Skip to main content

Reactive Oxygen Species, Glucose Metabolism, and Lipid Metabolism

  • Chapter
  • First Online:
Oxidative Stress

Abstract

Reactive oxygen species (ROS) are free radicals produced by the reduction of molecular oxygen. The mitochondrial respiratory chain complex is regarded as a major ROS producer, which is composed of four protein complexes, the complex I, complex II, complex III, and complex IV. In recent years, a large amount of evidence has demonstrated that ROS plays a pivotal role in regulating cell glucose and lipid metabolism and participates in the occurrence and development of disorders related to glucose and lipid metabolism. Generally, glucose metabolism increases the production of ROS and enhances oxidative stress by glucose auto-oxidation and glycosylation of proteins and activated the polyalcohol pathway, etc. This review aims to clarify the role of ROS in regulating glucose metabolism (glucose uptake, glycolysis, gluconeogenesis, glycogen synthesis, glycogenolysis, pentose phosphate pathway).

As we all know, ROS plays a very important role in the pathogenesis of metabolic diseases induced by dysregulation of lipid metabolism, such as obesity, nonalcoholic fatty liver disease, and atherosclerosis. In this chapter, we focus on the interaction between ROS and lipid metabolism, especially the effects of ROS on the synthesis and oxidation of fatty acids, as well as phospholipids, cholesterol, and browning of beige fat.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moloney JN, Cotter TG. ROS signalling in the biology of cancer. Semin Cell Dev Biol. 2018;80:50–64.

    Article  CAS  PubMed  Google Scholar 

  2. Das K, Roychoudhury A. Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in. Plan Theory. 2014;2:53.

    Google Scholar 

  3. Holzerová E, Prokisch H. Mitochondria: much ado about nothing? How dangerous is reactive oxygen species production? Int J Biochem Cell Biol. 2015;63:16–20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Shadel GS, Horvath TL. Mitochondrial ROS signaling in organismal homeostasis. Cell. 2015;163(3):560–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Forrester SJ, et al. Reactive oxygen species in metabolic and inflammatory signaling. Circ Res. 2018;122(6):877–902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rodic S, Vincent MD. Reactive oxygen species (ROS) are a key determinant of cancer's metabolic phenotype. Int J Cancer. 2018;142(3):440–8.

    Article  CAS  PubMed  Google Scholar 

  7. Sies H, Jones DP. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat Rev Mol Cell Biol. 2020;21(7):363–83.

    Article  CAS  PubMed  Google Scholar 

  8. Cogliati S, et al. Regulation of mitochondrial electron transport chain assembly. J Mol Biol. 2018;430(24):4849–73.

    Article  CAS  PubMed  Google Scholar 

  9. Bigarella CL, Liang R, Ghaffari S. Stem cells and the impact of ROS signaling. Development. 2014;141(22):4206–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Speijer D. Can all major ROS forming sites of the respiratory chain be activated by high FADH2 /NADH ratios?: ancient evolutionary constraints determine mitochondrial ROS formation. BioEssays. 2019;41(1):e1800180.

    Article  PubMed  CAS  Google Scholar 

  11. Kang SW, Lee S, Lee EK. ROS and energy metabolism in cancer cells: alliance for fast growth. Arch Pharm Res. 2015;38(3):338–45.

    Article  CAS  PubMed  Google Scholar 

  12. Hardeland R. Melatonin and the electron transport chain. Cell Mol Life Sci. 2017;74(21):3883–96.

    Article  CAS  PubMed  Google Scholar 

  13. Guo R, et al. Structure and mechanism of mitochondrial electron transport chain. Biom J. 2018;41(1):9–20.

    Google Scholar 

  14. Letts JA, Sazanov LA. Clarifying the supercomplex: the higher-order organization of the mitochondrial electron transport chain. Nat Struct Mol Biol. 2017;24(10):800–8.

    Article  CAS  PubMed  Google Scholar 

  15. Sirey TM, Ponting CP. Insights into the post-transcriptional regulation of the mitochondrial electron transport chain. Biochem Soc Trans. 2016;44(5):1491–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ray PD, Huang BW, Tsuji Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal. 2012;24(5):981–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cordeiro RM. Reactive oxygen species at phospholipid bilayers: distribution, mobility and permeation. Biochim Biophys Acta. 2014;1838(1 Pt B):438–44.

