Skip to main content

Advancement on Biomass Classification, Analytical Methods for Characterization, and Its Economic Importance

  • Chapter
  • First Online:
Bioenergy Research: Biomass Waste to Energy

Part of the book series: Clean Energy Production Technologies ((CEPT))

  • 824 Accesses

Abstract

Nowadays, petroleum fuels are primary energy sources and fulfill the energy demand of the world. But these fuels emit large amounts of gases responsible for the greenhouse effect and global warming. The source of these fuels is another major issue due to their limited availability in the Earth’s crust and will be depleted in the coming days. Hence, there is a need for an effective alternative of petroleum fuels that can fulfill the need for energy. Biofuels are the emerging energy sources derived from cost-effective raw materials and are considered as renewable energy sources. The efficiency and the quality of biofuels are generally dependent on the material used in biofuel production. Hence, the selection of suitable biomass for bioenergy production is extremely important. The biomass selection is based on the properties such as physical, chemical, and biological. The physical properties like surface morphology can be analyzed by using various instruments like scanning electron microscope, transmission electron microscope, and XRD. The chemical composition of biomass is an important factor for biofuel production. The chemical bonding between biomolecules affects the bioconversion process during biofuel production. Genomic characterization has important application in the identification of newly isolated microbial species as well as screening for genetic modification. This chapter focuses on biomass classification, its characterization, and the economic importance of biomass.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acquah GE, Via BK, Billor N, Fasina OO, Eckhardt LG (2016) Identifying plant part composition of forest logging residue using infrared spectral data and linear discriminant analysis. Sensors 16:1375

    Article  PubMed Central  CAS  Google Scholar 

  • Agrawal CM, Ong JL, Appleford MR, Mani G (2013) Introduction to biomaterials: basic theory with engineering applications. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  • Akpor OB, Adelani-Akande T, Aderiye BI (2013) The effect of temperature on nutrient removal from wastewater by selected fungal species. Int J Curr Microbiol Appl Sci 2(9):328–340

    Google Scholar 

  • Albertsson AC, Andersson SO, Karlsson S (1987) The mechanism of biodegradation of polyethylene. Polym Degrad Stab 18:73–87

    Article  CAS  Google Scholar 

  • Amer M, Wojcik EZ, Sun C, Hoeven R, Hughes JMX, Faulkner M, Yunus IS, Tait S, Johannissen LO, Hardman SJO et al (2020) Low carbon strategies for sustainable bio-alkane gas production and renewable energy. Energy Environ Sci 13:1818–1831

    Article  CAS  Google Scholar 

  • Arku RE, Brauer M, Duong M, Wei L, Hu B, Ah Tse L, Mony PK, PVM L, Pillai RK, Mohan V, Yeates K, Kruger L, Rangarajan S, Koon T, Yusuf S, Hystad P, PURE (Prospective Urban and Rural Epidemiological) (2020) Study investigators. Adverse health impacts of cooking with kerosene: a multi-country analysis within the prospective urban and rural epidemiology study. Environ Res 188:109851. https://doi.org/10.1016/j.envres.2020.109851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asada C, Doi K, Sasaki C, Nakamura Y (2012) Efficient extraction of starch from microalgae using ultrasonic homogenizer and its conversion into ethanol by simultaneous Saccharification and fermentation. Nat Resour J 3:175–179

    Google Scholar 

  • Aswale PN, Ade AB (2009) Effect of pH on biodegradation of polythene by Serratia marcescens. Ecotech 1:152–153

    Google Scholar 

  • Babel H, Kromer JO (2020) Evolutionary engineering of E. coli MG1655 for tolerance against isoprenol. Biotechnol Biofuels 13:183. https://doi.org/10.1186/s13068-020-01825-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bala JD, Lalung J, Al-Gheethi AAS, Norli I (2016) A review on biofuel and bioresources for environmental applications. In: Ahmad M, Ismail M, Riffat S (eds) Renewable energy and sustainable technologies for building and environmental applications. Springer, Cham, pp 205–225

    Chapter  Google Scholar 

  • Balat M, Balat H, Oz C (2008) Progress in bioethanol processing. Prog Energy Combust Sci 34:551–573

    Article  CAS  Google Scholar 

  • Bjerre AB, Olesen AB, Fernqvist T (1996) Pretreatment of wheat straw using combined wet oxidation and alkaline hydrolysis resulting in convertible cellulose and hemicellulose. Biotechnol Bioeng 49:568–577

    Article  CAS  PubMed  Google Scholar 

  • Boeken B, Lipchin C, Gutterman Y, van Rooyen N (1998) Annual plant community responses to density of small-scale soil disturbances in the Negev Desert of Israel. Oecologia 114(1):106–117. https://doi.org/10.1007/s004420050426

    Article  PubMed  Google Scholar 

  • BogotĂ¡-Gregory JD, Lima FCT, Correa SB, Silva-Oliveira C, Jenkins DG, Ribeiro FR, Lovejoy NR, Reis RE, Crampton WGR (2020) Biogeochemical water type influences community composition, species richness, and biomass in megadiverse Amazonian fish assemblages. Sci Rep 10(1):15349. https://doi.org/10.1038/s41598-020-72349-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonechi C, Consumi M, Donati A, Leone G, Magnani A, Tamasi G, Rossi C (2017) Biomass: an overview. In: Dalena F, Basile A, Rossi C (eds) Bioenergy systems for the future: prospects for biofuels and biohydrogen. Elsevier Publishing, London, pp 3–42

