Skip to main content

Microbial System: An Emerging Application in the Bioenergy Production

  • Chapter
  • First Online:
Microbial Strategies for Techno-economic Biofuel Production

Part of the book series: Clean Energy Production Technologies ((CEPT))

Abstract

Environmentally safe and cost-effective renewable fuels are attained from various types of biological sources such as agricultural waste, microbial biomass, and plant residues. Nowadays, bioethanol and biogas are the main biological fuels and play an important role in the energy sector. These fuels can be considered as alternative energy sources of fossil fuels in the future. Biofuels can be classified into various classes such as first generation, second generation, third generation, and fourth generation on the basis of their production sources. They are generally produced from several biological raw materials through aerobic and anaerobic digestion of biomass. The fermentation process requires a suitable microbial system and raw materials (algal biomass, agricultural waste, and plant residues). Microorganisms such as algae, bacteria, and fungi can utilize organic materials and also convert biomass into several bioenergy products. Nowadays, the effective and suitable microbial system can be obtained by genetic modification and metabolic pathway modification methods. Additionally, suitable microbial systems can be obtained from environmental sources such as soil and water by using metagenomic techniques. The recent research in the production of bioethanol, biogas, biomethanol, biodiesel, and biohydrogen has been discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdullah B, Muhammad SAFS, Shokravi Z, Ismail S, Kassim KA, Mahmood AN, Maniruzzaman M, Aziz A (2019) Fourth generation biofuel: a review on risks and mitigation strategies. Renew Sust Energ Rev 107:37–50

    Google Scholar 

  • Abreu-Cavalheiro A, Monteiro G (2013) Solving ethanol production problems with genetically modified yeast strains. Braz J Microbiol 44:665–671

    CAS  PubMed  Google Scholar 

  • Adeniyi OM, Azimov U, Burluka A (2018) Algae biofuel: current status and future applications. Renew Sust Energ Rev 90:316–335

    Google Scholar 

  • Agah A, Aghajan M, Mashayekhi F, Amini S, Davis RW, Plummer JD, Ronaghi M, Griffin PB (2004) A multi-enzyme model for pyrosequencing. Nucleic Acids Res 32:1–15

    Google Scholar 

  • Alam F, Mobin S, Chowdhury H (2015) Third generation biofuel from algae. Procedia Eng 105:763–768

    CAS  Google Scholar 

  • Alptekin E, Canakci M, Sanli H (2014) Biodiesel production from vegetable oil and waste animal fats in a pilot plant. Waste Manag 34:2146–2154

    CAS  PubMed  Google Scholar 

  • Alves LF, Westmann CA, Lovate GL, Siqueira GMV, Borelli TC, Guazzaroni ME (2018) Metagenomic approaches for understanding new concepts in microbial science. Int J Genomics 2018:1–15

    Google Scholar 

  • Arroussi HE, Benhima R, Bennis I, Mernissi NE, Wahby I (2015) Improvement of the potential of Dunaliella tertiolecta as a source of biodiesel by auxin treatment coupled to salt stress. Renew Energy 77:15–19

    Google Scholar 

  • Asada C, Doi K, Sasaki C, Nakamura Y (2012) Efficient extraction of starch from microalgae using ultrasonic homogenizer and its conversion into ethanol by simultaneous saccharifcation and fermentation. Nat Res 03:175–179

    Google Scholar 

  • Attwood GT, Wakelin SA, Leahy SC, Rowe S, Clarke S, Chapman DF, Muirhead R, Jacobs JME (2019) Applications of the soil, plant and rumen microbiomes in pastoral agriculture. Front Nutr 6:1–17

    Google Scholar 

  • Baum R, Wajszczuk K, Peplin B, Wawrzynowicz J (2013) Potential for agricultural biomass production for energy purposes in Poland: a review. Contem Econ 7:63–74

    Google Scholar 

  • Beer L, Boyd ES, Peters JW, Posewitz MC (2009) Engineering algae for biohydrogen and biofuel production. Curr Opin Biotechnol 20:264–271