    Article  CAS  PubMed  Google Scholar 

  18. Long YC, et al. The biochemistry and cell biology of aging: metabolic regulation through mitochondrial signaling. Am J Physiol Endocrinol Metab. 2014;306(6):E581–91.

    Article  CAS  PubMed  Google Scholar 

  19. Zhang J, et al. ROS and ROS-mediated cellular signaling. Oxidative Med Cell Longev. 2016;2016:4350965.

    Article  Google Scholar 

  20. Gupta SC, et al. Upsides and downsides of reactive oxygen species for cancer: the roles of reactive oxygen species in tumorigenesis, prevention, and therapy. Antioxid Redox Signal. 2012;16(11):1295–322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Robello E, Bonetto JG, Puntarulo S. Cellular oxidative/antioxidant balance in γ-irradiated brain: an update. Mini Rev Med Chem. 2016;16(12):937–46.

    Article  CAS  PubMed  Google Scholar 

  22. Xu DP, et al. Natural antioxidants in foods and medicinal plants: extraction, assessment and resources. Int J Mol Sci. 2017;18(1):96.

    Article  PubMed Central  CAS  Google Scholar 

  23. Santos CX, et al. Endoplasmic reticulum stress and Nox-mediated reactive oxygen species signaling in the peripheral vasculature: potential role in hypertension. Antioxid Redox Signal. 2014;20(1):121–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Förstermann U, Xia N, Li H. Roles of vascular oxidative stress and nitric oxide in the pathogenesis of atherosclerosis. Circ Res. 2017;120(4):713–35.

    Article  PubMed  CAS  Google Scholar 

  25. Chan SHH, Chan JYH. Mitochondria and reactive oxygen species contribute to neurogenic hypertension. Physiology (Bethesda). 2017;32(4):308–21.

    CAS  Google Scholar 

  26. Panigrahy SK, Bhatt R, Kumar A. Reactive oxygen species: sources, consequences and targeted therapy in type 2 diabetes. J Drug Target. 2017;25(2):93–101.

    Article  CAS  PubMed  Google Scholar 

  27. Tafani M, et al. The interplay of reactive oxygen species, hypoxia, inflammation, and sirtuins in cancer initiation and progression. Oxidative Med Cell Longev. 2016;2016:3907147.

    Article  CAS  Google Scholar 

  28. Bhat AH, et al. Oxidative stress, mitochondrial dysfunction and neurodegenerative diseases; a mechanistic insight. Biomed Pharmacother. 2015;74:101–10.

    Article  CAS  PubMed  Google Scholar 

  29. Prasad S, Gupta SC, Tyagi AK. Reactive oxygen species (ROS) and cancer: role of antioxidative nutraceuticals. Cancer Lett. 2017;387:95–105.

    Article  CAS  PubMed  Google Scholar 

  30. Kim J, Kim J, Bae JS. ROS homeostasis and metabolism: a critical liaison for cancer therapy. Exp Mol Med. 2016;48(11):e269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yang Y, et al. Reactive oxygen species in the immune system. Int Rev Immunol. 2013;32(3):249–70.

    Article  PubMed  CAS  Google Scholar 

  32. Liguori I, et al. Oxidative stress, aging, and diseases. Clin Interv Aging. 2018;13:757–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Aghadavod E, et al. Role of oxidative stress and inflammatory factors in diabetic kidney disease. Iran J Kidney Dis. 2016;10(6):337–43.

    PubMed  Google Scholar 

  34. Mulukutla BC, et al. Glucose metabolism in mammalian cell culture: new insights for tweaking vintage pathways. Trends Biotechnol. 2010;28(9):476–84.

    Article  CAS  PubMed  Google Scholar 

  35. Ghanbari Movahed Z, et al. Cancer cells change their glucose metabolism to overcome increased ROS: one step from cancer cell to cancer stem cell? Biomed Pharmacother. 2019;112:108690.

    Article  CAS  PubMed  Google Scholar 

  36. Liemburg-Apers DC, et al. Interactions between mitochondrial reactive oxygen species and cellular glucose metabolism. Arch Toxicol. 2015;89(8):1209–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mulukutla BC, et al. Regulation of glucose metabolism - a perspective from cell bioprocessing. Trends Biotechnol. 2016;34(8):638–51.

