10.32474/CIACR.2018.01.000122.

    Article  Google Scholar 

  • Pemila Edith Chitraselvi R (2018) Actinomycetes: dependable tool for sustainable agriculture. Curr Invest Agri Curr Res 1(5):128–130. https://doi.org/10.32474/CIACR.2018.01.000122.

    Article  Google Scholar 

  • Péret B, Svistoonoff S, Lahouze B, Auguy F, Santi C, Doumas P, Laplaze L (2008) A role for auxin during actinorhizal symbioses formation? Plant Signal Behav 3(1):34–35

    Article  Google Scholar 

  • Pimentel MR, Molina G, Dionísio AP, Maróstica Junior MR, Pastore GM (2011) The use of endophytes to obtain bioactive compounds and their application in biotransformation process. Biotechnol Res Int 2011:576286

    Article  CAS  Google Scholar 

  • Prasad S, Manasa P, Buddhi S, Singh SM, Shivaji S (2011) Antagonistic interaction networks among bacteria from a cold soil environment. FEMS Microbiol Ecol 78(2):376–385

    Article  CAS  Google Scholar 

  • Racette S, Torrey JG (1989) Root nodule initiation in Gymnostoma (Casuarinaceae) and Shepherdia (Elaeagnaceae) induced by Frankia strain HFPGpI1. Can J Bot 67(10):2873–2879

    Article  Google Scholar 

  • Rosenblueth M, Martínez-Romero E (2006) Bacterial endophytes and their interactions with hosts. Mol Plant-Microbe Interact 19(8):827–837

    Article  CAS  Google Scholar 

  • Rowbotham TJ, Cross T (1977) Rhodococcus coprophilus sp. nov.: an aerobic nocardioform actinomycete belonging to the ‘rhodochrous’ complex. Microbiology 100(1):123–138

    Google Scholar 

  • Santamarina Siurana MP, Garcia Breijo FJ, Rosello Caselles JL. Biologia y botanica. UPV. 2004.

    Google Scholar 

  • Sayed WF (2011) Improving Casuarina growth and symbiosis with Frankia under different soil and environmental conditions. Folia Microbiol 56(1):1–9

    Article  CAS  Google Scholar 

  • Schulz B, Boyle C (2006) What are endophytes. In: Microbial root endophytes. Springer, Berlin, Heidelberg, pp 1–13

    Chapter  Google Scholar 

  • Schwencke J, Carú M (2001) Advances in actinorhizal symbiosis: host plant-Frankia interactions, biology, and applications in arid land reclamation. A review. Arid Land Res Manag 15(4):285–327

    Article  CAS  Google Scholar 

  • Sellstedt A, Richau KH (2013) Aspects of nitrogen-fixing Actinobacteria, in particular free-living and symbiotic Frankia. FEMS Microbiol Lett 342(2):179–186

    Article  CAS  Google Scholar 

  • Sharma M, Dangi P, Choudhary M (2014) Actinomycetes: source, identification, and their applications. Int J Curr Microbiol App Sci 3(2):801–832

    Article  CAS  Google Scholar 

  • Simonet P, Normand P, Hirsch AM, Akkermans AD (2018) The genetics of the Frankia-actinorhizal symbiosis. In: Molecular biology of symbiotic nitrogen fixation. CRC, Boca Raton, FL, pp 77–109

    Chapter  Google Scholar 

  • Singh R, Dubey AK (2018) Diversity and applications of endophytic actinobacteria of plants in special and other ecological niches. Front Microbiol 9:1767

    Article  Google Scholar 

  • Sousa CDS, Soares ACF, Garrido MDS (2008) Caracterização de estreptomicetos com potencial para promoção de crescimento de plantas e biocontrole. Sci Agric 65(1):50–55

    Article  Google Scholar 

  • Srinivasan MC, Laxman RS, Deshpande MV (1991) Physiology and nutritional aspects of actinomycetes: an overview. World J Microbiol Biotechnol 7(2):171–184

    Article  CAS  Google Scholar 

  • Srivastava A, Singh A, Singh SS, Mishra AK (2017) Salt stress–induced changes in antioxidative defense system and proteome profiles of salt-tolerant and sensitive Frankia strains. J Environ Sci Health A 52(5):420–428

    Article  CAS  Google Scholar 

  • Sylvia DM, Fuhrmann JJ, Hartel PG, Zuberer DA (2005) Principles and applications of soil microbiology (No. QR111 S674 2005). Pearson, Upper Saddle River, NJ

    Google Scholar 

  • Torres-Rubio MG, Valencia SA, Bernal J, Martínez P (2000) Isolation of Enterobacteria, Azotobacter sp. and Pseudomonas sp., producers of Indole-3-acetic acid and siderophores, from Colombian rice rhizosphere. Revist Latin Am Microbiol 42:171–176

    Google Scholar 

  • Ventura M, Canchaya C, Tauch A, Chandra G, Fitzgerald GF, Chater KF, van Sinderen D (2007) Genomics of Actinobacteria: tracing the evolutionary history of an ancient phylum. Microbiol Mol Biol Rev 71(3):495–548

    Article  CAS  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255(2):571–586

    Article  CAS  Google Scholar 

  • Vivas A, Azcón R, Biró B, Barea JM, Ruiz-Lozano JM (2003) Lead-polluted soil and their interactions with arbuscular mycorrhizae on the growth of Trifolium pratense L. under lead toxicity. Can J Microbiol 49:10

    Article  Google Scholar 

  • Wall LG (2000) The actinorhizal symbiosis. J Plant Growth Regul 19(2):167–182

    Article  CAS  Google Scholar 

  • Williams ST, Davies FL, Mayfield CI, Khan MR (1971) Studies on the ecology of actinomycetes in soil II. The pH requirements of streptomycetes from two acid soils. Soil Biol Biochem 3(3):187–195

    Article  CAS  Google Scholar 

  • Yadav N, Yadav AN (2019) Actinobacteria for sustainable agriculture. J Appl Biotechnol Bioeng 6(1):38–41

    Google Scholar 

  • Yadav AN, Verma P, Kumar S, Kumar V, Kumar M, Sugitha TCK, Singh BP, Saxena AK, Dhaliwal HS (2018) Actinobacteria from rhizosphere: molecular diversity, distributions, and potential biotechnological applications. In: New and future developments in microbial biotechnology and bioengineering. Elsevier, Amsterdam, pp 13–41

    Chapter  Google Scholar 

  • Zucchi TD, De Moraes LAB, De Melo IS (2008) Streptomyces sp. ASBV-1 reduces aflatoxin accumulation by Aspergillus parasiticus in peanut grains. J Appl Microbiol 105(6):2153–2160

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nagendran, S., Agrawal, S.S., Patwardhan, A.G. (2021). Eco-friendly Association of Plants and Actinomycetes. In: Shrivastava, N., Mahajan, S., Varma, A. (eds) Symbiotic Soil Microorganisms. Soil Biology, vol 60. Springer, Cham. https://doi.org/10.1007/978-3-030-51916-2_6

Download citation

Publish with us

Policies and ethics