    CAS  PubMed  Google Scholar 

  • Biffinger JC, Ringeisen BR (2008) Engineering microbial fuels cells: recent patents and new directions. Recent Pat Biotechnol 2:150–155

    CAS  PubMed  Google Scholar 

  • Blatti JL, Beld J, Behnke C, Mendez M, Mayfeld SP, Burkart MD (2012) Manipulating fatty acid biosynthesis in microalgae for biofuel through protein–protein interactions. PLoS One 7:e42949

    CAS  PubMed  PubMed Central  Google Scholar 

  • Borowitzka MA (2013) High-value products from microalgae—their development and commercialisation. J Appl Phycol 25(3):743–756

    CAS  Google Scholar 

  • Brosowski A, Thran D, Mantau U, Mahro B, Erdmann G, Adler P, Stinner W, Reinhold G, Hering T, Blanke C (2016) A review of biomass potential and current utilization—status quo for 93 biogenic wastes and residues in Germany. Biomass Bioenergy 95:257–272

    Google Scholar 

  • Brown BL, Watson M, Minot SS, Rivera MC, Franklin RB (2017) MinION nanopore sequencing of environmental metagenomes: a synthetic approach. GigaScience 6:1–10

    PubMed  PubMed Central  Google Scholar 

  • Chen CY (2014) DNA polymerases drive DNA sequencing-by-synthesis technologies: both past and present. Front Microbiol 5:1–15

    Google Scholar 

  • Chen C, Khaleel SS, Hung H, Wu CH (2014) Software for pre-processing Illumina next-generation sequencing short read sequences. Source Code Biol Med 3:9–8

    Google Scholar 

  • Cheng HH, Whang LM, Chan KC, Chung MC, Wu SH, Liu CP, Tien SY, Chen SY, Lee WJ (2015) Biological butanol production from microalgae-based biodiesel residues by Clostridium acetobutylicum. Bioresour Technol 184:379–385

    CAS  PubMed  Google Scholar 

  • Chisti Y (2008) Biodiesel from microalgae beats bioethanol. Trends Biotechnol 26:126–131

    CAS  PubMed  Google Scholar 

  • Demirbas A (2008) Biofuels sources, biofuel policy, biofuel economy and global biofuel projections. Energy Convers Manag 49:2106–2116

    CAS  Google Scholar 

  • Demirbas MF (2011) Biofuels from algae for sustainable development. Appl Energy 88:3473–3480

    CAS  Google Scholar 

  • Douskova I, Doucha J, Livansky K (2009) Simultaneous flue gas bioremediation and reduction of microalgal biomass production costs. Appl Microbiol Biotechnol 82:179–185

    CAS  PubMed  Google Scholar 

  • Eisentraut A (2010) Sustainable production of second-generation biofuels: potential and perspectives in major economies and developing Countries, IEA Energy Papers 2010/1. Publishing, OECD

    Google Scholar 

  • Eisenstein M (2012) Oxford nanopore announcement sets sequencing sector abuzz. Nat Biotechnol 30:295–296

    CAS  PubMed  Google Scholar 

  • El-Chakhtoura J, El-Fadel M, Rao HA, Li D, Ghanimeh S, Saikaly PE (2014) Electricity generation and microbial community structure of air-cathode microbial fuel cells powered with the organic fraction of municipal solid waste and inoculated with different seeds. Biomass Bioenergy 67:24–31

    CAS  Google Scholar 

  • Elshahed MS (2010) Microbiological aspects of biofuel production: current status and future directions. J Adv Res 1:103–111

    Google Scholar 

  • Gan J, Smith CT (2012) Biomass utilization allocation in biofuel production: model and application. Int J Forest Eng 23:38–47

    Google Scholar 

  • Hannon M, Gimpel J, Tran M, Rasala B, Mayfield S (2010) Biofuels from algae: challenges and potential. Biofuels 1:763–784

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ho SH, Li PJ, Liu CC, Chang JS (2013) Bioprocess development on microalgae-based CO2 fixation and bioethanol production using Scenedesmus obliquus CNW-N. Bioresour Technol 145:142–149