    Article  CAS  PubMed  Google Scholar 

  38. Yin B, Barrionuevo G, Weber SG. Mitochondrial GSH systems in CA1 pyramidal cells and astrocytes react differently during oxygen-glucose deprivation and reperfusion. ACS Chem Neurosci. 2018;9(4):738–48.

    Article  CAS  PubMed  Google Scholar 

  39. Achari AE, Jain SK. l-Cysteine supplementation increases insulin sensitivity mediated by upregulation of GSH and adiponectin in high glucose treated 3T3-L1 adipocytes. Arch Biochem Biophys. 2017;630:54–65.

    Article  CAS  PubMed  Google Scholar 

  40. Quan Y, Du J, Wang X. High glucose stimulates GRO secretion from rat microglia via ROS, PKC, and NF-kappaB pathways. J Neurosci Res. 2007;85(14):3150–9.

    Article  CAS  PubMed  Google Scholar 

  41. Zhang Y, et al. High glucose-induced RhoA activation requires caveolae and PKCβ1-mediated ROS generation. Am J Physiol Renal Physiol. 2012;302(1):F159–72.

    Article  CAS  PubMed  Google Scholar 

  42. Volpe CMO, et al. Cellular death, reactive oxygen species (ROS) and diabetic complications. Cell Death Dis. 2018;9(2):119.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Preetha Rani MR, et al. Chlorogenic acid attenuates glucotoxicity in H9c2 cells via inhibition of glycation and PKC α upregulation and safeguarding innate antioxidant status. Biomed Pharmacother. 2018;100:467–77.

    Article  CAS  PubMed  Google Scholar 

  44. Graham S, et al. Abundance of TRPC6 protein in glomerular mesangial cells is decreased by ROS and PKC in diabetes. Am J Physiol Cell Physiol. 2011;301(2):C304–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kizub IV, Klymenko KI, Soloviev AI. Protein kinase C in enhanced vascular tone in diabetes mellitus. Int J Cardiol. 2014;174(2):230–42.

    Article  PubMed  Google Scholar 

  46. Fazakerley DJ, et al. Mitochondrial oxidative stress causes insulin resistance without disrupting oxidative phosphorylation. J Biol Chem. 2018;293(19):7315–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Román-Pintos LM, et al. Diabetic polyneuropathy in type 2 diabetes mellitus: inflammation, oxidative stress, and mitochondrial function. J Diabetes Res. 2016;2016:3425617.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Ahangarpour A, et al. Antioxidant effect of myricitrin on hyperglycemia-induced oxidative stress in C2C12 cell. Cell Stress Chaperones. 2018;23(4):773–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Li W, et al. Hyperglycemia promotes the epithelial-mesenchymal transition of pancreatic cancer via hydrogen peroxide. Oxidative Med Cell Longev. 2016;2016:5190314.

    Article  Google Scholar 

  50. Wang G, et al. Baicalin administration attenuates hyperglycemia-induced malformation of cardiovascular system. Cell Death Dis. 2018;9(2):234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Jahn MP, et al. The effect of long-term DHEA treatment on glucose metabolism, hydrogen peroxide and thioredoxin levels in the skeletal muscle of diabetic rats. J Steroid Biochem Mol Biol. 2010;120(1):38–44.

    Article  CAS  PubMed  Google Scholar 

  52. Ding H, et al. Chronic reactive oxygen species exposure inhibits glucose uptake and causes insulin resistance in C2C12 myotubes. Biochem Biophys Res Commun. 2016;478(2):798–803.

    Article  CAS  PubMed  Google Scholar 

  53. Prasad RK, Ismail-Beigi F. Mechanism of stimulation of glucose transport by H2O2: role of phospholipase C. Arch Biochem Biophys. 1999;362(1):113–22.

    Article  CAS  PubMed  Google Scholar 

  54. Peiró C, et al. High glucose induces cell death of cultured human aortic smooth muscle cells through the formation of hydrogen peroxide. Br J Pharmacol. 2001;133(7):967–74.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Dhanya R, et al. Preconditioning L6 muscle cells with naringin ameliorates oxidative stress and increases glucose uptake. PLoS One. 2015;10(7):e0132429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ren D, et al. Chemical characterization of Pleurotus eryngii polysaccharide and its tumor-inhibitory effects against human hepatoblastoma HepG-2 cells. Carbohydr Polym. 2016;138:123–33.