    Chapter  Google Scholar 

  • Boubendir A (1993) Purification and biochemical evaluation of polyurethane degrading enzymes of fungal origin. Diss Abstr Int 53:4632

    Google Scholar 

  • Carballo-Meilan A, Goodman AM, Baron MG, Gonzalez-Rodriguez J (2014) A specific case in the classification of woods by FTIR and chemometric: discrimination of Fagales from Malpighiales. Cellulose 21(1):261–273

    Article  Google Scholar 

  • Carpenter D, Westover TL, Czernik S, Jablonski W (2014) Biomass feedstocks for renewable fuel production: a review of the impacts of feedstock and pretreatment on the yield and product distribution of fast pyrolysis bio-oils and vapors. Green Chem 16(2):384–406

    Article  CAS  Google Scholar 

  • Chen H (2014) Chemical composition and structure of natural lignocellulose. In: Chen H (ed) Biotechnology of lignocellulose. Springer, Dordrecht, pp 25–71

    Chapter  Google Scholar 

  • Chen H, Ferrari C, Angiuli M, Yao J, Raspi C, Bramanti E (2010) Qualitative and quantitative analysis of wood samples by Fourier transform infrared spectroscopy and multivariate analysis. Carbohydr Polym 82(3):772–778

    Article  CAS  Google Scholar 

  • Chen LZ, Huang SL, Hou J, Guo XP, Wang FS, Sheng JZ (2020) Cell-based and cell-free biocatalysis for the production of D-glucaric acid. Biotechnol Biofuels 13:203. https://doi.org/10.1186/s13068-020-01847-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Che-Zain MS, Lee SY, Nasir NM, Fakurazi S, Shaari K (2020) Metabolite characterization and correlations with antioxidant and wound healing properties of oil palm (Elaeis guineensis Jacq.) leaflets via 1H-NMR-based metabolomics approach. Molecules 25:E5636. https://doi.org/10.3390/molecules25235636

    Article  CAS  PubMed  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25(3):294–306

    Article  CAS  PubMed  Google Scholar 

  • Chum H, Faaij A, Moreira J, Berndes G, Dhamija P, Dong H, Gabrielle B, Goss Eng A, Lucht W, Mapako M, Masera Cerutti O, McIntyre T, Minowa T, Pingoud K (2011) Bioenergy. In: Edenhofer O, Pichs-Madruga R, Sokona Y, Seyboth K, Matschoss P, Kadner S, Zwickel T, Eickemeier P, Hansen G, Schlömer S, von Stechow C (eds) IPCC special report on renewable energy sources and climate change mitigation. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Crabbe JR, Campbell JR, Thompson L, Walz SL, Schultz WW (1994) Biodegradation of colloidal ester-based polyurethane by soil fungi. Int Biodeterior Biodegrad 33:103–113

    Article  Google Scholar 

  • Cydzik-Kwiatkowska A, ZieliÅ„ska M (2016) Bacterial communities in full-scale wastewater treatment systems. World J Microbiol Biotechnol 32:66

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • de Melo Pereira GV, de Carvalho Neto DP, Maske BL, De Dea LJ, Vale AS, Favero GR, Viesser J, de Carvalho JC, Goes-Neto A, Soccol CR (2020) An updated review on bacterial community composition of traditional fermented milk products: what next-generation sequencing has revealed so far? Crit Rev Food Sci Nutr 19:1–20

    CAS  Google Scholar 

  • Dibenedetto A (2011) The potential of aquatic biomass for CO2-enhanced fixation and energy production. Greenhouse Gases: Sci Technol 1(1):58–71

    Article  CAS  Google Scholar 

  • Djemiel C, Dequiedt S, Karimi B, Cottin A, Girier T, El Djoudi Y, Wincker P, Lelievre M, Mondy S, Chemidlin Prevost-Boure N, Maron PA, Ranjard L, Terrat S (2020) BIOCOM-PIPE: a new user-friendly metabarcoding pipeline for the characterization of microbial diversity from 16S, 18S and 23S rRNA gene amplicons. BMC Bioinform 21:492. https://doi.org/10.1186/s12859-020-03829-3

    Article  CAS  Google Scholar 

  • Dougas G, Tsakris A, Billinis C, Beleri S, Patsoula E, Papaparaskevas J (2020) Molecular detection of rickettsia felis in common fleas in Greece and comparative evaluation of genotypic methods. J Microbiol Methods 17:106104. https://doi.org/10.1016/j.mimet.2020.106104

    Article  CAS  Google Scholar 

  • Ducheyne P, Healy K, Hutmacher DE, Grainger DW, Kirkpatrick CJ (2015) Comprehensive biomaterials. Newnes, Boston, MA

    Google Scholar 

  • Edwards S, Chaplin MF, Blackwood AD, Dettmar PW (2003) Primary structure of arabinoxylans of ispaghula husk and wheat bran. Proc Nutr Soc 62(1):217–222

    Article  CAS  PubMed  Google Scholar 

  • EPA (1996) U.S. Environmental Protection Agency, American Society of Civil Engineers, and American Water Works Association. Technology transfer handbook: management of water treatment plan residuals. EPA/625/R-95/008. Washington, DC