    CAS  PubMed  Google Scholar 

  • Huffer S, Roche SM, Blanch HW, Clark DS (2012) Escherichia coli for biofuel production: bridging the gap from promise to practice. Trends Biotechnol 30:538–545

    CAS  PubMed  Google Scholar 

  • Jin H, Liu R, He Y (2012) Kinetics of batch fermentations for ethanol production with immobilized Saccharomyces cerevisiae growing on sweet sorghum stalk juice. Procedia Environ Sci 12:137–145

    CAS  Google Scholar 

  • Kakucs O, Kun-Szabo T (2009) Utilization potential of solid biomass for energy production in the Ajka subregion. Agri Environ 1:104–115

    Google Scholar 

  • Karluvalı A, Koroglu EO, Manav N, Çetinkaya AY, Ozkaya B (2015) Electricity generation from organic fraction of municipal solid wastes in tubular microbial fuel cell. Sep Purif Technol 156:502–511

    Google Scholar 

  • Kim YH, Choi YK, Park J, Lee S, Yang YH, Kim HJ, Kim YH, Lee SH (2012) Ionic liquid-mediated extraction of lipids from algal biomass. Bioresour Technol 109:312–315

    CAS  PubMed  Google Scholar 

  • Kim TH, Oh YK, Lee JW, Chang YK (2017) Levulinate production from algal cell hydrolysis using in situ transesterifcation. Algal Res 26:431–435

    Google Scholar 

  • Knapek J, Kralik T, Valentova M, Vorisek T (2015) Effectiveness of biomass for energy purposes: a fuel cycle approach. WIREs Energy Environ 4:575–586

    Google Scholar 

  • Knuckey RM, Brown MR, Robert DR, Frampton DMF (2006) Production of microalgal concentrates by focculation and their assessment as aquaculture feeds. Aquac Eng 35:300–313

    Google Scholar 

  • Kojima E, Zhang K (1999) Growth and hydrocarbon production of microalga Botryococcus braunii in bubble column photobioreactors. J Biosci Bioeng 87:811–815

    CAS  PubMed  Google Scholar 

  • Laamanen CA, Ross GM, Scott JA (2016) Flotation harvesting of microalgae. Renew Sust Energ Rev 58:75–86

    Google Scholar 

  • Lee SJ, Lee SJ, Lee DW (2013) Design and development of synthetic microbial platform cells for bioenergy. Front Microbiol 4:92

    PubMed  PubMed Central  Google Scholar 

  • Lehr F, Posten C (2009) Closed photo-bioreactors as tools for biofuel production. Curr Opin Biotechnol 20:280–285

    CAS  PubMed  Google Scholar 

  • Mandotra SK, Kumar P, Suseela MR, Nayaka S, Ramtee PW (2016) Evaluation of fatty acid profile and biodiesel properties of microalga Scenedesmus abundans under the influence of phosphorus, pH and light intensities. Bioresour Technol 201:222–229

    CAS  PubMed  Google Scholar 

  • Masran R, Zanirun Z, Bahrin EK, Ibrahim MF, Yee PL, Abd-Aziz S (2016) Harnessing the potential of ligninolytic enzymes for lignocellulosic biomass pretreatment. Appl Microbiol Biotechnol 100(12):5231–5246

    CAS  PubMed  Google Scholar 

  • Mekawy AE, Srikanth S, Bajracharya S, Hegab HM, Nigam PS, Singh P, Mohan SV, Pant D (2015) Food and agricultural wastes as substrates for bioelectrochemical system (BES): the synchronized recovery of sustainable energy and waste treatment. Food Res Int 73:213–225

    Google Scholar 

  • Milano J, Ong HC, Masjuki HH, Chong WT, Lam MK, Loh PK, Vellayan V (2016) Microalgae biofuels as an alternative to fossil fuel for power generation. Renew Sustain Energy Rev 58:180–197

    Google Scholar 

  • Mukhopadhyay A (2015) Tolerance engineering in bacteria for the production of advanced biofuels and chemicals. Trends Microbiol 23:498–508