    Article  CAS  PubMed  Google Scholar 

  57. Henríquez-Olguin C, et al. Cytosolic ROS production by NADPH oxidase 2 regulates muscle glucose uptake during exercise. Nat Commun. 2019;10(1):4623.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Maeda A, et al. Piperine promotes glucose uptake through ROS-dependent activation of the CAMKK/AMPK signaling pathway in skeletal muscle. Mol Nutr Food Res. 2018;62(11):e1800086.

    Article  PubMed  CAS  Google Scholar 

  59. Mullarky E, Cantley LC. Diverting glycolysis to combat oxidative stress. Tokyo: Springer; 2015.

    Book  Google Scholar 

  60. Karpusas M, Holland D, Remington SJ. 1.9-A structures of ternary complexes of citrate synthase with D- and L-malate: mechanistic implications. Biochemistry. 1991;30(24):6024–31.

    Article  CAS  PubMed  Google Scholar 

  61. Kerbey AL, Radcliffe PM, Randle PJ. Diabetes and the control of pyruvate dehydrogenase in rat heart mitochondria by concentration ratios of adenosine triphosphate/adenosine diphosphate, of reduced/oxidized nicotinamide-adenine dinucleotide and of acetyl-coenzyme A/coenzyme A. Biochem J. 1977;164(3):509–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Du W, et al. SCO2 mediates oxidative stress-induced glycolysis to oxidative phosphorylation switch in hematopoietic stem cells. Stem Cells. 2016;34(4):960–71.

    Article  CAS  PubMed  Google Scholar 

  63. Jian SL, et al. Glycolysis regulates the expansion of myeloid-derived suppressor cells in tumor-bearing hosts through prevention of ROS-mediated apoptosis. Cell Death Dis. 2017;8(5):e2779.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Yu L, et al. Modeling the genetic regulation of cancer metabolism: interplay between glycolysis and oxidative phosphorylation. Cancer Res. 2017;77(7):1564–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hou GX, et al. Elimination of stem-like cancer cell side-population by auranofin through modulation of ROS and glycolysis. Cell Death Dis. 2018;9(2):89.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Qin W, et al. Inhibition of autophagy promotes metastasis and glycolysis by inducing ROS in gastric cancer cells. Oncotarget. 2015;6(37):39839–54.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Han HS, et al. Regulation of glucose metabolism from a liver-centric perspective. Exp Mol Med. 2016;48(3):e218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Petersen MC, Vatner DF, Shulman GI. Regulation of hepatic glucose metabolism in health and disease. Nat Rev Endocrinol. 2017;13(10):572–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Yan H, et al. Estrogen improves insulin sensitivity and suppresses gluconeogenesis via the transcription factor Foxo1. Diabetes. 2019;68(2):291–304.

    Article  CAS  PubMed  Google Scholar 

  70. Li Y, et al. Thyroid stimulating hormone increases hepatic gluconeogenesis via CRTC2. Mol Cell Endocrinol. 2017;446:70–80.

    Article  CAS  PubMed  Google Scholar 

  71. Zhu X, et al. CREB-upregulated lncRNA MEG3 promotes hepatic gluconeogenesis by regulating miR-302a-3p-CRTC2 axis. J Cell Biochem. 2019;120(3):4192–202.

    Article  CAS  PubMed  Google Scholar 

  72. Dong XC. SCP4: a small nuclear phosphatase having a big effect on FoxOs in gluconeogenesis. Diabetes. 2018;67(1):23–5.

    Article  CAS  PubMed  Google Scholar 

  73. Na RS, et al. Itraconazole attenuates hepatic gluconeogenesis and promotes glucose uptake by regulating AMPK pathway. Exp Ther Med. 2018;15(2):2165–71.

    CAS  PubMed  Google Scholar 

  74. Satoh T. Molecular mechanisms for the regulation of insulin-stimulated glucose uptake by small guanosine triphosphatases in skeletal muscle and adipocytes. Int J Mol Sci. 2014;15(10):18677–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Gheibi S, et al. Effects of long-term nitrate supplementation on carbohydrate metabolism, lipid profiles, oxidative stress, and inflammation in male obese type 2 diabetic rats. Nitric Oxide. 2018;75:27–41.