    Google Scholar 

  • Fan C, Yu H, Qin S, Li Y, Alam A, Xu C, Fan D, Zhang Q, Wang Y, Zhu W, Peng L, Luo K (2020) Brassinosteroid overproduction improves lignocellulose quantity and quality to maximize bioethanol yield under green-like biomass process in transgenic poplar. Biotechnol Biofuels 13:9. https://doi.org/10.1186/s13068-020-1652-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fromm J, Rockel B, Lautner S, Windeisen E, Wanner G (2003) Lignin distribution in wood cell walls determined by TEM and backscattered SEM techniques. J Struct Biol 143(1):77–84

    Article  CAS  PubMed  Google Scholar 

  • Fukuda H, Kondo A, Noda H (2001) Biodiesel fuel production by transesterification of oils. J Biosci Bioeng 92(5):405–416

    Article  CAS  PubMed  Google Scholar 

  • Gajalakshmi S, Abbasi SA (2008) Solid waste management by composting: state of the art. Crit Rev Environ Sci Technol 38:311–400

    Article  CAS  Google Scholar 

  • Gharechahi J, Vahidi MF, Bahram M, Han JL, Ding XZ, Salekdeh GH (2020) Metagenomic analysis reveals a dynamic microbiome with diversified adaptive functions to utilize high lignocellulosic forages in the cattle rumen. ISME J 15(4):1108–1120. https://doi.org/10.1038/s41396-020-00837-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Girio FM, Fonseca C, Carvalheiro F, Duarte CL, Marques S, Bogel-qukasik R (2010) Hemicelluloses for fuel ethanol: a review. Bioresour Technol 101:4775–4800

    Article  CAS  PubMed  Google Scholar 

  • Golueke CG (1991) Principle of composting. In: The staff of biocycle. The art and science of composting, journal of waste recycling. The JG Press, Pennsylvania, PA, pp 14–27

    Google Scholar 

  • Grandmaison JL, Ahmed A, Kaliaguine S, Chantal PD (1987) Analysis of partially converted lignocellulosic materials. Anal Chem 59(17):2153–2157

    Article  CAS  Google Scholar 

  • Green DS, Jefferson M, Boots B, Stone L (2021) All that glitters is litter? Ecological impacts of conventional versus biodegradable glitter in a freshwater habitat. J Hazard Mater 402:124070. https://doi.org/10.1016/j.jhazmat.2020.124070

    Article  CAS  PubMed  Google Scholar 

  • Gu JD, Ford TE, Mitton DB, Mitchell R (2000) Microbial degradation and deterioration of polymeric materials. In: Revie W (ed) The Uhlig corrosion handbook, 2nd edn. Wiley, New York, pp 439–460

    Google Scholar 

  • Guerrini V, Louza FA, Rosone G (2020) Metagenomic analysis through the extended burrows-wheeler transform. BMC Bioinform 21(Suppl 8):299. https://doi.org/10.1186/s12859-020-03628-w

    Article  CAS  Google Scholar 

  • Hassan MM, Alam MZ, Anwer MN (2013) Biodegradation of textile azo dyes by bacteria isolated from dyeing industry effluent. Int Res J Biol Sci 2:27–31

    Google Scholar 

  • Haugstad G (2012) Overview of AFM. Atomic force microscopy. Wiley, Hoboken, NJ

    Book  Google Scholar 

  • He X, Wu M, Ao Z, Lai B, Zhou Y, An T, Wang S (2021) Metal-organic frameworks derived C/TiO2 for visible light photocatalysis: simple synthesis and contribution of carbon species. J Hazard Mater 403:124048. https://doi.org/10.1016/j.jhazmat.2020

    Article  CAS  PubMed  Google Scholar 

  • Ho SH, Huang SW, Chen CY, Hasunuma T, Kondo A, Chang JS (2013) Bioethanol production using carbohydrate-rich microalgae biomass as feedstock. Bioresour Technol 135:191–198

    Article  CAS  PubMed  Google Scholar 

  • Hobro AJ, Kuligowski J, Döll M, Lendl B (2010) Differentiation of walnut wood species and steam treatment using ATR-FTIR and partial least squares discriminant analysis (PLS-DA). Anal Bioanal Chem 398(6):2713–2722

    Article  CAS  PubMed  Google Scholar 

  • Horan NJ (2018) Introduction. In: Horan N, Yaser A, Wid N (eds) Anaerobic digestion processes. Green energy and technology. Springer, Singapore, pp 1–7

    Chapter  Google Scholar 

  • Hu B, Warczinski L, Li X, Lu M, Bitzer J, Heidelmann M, Eckhard T, Fu Q, Schulwitz J, Merko M, Li M, Kleist W, Hättig C, Muhler M, Peng B (2020) Formic acid-assisted selective Hydrogenolysis of 5-Hydroxymethylfurfural to 2,5-Dimethylfuran over bifunctional Pd nanoparticles supported on N-doped mesoporous carbon. Angew Chem Int Ed Engl 15:6807–6815. https://doi.org/10.1002/anie.202012816

    Article  CAS  Google Scholar 

  • Hui YH, Meunier-Goddik L, Josephsen J, Nip WK, Stanfield PS (2004) Handbook of food and beverage fermentation technology. CRC Press, Boca raton, FL, p 27

    Google Scholar 

  • Jang JS, Cho Y, Jeong GT, Kim SK (2012) Optimization of saccharification and ethanol production by simultaneous saccharification and fermentation (SSF) from seaweed. Saccharina Japonica Bioprocess Biosyst Eng 35:11–18