    CAS  PubMed  Google Scholar 

  • Naik SN, Goud VV, Rout PK, Dalai AK (2010) Production of first- and second-generation biofuels: a comprehensive review. Renew Sust Energ Rev 14:578–597

    CAS  Google Scholar 

  • Oh YK, Hwang KR, Kim C, Kim JR, Lee JS (2018) Recent developments and key barriers to advanced biofuels: a short review. Bioresour Technol 257:320–333

    CAS  PubMed  Google Scholar 

  • Papilo P, Kusumanto I, Kunaifi K (2017) Assessment of agricultural biomass potential to electricity generation in Riau Province. IOP Conf Ser Earth Environ Sci 65:012006

    Google Scholar 

  • Park JBK, Craggs RJ, Shilton AN (2011) Wastewater treatment high rate algal ponds for biofuel production. Bioresour Technol 102:35–42

    CAS  PubMed  Google Scholar 

  • Park S, Nguyen THT, Jin ES (2019) Improving lipid production by strain development in microalgae: strategies, challenges and perspectives. Bioresour Technol 292:21953

    Google Scholar 

  • Parker MS, Mock T, Armbrust EV (2008) Genomic insights into marine microalgae. Annu Rev Genet 42:619–645

    CAS  PubMed  Google Scholar 

  • Peng L, Lan CQ, Zhang Z (2013) Evolution, detrimental effects, and removal of oxygen in microalga cultures: a review. Environ Prog Sustain 32:982–988

    CAS  Google Scholar 

  • Peng L, Lan CQ, Zhang Z, Sarch C, Laporte M (2015) Control of protozoa contamination and lipid accumulation in Neochloris oleoabundans culture: effects of pH and dissolved inorganic carbon. Bioresour Technol 197:143–151

    CAS  PubMed  Google Scholar 

  • Peng L, Zhang Z, Cheng P, Wang Z, Lan CQ (2016) Cultivation of Neochloris oleoabundans in bubble column photobioreactor with or without localized deoxygenation. Bioresour Technol 206:255–263

    CAS  PubMed  Google Scholar 

  • Ra CH, Kang CH, Kim NK, Lee CG, Kim SK (2015) Cultivation of four microalgae for biomass and oil production using a two-stage culture strategy with salt stress. Renew Energy 80:117–122

    CAS  Google Scholar 

  • Ramasamy P, Lee K, Lee J, Oh Y (2015) Breaking dormancy: an energy-efficient means of recovering astaxanthin from microalgae. Green Chem 17:1226–1234

    Google Scholar 

  • Rosenberg JN, Oyler GA, Wilkinson L, Betenbaugh MJ (2008) A green light for engineered algae: redirecting metabolism to fuel a biotechnology revolution. Curr Opin Biotechnol 19:430–436

    CAS  PubMed  Google Scholar 

  • Sarchami T, Rehmann L (2014) Optimizing enzymatic hydrolysis of inulin from Jerusalem artichoke tubers for fermentative butanol production. Biomass Bioenergy 69:175–182

    CAS  Google Scholar 

  • Schmieder R, Edwards R (2011) Quality control and preprocessing of metagenomic datasets. Bioinformatics 27:863–864

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schnurer A (2016) Biogas production: microbiology and technology. Adv Biochem Eng Biotechnol 156:195–234

    PubMed  Google Scholar 

  • Sebastian R, Kim JY, Kim TH, Lee KT (2013) Metagenomics: a promising approach to assess enzymes biocatalyst for biofuel production. Asian J Biotechnol 5:33–50

    CAS  Google Scholar 

  • Singh V, Yadav VK, Mishra V (2020) Nanotechnology: an application in biofuel production. In: Srivastava M, Srivastava N, Mishra PK, Gupta VK (eds) Nanomaterials in biofuel research. Springer, Singapore, pp 143–160

    Google Scholar 

  • Sotoft LF, Rong BG, Christensen KV, Norddahl B (2010) Process simulation and economical evaluation of enzymatic biodiesel production plant. Bioresour Technol 101:5266–5274