    Article  CAS  PubMed  Google Scholar 

  76. Ahn YH. A journey to understand glucose homeostasis: starting from rat glucose transporter type 2 promoter cloning to hyperglycemia. Diabetes Metab J. 2018;42(6):465–71.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Titchenell PM, Lazar MA, Birnbaum MJ. Unraveling the regulation of hepatic metabolism by insulin. Trends Endocrinol Metab. 2017;28(7):497–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Patel BM, Goyal RK. Liver and insulin resistance: new wine in old bottle!!! Eur J Pharmacol. 2019;862:172657.

    Article  CAS  PubMed  Google Scholar 

  79. Ji L, et al. MICU1 alleviates diabetic cardiomyopathy through mitochondrial ca(2+)-dependent antioxidant response. Diabetes. 2017;66(6):1586–600.

    Article  CAS  PubMed  Google Scholar 

  80. Nocito L, et al. The extracellular redox state modulates mitochondrial function, gluconeogenesis, and glycogen synthesis in murine hepatocytes. PLoS One. 2015;10(3):e0122818.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Yang K, et al. The key roles of GSK-3β in regulating mitochondrial activity. Cell Physiol Biochem. 2017;44(4):1445–59.

    Article  CAS  PubMed  Google Scholar 

  82. Li BG, Hasselgren PO, Fang CH. Insulin-like growth factor-I inhibits dexamethasone-induced proteolysis in cultured L6 myotubes through PI3K/Akt/GSK-3beta and PI3K/Akt/mTOR-dependent mechanisms. Int J Biochem Cell Biol. 2005;37(10):2207–16.

    Article  CAS  PubMed  Google Scholar 

  83. Aoki M, et al. Structural insight into nucleotide recognition in tau-protein kinase I/glycogen synthase kinase 3 beta. Acta Crystallogr D Biol Crystallogr. 2004;60(Pt 3):439–46.

    Article  PubMed  CAS  Google Scholar 

  84. Mannoury la Cour C, et al. Signaling pathways leading to phosphorylation of Akt and GSK-3β by activation of cloned human and rat cerebral D2 and D3 receptors. Mol Pharmacol. 2011;79(1):91–105.

    Article  PubMed  CAS  Google Scholar 

  85. Endo H, et al. Activation of the Akt/GSK3beta signaling pathway mediates survival of vulnerable hippocampal neurons after transient global cerebral ischemia in rats. J Cereb Blood Flow Metab. 2006;26(12):1479–89.

    Article  CAS  PubMed  Google Scholar 

  86. Chen X, et al. GSK-3β downregulates Nrf2 in cultured cortical neurons and in a rat model of cerebral ischemia-reperfusion. Sci Rep. 2016;6(1):20196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ranea-Robles P, et al. Aberrant regulation of the GSK-3β/NRF2 axis unveils a novel therapy for adrenoleukodystrophy. EMBO Mol Med. 2018;10(8):e8604.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Chen X, et al. GSK-3β downregulates Nrf2 in cultured cortical neurons and in a rat model of cerebral ischemia-reperfusion. Sci Rep. 2016;6:20196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Shin JH, et al. Nrf2-Heme Oxygenase-1 attenuates high-glucose-induced epithelial-to-mesenchymal transition of renal tubule cells by inhibiting ROS-mediated PI3K/Akt/GSK-3β signaling. J Diabetes Res. 2019;2019:2510105.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Liu B, et al. GSPE reduces lead-induced oxidative stress by activating the Nrf2 pathway and suppressing miR153 and GSK-3β in rat kidney. Oncotarget. 2017;8(26):42226–37.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Li Q, et al. Gastrodin and isorhynchophylline synergistically inhibit MPP(+)-induced oxidative stress in SH-SY5Y cells by targeting ERK1/2 and GSK-3β pathways: involvement of Nrf2 nuclear translocation. ACS Chem Neurosci. 2018;9(3):482–93.

    Article  CAS  PubMed  Google Scholar 

  92. Armagan G, et al. Regulation of the Nrf2 pathway by glycogen synthase kinase-3β in MPP+-induced cell damage. Molecules. 2019;24(7):1377.

    Article  PubMed Central  CAS  Google Scholar 

  93. Wang J, et al. Panax Quinquefolius Saponin of stem and leaf attenuates intermittent high glucose-induced oxidative stress injury in cultured human umbilical vein endothelial cells via PI3K/Akt/GSK-3 β pathway. Evid Based Complement Alternat Med. 2013;2013:196283.