    Article  CAS  PubMed  Google Scholar 

  • Jindal MK, Jha MK (2016) Hydrothermal liquefaction of wood: a critical review. Rev Chem Eng 32(4):459–488

    Article  CAS  Google Scholar 

  • Kafilzadeh F, Sahragard P, Jamali H, Tahery Y (2011) Isolation and identification of hydrocarbons degrading bacteria in soil around shiraz refinery. Afr J Microbiol Res 4(19):3084–3089

    Google Scholar 

  • Kanade SN, Adel AB, Khilare VC (2012) Malathion degradation by Azospirillum lipoferum Beijerinck. Sci Res Rep 2(1):94–103

    Google Scholar 

  • Kanazawa E, Townsend G, Takayama H (2012) New directions in dental anthropology: paradigms, methodologies and outcomes. University of Adelaide Press, Adelaide

    Google Scholar 

  • Kehinde FO, Isaac SA (2016) Effectiveness of augmented consortia of Bacillus coagulans, Citrobacter koseri and Serratia ficaria in the degradation of diesel polluted soil supplemented with pig dung. Afr J Microbiol Res 10:1637–1644

    Article  Google Scholar 

  • Kesavan D, Mariappan VK, Pazhamalai P, Krishnamoorthy K, Kim SJ (2020) Topochemically synthesized MoS2 nanosheets: a high performance electrode for wide-temperature tolerant aqueous supercapacitors. J Colloid Interface Sci 9797:31277–31277. https://doi.org/10.1016/j.jcis.2020.09.088

    Article  CAS  Google Scholar 

  • Khan AG (2020) Promises and potential of in situ nano-phytoremediation strategy to mycorrhizo-remediate heavy metal contaminated soils using non-food bioenergy crops (Vetiver zizinoides & Cannabis sativa). Int J Phytoremediation 22:900–915. https://doi.org/10.1080/15226514.2020.1774504

    Article  CAS  PubMed  Google Scholar 

  • Khayan K, Anwar T, Wardoyo S, Puspita WL (2020) Respiratory mask using a combination of spunbond, meltblown, and activated carbon materials for reducing exposure to CO: an in vivo study. Environ Sci Pollut Res Int 28:18989–18994. https://doi.org/10.1007/s11356-020-09476-8

    Article  CAS  PubMed  Google Scholar 

  • Kim BH, Kim HJ, Hyun MS, Park DH (1999) Direct electrode reaction of an Fe(III)-reducing bacterium, Shewanella putrefaciens. J Microbiol Biotechnol 9:127–131

    Google Scholar 

  • Kim JK, Um BH, Kim TH (2012) Bioethanol production from microalgae, Schizocytrium sp., using hydrothermal treatment and biological conversion. Korean J Chem Eng 29:209–214

    Article  CAS  Google Scholar 

  • Kirbas Z, Keskin N, Guner A (1999) Biodegradation of polyvinylchloride (PVC) by white rot fungi. Bull Environ Contam Toxicol 63:335–342

    Article  CAS  PubMed  Google Scholar 

  • Kshirsagar AD (2013) Bioremediation of wastewater by using microalgae: an experimental study. Int J Life Sci Biotechnol Pharma Res 2(3):339–346

    Google Scholar 

  • Lauri P, HavlĂ­k P, Kindermann G, Forsell N, Böttcher H, Obersteiner M (2014) Woody biomass energy potential in 2050. Energy Policy 66:19–31

    Article  Google Scholar 

  • Le-Chevallier MW, Au K (2004) Inactivation (disinfection) processes. Water and treatment and pathogen control. IWA Publishing, London, pp 41–65

    Google Scholar 

  • Leong WH, Lim JW, Lam MK, Uemura Y, Ho YC (2018) Third generation biofuels: a nutritional perspective in enhancing microbial lipid production. Renew Sust Energ Rev 91:950–961

    Article  CAS  Google Scholar 

  • Li C, Cheng G, Balan V, Kent MS, Ong M, Chundawat SP, Sousa LD, Melnichenko YB, Dale BE, Simmons BA, Singh S (2011) Influence of physico-chemical changes on enzymatic digestibility of ionic liquid and AFEX pretreated corn stover. Bioresour Technol 102(13):6928–6936

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Du W, Liu D (2008) Perspectives of microbial oils for biodiesel production. Appl Microbiol Biotechnol 80(5):749–756

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Wang J, Liu N, Ke L, Zhao X, Qi G (2020) Microbial synthesis of poly-γ-glutamic acid (γ-PGA) with fulvic acid powder, the waste from yeast molasses fermentation. Biotechnol Biofuels 13:180. https://doi.org/10.1186/s13068-020-01818-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Zhu TF (2018) Sequencing mirror-image DNA chemically. Cell Chem Biol 25:1151–1156. https://doi.org/10.1016/j.chembiol.2018.06.005

    Article  CAS  PubMed  Google Scholar 

  • Lloyd BJ, Frederick GL (2000) Parasite removal by waste stabilization pond systems and the relationship between concentrations in sewage and prevalence in the community. Water Sci Technol 42(10):375–386

    Article  Google Scholar 

  • Logan BE, Regan JM (2006) Electricity-producing bacterial communities in microbial fuel cells. Trends Microbiol 14(12):512–518

    Article  CAS  PubMed  Google Scholar 

  • McKendry P (2002) Energy production from biomass (part 2): conversion technologies. Bioresour Technol 83(1):47–54