    CAS  PubMed  Google Scholar 

  • Srivastava HM, Komal K, Upadhyay SK (2019) A certain family of fractional wavelet transformations. Math Methods Appl Sci 42(9):3103–3122

    Google Scholar 

  • Stadermann KB, Weisshaar B, Holtgrawe D (2015) SMRT sequencing only de novo assembly of the sugar beet (Beta vulgaris) chloroplast genome. BMC Bioinformatics 16:1–10

    Google Scholar 

  • Sun L, Liu T, Muller B, Schnurer A (2016) The microbial community structure in industrial biogas plants influences the degradation rate of straw and cellulose in batch tests. Biotechnol Biofuels 9:128

    PubMed  PubMed Central  Google Scholar 

  • Tan CH, Show PL, Chang JS, Ling TC, Lan JCW (2015) Novel approaches of producing bioenergies from microalgae: a recent review. Biotechnol Adv 33:1219–1227

    CAS  PubMed  Google Scholar 

  • Wang B, Lan CQ, Courchesne N, Mu Y (2010) Microalgae for biofuel production and CO2 sequestration. Nova Science Publishers Inc., New York

    Google Scholar 

  • Wang H, Hart DJ, An Y (2019) Functional metagenomic technologies for the discovery of novel enzymes for biomass degradation and biofuel production. Bioenergy Res 12:457–470. https://doi.org/10.1007/s12155-019-10005-w

    Article  Google Scholar 

  • Wen F, Nair UN, Zhao H (2009) Protein engineering in designing tailored enzymes and microorganisms for biofuels production. Curr Opin Biotechnol 20:412–419

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wen X, Du K, Wang Z, Peng X, Luo L, Tao H, Xu Y, Zhang D, Geng Y, Li Y (2016) Effective cultivation of microalgae for biofuel production: a pilot-scale evaluation of a novel oleaginous microalga Graesiella sp. WBG-1. Biotechnol Biofuels 9:123

    PubMed  PubMed Central  Google Scholar 

  • Wu H, Karanjikar M, San KY (2014) Metabolic engineering of Escherichia coli for efficient free fatty acid production from glycerol. Metab Eng 25:82–91

    CAS  PubMed  Google Scholar 

  • Xing MN, Zhang XZ, Huang H (2012) Application of metagenomic techniques in mining enzymes from microbial communities for biofuel synthesis. Biotechnol Adv 30:920–929

    CAS  PubMed  Google Scholar 

  • Xue C, Zhang X, Wang J, Xiao M, Chen L, Bai F (2017) The advanced strategy for enhancing biobutanol production and high-efficient product recovery with reduced wastewater generation. Biotechnol Biofuels 10:148

    PubMed  PubMed Central  Google Scholar 

  • Yun J, Ryu S (2005) Screening for novel enzymes from metagenome and SIGEX, as a way to improve it. Microb Cell Factories 8:1–15

    Google Scholar 

  • Yun YM, Kim DH, Oh YK, Shin HS, Jung KW (2014) Application of a novel enzymatic pretreatment using crude hydrolytic extracellular enzyme solution to microalgal biomass for dark fermentative hydrogen production. Bioresour Technol 159:365–372

    CAS  PubMed  Google Scholar 

  • Zhai N, Mao C, Feng Y, Zhang T, Xing Z, Wang Y, Zou S, Yin D, Han X, Ren G, Yang G (2015) Current status and future potential of energy derived from Chinese agricultural land: a review. Biomed Res Int 2015:10824965

    Google Scholar 

Download references

Acknowledgments

The authors of this manuscript would like to thank the Indian Institute of Technology (Banaras Hindu University), Varanasi, India, for providing financial and technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vishal Mishra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, V., Singh, N., Tabassum, N., Mishra, V. (2020). Microbial System: An Emerging Application in the Bioenergy Production. In: Srivastava, N., Srivastava, M., Mishra, P.K., Gupta, V.K. (eds) Microbial Strategies for Techno-economic Biofuel Production. Clean Energy Production Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-15-7190-9_9

Download citation

Publish with us

Policies and ethics