    PubMed  PubMed Central  Google Scholar 

  94. Filomeni G, De Zio D, Cecconi F. Oxidative stress and autophagy: the clash between damage and metabolic needs. Cell Death Differ. 2015;22(3):377–88.

    Article  CAS  PubMed  Google Scholar 

  95. Zhang X, et al. Oxidative stress promotes hepatocyte apoptosis mediated by glycogen synthase kinase 3β. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 2015;31(1):27–31.

    PubMed  Google Scholar 

  96. Wang Y, et al. Inactivation of GSK-3beta by metallothionein prevents diabetes-related changes in cardiac energy metabolism, inflammation, nitrosative damage, and remodeling. Diabetes. 2009;58(6):1391–402.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Yao Y, et al. Osthole decreases tau protein phosphorylation via PI3K/AKT/GSK-3β signaling pathway in Alzheimer's disease. Life Sci. 2019;217:16–24.

    Article  CAS  PubMed  Google Scholar 

  98. Adeva-Andany MM, et al. Glycogen metabolism in humans. BBA Clin. 2016;5:85–100.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Nogales-Gadea G, et al. Expression of glycogen phosphorylase isoforms in cultured muscle from patients with McArdle's disease carrying the p.R771PfsX33 PYGM mutation. PLoS One. 2010;5(10):e13164.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Obel LF, et al. Brain glycogen-new perspectives on its metabolic function and regulation at the subcellular level. Front Neuroenerg. 2012;4:3.

    Article  CAS  Google Scholar 

  101. Greenberg CC, et al. Glycogen branches out: new perspectives on the role of glycogen metabolism in the integration of metabolic pathways. Am J Physiol Endocrinol Metab. 2006;291(1):E1–8.

    Article  CAS  PubMed  Google Scholar 

  102. Hearris MA, et al. Regulation of muscle glycogen metabolism during exercise: implications for endurance performance and training adaptations. Nutrients. 2018;10(3):298.

    Article  PubMed Central  CAS  Google Scholar 

  103. Favaro E, et al. Glucose utilization via glycogen phosphorylase sustains proliferation and prevents premature senescence in cancer cells. Cell Metab. 2012;16(6):751–64.

    Article  CAS  PubMed  Google Scholar 

  104. Favre C, Aguilar PS, Carrillo MC. Oxidative stress and chronological aging in glycogen-phosphorylase-deleted yeast. Free Radic Biol Med. 2008;45(10):1446–56.

    Article  CAS  PubMed  Google Scholar 

  105. Jiang P, Du W, Wu M. Regulation of the pentose phosphate pathway in cancer. Protein Cell. 2014;5(8):592–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Ge T, et al. The role of the pentose phosphate pathway in diabetes and cancer. Front Endocrinol (Lausanne). 2020;11:365.

    Article  Google Scholar 

  107. Stanton RC. Glucose-6-phosphate dehydrogenase, NADPH, and cell survival. IUBMB Life. 2012;64(5):362–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Patra KC, Hay N. The pentose phosphate pathway and cancer. Trends Biochem Sci. 2014;39(8):347–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Sun S, et al. Cannabidiol attenuates OGD/R-induced damage by enhancing mitochondrial bioenergetics and modulating glucose metabolism via pentose-phosphate pathway in hippocampal neurons. Redox Biol. 2017;11:577–85.

    Article  CAS  PubMed  Google Scholar 

  110. Kwolek-Mirek M, Maslanka R, Molon M. Disorders in NADPH generation via pentose phosphate pathway influence the reproductive potential of the Saccharomyces cerevisiae yeast due to changes in redox status. J Cell Biochem. 2019;120(5):8521–33.

    Article  CAS  Google Scholar 

  111. Fernandez-Marcos PJ, Nóbrega-Pereira S. NADPH: new oxygen for the ROS theory of aging. Oncotarget. 2016;7(32):50814–5.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Chen L, et al. NADPH production by the oxidative pentose-phosphate pathway supports folate metabolism. Nat Metab. 2019;1:404–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Stincone A, et al. The return of metabolism: biochemistry and physiology of the pentose phosphate pathway. Biol Rev Camb Philos Soc. 2015;90(3):927–63.