    Article  CAS  PubMed  Google Scholar 

  • Meena MR, Kumar R, Ramaiyan K, Chhabra ML, Raja AK, Krishnasamy M, Kulshreshtha N, Pandey SK, Ram B (2020) Biomass potential of novel interspecific and intergeneric hybrids of Saccharum grown in sub-tropical climates. Sci Rep 10:21560. https://doi.org/10.1038/s41598-020-78329-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meng X, Yang J, Xu X, Zhang L, Nie Q, Xian M (2009) Biodiesel production from oleaginous microorganisms. Renew Energy 34(1):1–5

    Article  CAS  Google Scholar 

  • Meng Y, Wang S, Cai R, Jiang B, Zhao W (2015) Discrimination and content analysis of fritillaria using near infrared spectroscopy. J Anal Methods Chem 2015:752162. https://doi.org/10.1155/2015/752162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitros T, Session AM, James BT, Wu GA, Belaffif MB, Clark LV, Shu S, Dong H, Barling A, Holmes JR, Mattick JE, Bredeson JV, Liu S, Farrar K, GÅ‚owacka K, Jeżowski S, Barry K, Chae WB, Juvik JA, Gifford J, Oladeinde A, Yamada T, Grimwood J, Putnam NH, De Vega J, Barth S, Klaas M, Hodkinson T, Li L, Jin X, Peng J, Yu CY, Heo K, Yoo JH, Ghimire BK, Donnison IS, Schmutz J, Hudson ME, Sacks EJ, Moose SP, Swaminathan K, Rokhsar DS (2020) Genome biology of the paleotetraploid perennial biomass crop Miscanthus. Nat Commun 11:5442–5455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mmbaga GW, Mtei KM, Ndakidemi PA (2014) Extrapolations on the use of rhizobium inoculants supplemented with phosphorus (P) and potassium (K) on growth and nutrition of legumes. Agric Sci 5(12):1207

    Google Scholar 

  • Molina-Guerrero CE, Sanchez A, Vazquez-NĂºĂ±ez E (2020) Energy potential of agricultural residues generated in Mexico and their use for butanol and electricity production under a biorefinery configuration. Environ Sci Pollut Res Int 27:28607–28622. https://doi.org/10.1007/s11356-020-08430-y

    Article  CAS  PubMed  Google Scholar 

  • Mondal S, Palit D (2019) Effective role of microorganism in waste management and environmental sustainability. In: Sustainable agriculture, forest and environmental management. Springer, Singapore, pp 485–515

    Chapter  Google Scholar 

  • Moniruzzaman M (1995) Alcohol fermentation of enzymatic hydrolysate of exploded rice straw by Pichia stipitis. World J Microbiol Biotechnol 11:646

    Article  CAS  PubMed  Google Scholar 

  • Mude LN, Mondam M, Gujjula V, Jinka S, Pinjari OB, Yellodu Adi Reddy N, Patan SSVK (2020) Morpho-physiological and biochemical changes in finger millet [Eleusine coracana (L.) Gaertn.] under drought stress. Physiol Mol Biol Plants 26:2151–2171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naik S, Goud VV, Rout PK, Jacobson K, Dalai AK (2010) Characterization of Canadian biomass for alternative renewable biofuel. Renew Energy 35(8):1624–1631

    Article  CAS  Google Scholar 

  • Nakasaki K, Uehara N, Kataoka M, Kubota H (1996) The use of Bacillus licheniformis HAI to accelerate composting of organic waste. Compost Sci Utilization 4(4):47–51

    Article  Google Scholar 

  • Nigam JN (2001) Ethanol production from wheat straw hemicellulose hydrolysate by Pichia stipitis. J Biotechnol 87:17e27

    Article  Google Scholar 

  • Nwachukwu S, Obidi O, Odocha C (2010) Occurrence and recalcitrance of polyethylene bag waste in Nigerian soils. Afr J Biotechnol 9:6096–6104

    Google Scholar 

  • Oehmen A, Lemos C, Carvalho G, Yuan Z, Keler J, Blackall LL, Reis AM (2007) Advances in enhanced biological phosphorus: from micro to macro scale. Water Res 41:2271–2300

    Article  CAS  PubMed  Google Scholar 

  • Painter HA (1970) A review of literature on inorganic nitrogen metabolism in microorganisms. Water Res 3:241–250

    Google Scholar 

  • Palmer CM (1969) A composite rating of algae tolerating organic pollution 2. J Phycol 5(1):78–82

    Article  CAS  PubMed  Google Scholar 

  • Park H, Patel A, Hunt KA, Henson MA, Carlson RP (2020) Artificial consortium demonstrates emergent properties of enhanced cellulosic-sugar degradation and biofuel synthesis. NPJ Biofilms Microbiomes 6:59. https://doi.org/10.1038/s41522-020-00170-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pehnec G, Jakovljevic I, Godec R, Sever Strukil Z, Zero S, Huremovic J, Dzepina K (2020) Carcinogenic organic content of particulate matter at urban locations with different pollution sources. Sci Total Environ 734:139414. https://doi.org/10.1016/j.scitotenv.2020.139414

    Article  CAS  PubMed  Google Scholar 

  • Qin S, Fan C, Li X, Li Y, Hu J, Li C, Luo K (2020b) LACCASE14 is required for the deposition of guaiacyl lignin and affects cell wall digestibility in poplar. Biotechnol Biofuels 13:197. https://doi.org/10.1186/s13068-020-01843-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin S, Shekher Giri B, Kumar Patel A, Sar T, Liu H, Chen H, Juneja A, Kumar D, Zhang Z, Kumar Awasthi M, Taherzadeh MJ (2020a) Resource recovery and biorefinery potential of apple orchard waste in the circular bioeconomy. Bioresour Technol 321:124496. https://doi.org/10.1016/j.biortech.2020.124496

    Article  CAS  PubMed  Google Scholar 

  • Rahimnejad M, Adhami A, Darvari S, Zirepour A, Oh SE (2015) Microbial fuel cell as new technology for bioelectricity generation: a review. Alex Eng J 54(3):745–756

    Article  Google Scholar 

  • Rathnayake D, Rego F, Van Poucke R, Bridgwater AV, Masek O, Meers E, Wang J, Yang Y, Ronsse F (2020) Chemical stabilization of cd-contaminated soil using fresh and aged wheat straw biochar. Environ Sci Pollut Res Int 28(8):10155–10166. https://doi.org/10.1007/s11356-020-11574-6

    Article  CAS  PubMed  Google Scholar 

  • Ribas R, Cazarolli JC, da Silva EC, Meneghetti MR, Meneghetti SMP, Bento FM (2020) Characterization of antimicrobial effect of organotin-based catalysts on diesel-biodiesel deteriogenic microorganisms. Environ Monit Assess 192(12):802

    Article  CAS  PubMed  Google Scholar 

  • Rodionova MV, Poudyal RS, Tiwari I, Voloshin RA, Zharmukhamedov SK, Nam HG, Zayadan BK, Bruce BD, Hou HJM, Allakhverdiev SI (2017) Biofuel production: challenges and opportunities. Int J Hydrog Energy 42:8450–8461

    Article  CAS  Google Scholar 

  • Ryu S, Shin M, Cho S, Hwang I, Kim Y, Oh S (2020) Molecular characterization of microbial and fungal communities on dry-aged beef of Hanwoo using metagenomic analysis. Foods 9(11):1571. https://doi.org/10.3390/foods9111571

    Article  CAS  PubMed Central  Google Scholar 

  • Sampath Kumar TS (2013) Physical and chemical characterization of biomaterials A2. In: Bandyopadhyay A, Bose S (eds) Characterization of biomaterials. Academic Press, Oxford

    Google Scholar 

  • Sanchez Ă“J, Cardona CA (2008) Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour Technol 99:5270–5295

    Article  CAS  PubMed  Google Scholar 

  • Schink B, Brune A, Schnell S (1992) Anaerobic degradation of aromatic compounds. In: Winkelmann G (ed) Microbial degradation of natural compounds. VCH, Weinheim, pp 219–242

    Google Scholar 

  • Scott SA, Davey MP, Dennis JS, Horst I, Howe CJ, Lea-Smith DJ, Smith AG (2010) Biodiesel from algae: challenges and prospects. Curr Opin Biotechnol 21(3):277–286

    Article  CAS  PubMed  Google Scholar 

  • Shachak M, Brand S, Gutterman Y (1991) Porcupine disturbances and vegetation pattern along a resource gradient in a desert. Oecologia 88(1):141–147. https://doi.org/10.1007/BF00328415

    Article  PubMed  Google Scholar 

  • Sikkema-Raddatz B, Johansson LF, de Boer EN, Almomani R, Boven LG, van den Berg MP, van Spaendonck-Zwarts KY, van Tintelen JP, Sijmons RH, Jongbloed JD, Sinke RJ (2013) Targeted next-generation sequencing can replace sanger sequencing in clinical diagnostics. Hum Mutat 34(7):1035–1042

    Article  CAS  PubMed  Google Scholar 

  • Simarro R, Gonzalez N, Bautista LF, Molina MC (2013) Assessment of the efficiency of in situ bioremediation techniques in a creosote polluted soil: change in bacterial community. J Hazard Mater 262:158–167

    Article  CAS  PubMed  Google Scholar 

  • Singh N, Rai S, Singh V, Singh MP (2020b) Molecular characterization, pathogen-host interaction pathway and in silico approaches for vaccine design against COVID-19. J Chem Neuroanat 110:101874. https://doi.org/10.1016/j.jchemneu.2020.101874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh N, Singh V, Mishra D, Singh MP (2020a) An introduction of metagenomics and its application in microbial fuel production. In: Srivastava N, Srivastava M, Mishra P, Gupta VK (eds) Microbial strategies for techno-economic biofuel production. Clean energy production technologies. Springer, Singapore. https://doi.org/10.1007/978-981-15-7190-9_10

    Chapter  Google Scholar 

  • Singh V, Mishra V (2020) Coronavirus disease 2019 (COVID-19): current situation and therapeutic options. Coronaviruses 1:1–11

    Google Scholar 

  • Singh V, Singh MP, Mishra V (2020c) Bioremediation of toxic metal ions from coal washery effluent. Desalin Water Treat 197:300–318

    Article  CAS  Google Scholar 

  • Singh V, Singh MP, Verma V, Singh P, Srivastava R, Singh AK (2016) Characteristics of cold adapted enzyme and its comparison with mesophilic and thermophilic counterpart. Cell Mol Biol 62:144

    Google Scholar 

  • Singh V, Singh N, Tabbasum N, Mishra V (2020f) Microbial system: An emerging application in the bioenergy production. In: Srivastava N, Srivastava M, Mishra P, Gupta VK (eds) Microbial strategies for techno-economic biofuel production. Clean energy production technologies. Springer, Singapore, pp 249–264. https://doi.org/10.1007/978-981-15-7190-9_9

    Chapter  Google Scholar 

  • Singh V, Yadav P, Mishra V (2020d) Recent advances on classification, properties, synthesis, and characterization of nanomaterials. In: Srivastava M, Mishra P, Gupta VK (eds) Green synthesis of nanomaterials for bioenergy applications. Wiley, Hoboken, NJ, pp 83–97

    Chapter  Google Scholar 

  • Singh V, Yadav VK, Mishra V (2020e) Nanotechnology: an application in biofuel production. In: Srivastava M, Srivastava N, Mishra P, Gupta V (eds) Nanomaterials in biofuels research. Clean energy production technologies. Springer, Singapore. https://doi.org/10.1007/978-981-13-9333-4_6

    Chapter  Google Scholar 

  • Singh V, Singh J, Mishra V (2021a) Sorption kinetics of an eco-friendly and sustainable Cr (VI) ion scavenger in a batch reactor. J Environ Chem Eng. https://doi.org/10.1016/j.jece.2021.105125

  • Singh V, Singh J, Mishra V (2021b) Development of a cost-effective, recyclable and viable metal ion doped adsorbent for simultaneous adsorption and reduction of toxic Cr (VI) ions. J Environ Chem Eng. https://doi.org/10.1016/j.jece.2021.105124

  • Singh V, Tiwari R, Chaturvedi VK, Singh N, Mishra V (2021c) Microbiological aspects of bioenergy production: recent update and future directions. In: Srivastava M, Srivastava N, Singh R (eds) Bioenergy research: revisiting latest development. Clean Energy Production Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-33-4615-4_2

    Chapter  Google Scholar 

  • Singh N, Singh V, Singh MP (2021d) Recent updates of biodiesel production: source, production methods, and metagenomic approach. In: Srivastava M, Srivastava N, Singh R (eds) Bioenergy research: revisiting latest development. Clean Energy Production Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-33-4615-4_5

    Chapter  Google Scholar 

  • Singh AK, Singh V, Chaturvedi VK, Singh MP, Verma V (2017) Molecular techniques used for the study of soil bacterial diversity. Incredible world of biotechnology. Nova Science Publishers, New York, pp 67–78. ISBN: 978-1-53611-097-5

    Google Scholar 

  • Spellman FR (1997) Microbiology for water/wastewater operators. Technomic Publishing, Lancaster, UK

    Google Scholar 

  • Strom PF (1985a) Effect of temperature on bacterial species diversity in thermophilic solid waste composting. Appl Environ Microbiol 50:899–905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strom PF (1985b) Identification of thermophilic bacteria in solid waste composting. Appl Environ Microbiol 50:907–913

    Google Scholar 

  • Struthers JK, Jayachandran K, Moorman TB (1998) Biodegradation of atrazine by agrobacterium radiobacter J14a and use of this strain in bioremediation of contaminated soil. Appl Environ Microbiol 64:3368–3375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Subramanian V, Lunin VV, Farmer SJ, Alahuhta M, Moore KT, Ho A, Chaudhari YB, Zhang M, Himmel ME, Decker SR (2020) Phylogenetics-based identification and characterization of a superior 2,3-butanediol dehydrogenase for Zymomonas mobilis expression. Biotechnol Biofuels 13:186. https://doi.org/10.1186/s13068-020-01820-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sukumaran RK, Surender VJ, Sindhu R, Binod P, Janu KU, Sajna KV, Rajasree KP, Pandey A (2010) Lignocellulosic ethanol in India: prospects, challenges and feedstock availability. Bioresour Technol 101:4826–4833

    Article  CAS  PubMed  Google Scholar 

  • Talebnia F, Karakashev D, Angelidaki I (2010) Production of bioethanol from wheat straw: an overview on pretreatment, hydrolysis and fermentation. Bioresour Technol 101(13):4744–4753

    Article  CAS  PubMed  Google Scholar 

  • Tan X, Huang Y, Xiong D, Lv K, Chen F (2020) The effect of Elymus nutans sowing density on soil reinforcement and slope stabilization properties of vegetation-concrete structures. Sci Rep 10(1):20462. https://doi.org/10.1038/s41598-020-77407-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terme N, Boulho R, Kendel M, Kucma JP, Wielgosz-Collin G, Bourgougnon N, Bedoux G (2017) Selective extraction of lipid classes from Solieria chordalis and Sargassum muticum using supercritical carbon dioxide and conventional solid–liquid methods. J Appl Phycol 29(5):2513–2519

    Article  CAS  Google Scholar 

  • Träger S, Ă–pik M, Vasar M, Wilson SD (2019) Belowground plant parts are crucial for comprehensively estimating total plant richness in herbaceous and woody habitats. Ecology 100(2):e02575. https://doi.org/10.1002/ecy.2575

    Article  PubMed  Google Scholar 

  • Trisrivirat D, Hughes JMX, Hoeven R, Faulkner M, Toogood H, Chaiyen P, Scrutton NS (2020) Promoter engineering for microbial bio-alkane gas production. Synth Biol 5(1):ysaa022. https://doi.org/10.1093/synbio/ysaa022

    Article  CAS  Google Scholar 

  • Van Brempt M, Clauwaert J, Mey F, Stock M, Maertens J, Waegeman W, De Mey M (2020) Predictive design of sigma factor-specific promoters. Nat Commun 11:5822. https://doi.org/10.1038/s41467-020-19446-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vassilev SD, Andersen L, Vassileva C, Morgan T (2012) An overview of the organic and inorganic phase composition of biomass. Fuel 94:1–33

    Article  CAS  Google Scholar 

  • Veerapandian B, Shanmugam SR, Varadhan S, Sarwareddy KK, Mani KP, Ponnusami V (2020) Levan production from sucrose using chicken feather peptone as a low cost supplemental nutrient source. Carbohydr Polym 227:115361. https://doi.org/10.1016/j.carbpol.2019.115361

    Article  CAS  PubMed  Google Scholar 

  • Vekey K, Telekes A, Vertes A (2011) Medical applications of mass spectrometry. Newnes, Oxford, UK

    Google Scholar 

  • Verma M, Kulshrestha S, Puri A (2017) Genome Sequencing. Methods Mol Biol 1525:3–33. https://doi.org/10.1007/978-1-4939-6622-6_1

    Article  CAS  PubMed  Google Scholar 

  • Verma M, Mishra V (2020) An introduction to algal biofuels. In: Srivastava N, Srivastava M, Mishra P, Gupta VK (eds) Microbial strategies for techno-economic biofuel production. Clean energy production technologies. Springer, Singapore

    Google Scholar 

  • Vorwerg W, Radosta S, Leibnitz E (2002) Study of a preparative-scale process for the production of amylose. Carbohydr Polym 47(2):181–189

    Article  CAS  Google Scholar 

  • WaldmĂ¼ller S, Schroeder C, Sturm M, Scheffold T, Imbrich K, Junker S, Frische C, Hofbeck M, Bauer P, Bonin M, Gawaz M, Gramlich M (2015) Targeted 46-gene and clinical exome sequencing for mutations causing cardiomyopathies. Mol Cell Probes 29(5):308–314

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Zhang MM, Sun Z, Liu SF, Qin ZH, Mou JH, Zhou ZG, Lin CSK (2020) Sustainable lipid and lutein production from Chlorella mixotrophic fermentation by food waste hydrolysate. J Hazard Mater 400:123258. https://doi.org/10.1016/j.jhazmat.2020.123258

    Article  CAS  PubMed  Google Scholar 

  • Weitz KK, Smith ML, Hixson KK, Hill EA, Jansson JK, Hofmockel KS, Lipton MS (2020) Real-time mass spectrometry measurements of respiration rates in biological systems. J Am Soc Mass Spectrom 32:648–652. https://doi.org/10.1021/jasms.0c00251

    Article  CAS  PubMed  Google Scholar 

  • Wightman ELI, Kroukamp H, Pretorius IS, Paulsen IT, Nevalainen HKM (2020) Rapid optimisation of cellulolytic enzymes ratios in Saccharomyces cerevisiae using in vitro SCRaMbLE. Biotechnol Biofuels 13:182. https://doi.org/10.1186/s13068-020-01823-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winger M, Christen M, Van Gunsteren WF (2009) On the conformational properties of amylose and cellulose oligomers in solution. Int J Carbohydr Chem 2009:307695

    Article  CAS  Google Scholar 

  • Xia L, Chae M, Asomaning J, Omidghane M, Zhu C, Bressler DC (2020) Incorporation of biosolids as water replacement in a two-step renewable hydrocarbon process: hydrolysis of Brown grease with biosolids. Waste Biomass Valorization 11:6769–6780. https://doi.org/10.1007/s12649-019-00897-2

    Article  CAS  PubMed  Google Scholar 

  • Xu F, Zhong XC, Sun RC, Jones GLL (2005) Lignin distribution and ultrastructure of Salix psammophila. Trans Chin Pul Pap 20(1):6–9

    CAS  Google Scholar 

  • Yadav VK, Singh V, Mishra V (2019) Alkaline protease: a tool to manage solid waste and its utility in detergent industry. In: Tripathi V, Kumar P, Tripathi P, Kishore A, Kamle M (eds) Microbial genomics in sustainable agroecosystems. Springer, Singapore. https://doi.org/10.1007/978-981-32-9860-6_14

    Chapter  Google Scholar 

  • Zhang C (2020) Lignocellulosic ethanol: technology and economics. In: Alcohol fuels-current technologies and future prospect. Intechopen, New York, pp 1–21

    Google Scholar 

  • Zhang G, Zhao Q, Jiao Y, Wang K, Lee DJ, Ren N (2012) Efficient electricity generation from sewage sludge using biocathode microbial fuel cell. Water Res 46(1):43–52

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Veer Singh, Jyoti Singh, Manisha Verma, and Vishal Mishra are grateful to IIT (BHU), Varanasi, India-221005, for providing instrumentation and financial support. Nidhi Singh and Niti Singh are thankful to the Centre of Bioinformatics, University of Allahabad, Prayagraj, India-211002, and Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, Faridabad, India-121001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vishal Mishra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, V. et al. (2021). Advancement on Biomass Classification, Analytical Methods for Characterization, and Its Economic Importance. In: Srivastava, M., Srivastava, N., Singh, R. (eds) Bioenergy Research: Biomass Waste to Energy. Clean Energy Production Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-16-1862-8_10

Download citation

Publish with us

Policies and ethics