    Article  PubMed  Google Scholar 

  114. Benito A, et al. Glucose-6-phosphate dehydrogenase and transketolase modulate breast cancer cell metabolic reprogramming and correlate with poor patient outcome. Oncotarget. 2017;8(63):106693.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Nita M, Grzybowski A. The role of the reactive oxygen species and oxidative stress in the pathomechanism of the age-related ocular diseases and other pathologies of the anterior and posterior eye segments in adults. Oxidative Med Cell Longev. 2016;2016:3164734.

    Article  CAS  Google Scholar 

  116. Schieber M, Chandel NS. ROS function in redox signaling and oxidative stress. Curr Biol. 2014;24(10):R453–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Lemire J, et al. Metabolic defence against oxidative stress: the road less travelled so far. J Appl Microbiol. 2017;123(4):798–809.

    Article  CAS  PubMed  Google Scholar 

  118. Lecerf JM. Fatty acids and cardiovascular disease. Nutr Rev. 2009;67(5):273–83.

    Article  PubMed  Google Scholar 

  119. Lopaschuk GD, et al. Myocardial fatty acid metabolism in health and disease. Physiol Rev. 2010;90(1):207–58.

    Article  CAS  PubMed  Google Scholar 

  120. Chen L, et al. Regulation of glucose and lipid metabolism in health and disease. Sci China Life Sci. 2019;62(11):1420–58.

    Article  PubMed  Google Scholar 

  121. Whalley S, et al. Hepatology outpatient service provision in secondary care: a study of liver disease incidence and resource costs. Clin Med (Lond). 2007;7(2):119–24.

    Article  Google Scholar 

  122. Chatterjee S. Chapter two - oxidative stress, inflammation, and disease. In: Dziubla T, Butterfield DA, editors. Oxidative stress and biomaterials. Cambridge, MA: Academic Press; 2016. p. 35–58.

    Chapter  Google Scholar 

  123. Tamarit J, Obis È, Ros J. Oxidative stress and altered lipid metabolism in Friedreich ataxia. Free Radic Biol Med. 2016;100:138–46.

    Article  CAS  PubMed  Google Scholar 

  124. Chen Q, et al. Oxidative stress mediated by lipid metabolism contributes to high glucose-induced senescence in retinal pigment epithelium. Free Radic Biol Med. 2019;130:48–58.

    Article  CAS  PubMed  Google Scholar 

  125. Davidson MH. Overview of lipid metabolism. 2019. Available from https://www.merckmanuals.com/professional/endocrine-and-metabolic-disorders/lipid-disorders/overview-of-lipid-metabolism.

  126. Thompson TE. Lipid. 2020. Available from https://www.britannica.com/science/lipid. Accessed 05 May 2020.

  127. Boden G. Obesity and free fatty acids. Endocrinol Metab Clin N Am. 2008;37(3):635–46.

    Article  CAS  Google Scholar 

  128. Niemann B, et al. Oxidative stress and cardiovascular risk: obesity, diabetes, smoking, and pollution: part 3 of a 3-part series. J Am Coll Cardiol. 2017;70(2):230–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Kim TT, Dyck JRB. The role of CD36 in the regulation of myocardial lipid metabolism. BBA Mol Cell Biol Lipids. 2016;1861(10):1450–60.

    Article  CAS  Google Scholar 

  130. Quijano C, et al. Interplay between oxidant species and energy metabolism. Redox Biol. 2016;8:28–42.

    Article  CAS  PubMed  Google Scholar 

  131. Ly LD, et al. Oxidative stress and calcium dysregulation by palmitate in type 2 diabetes. Exp Mol Med. 2017;49(2):e291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Berg JM, Tymoczko JL, Stryer L. Fatty acids are synthesized and degraded by different pathways. In: Biochemistry. 5th ed. New York: WH Freeman; 2002.

    Google Scholar 

  133. Impheng H, et al. The selective target of capsaicin on FASN expression and de novo fatty acid synthesis mediated through ROS generation triggers apoptosis in HepG2 cells. PLoS One. 2014;9(9):e107842.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Li B, et al. Inhibition of fatty acid synthase induces reactive oxygen species (ROS) to inhibit HER2 overexpressing breast cancer cell growth. Cancer Res. 2007;67:4462.

    Google Scholar 

  135. Mikalayeva V, et al. Fatty acid synthesis and degradation interplay to regulate the oxidative stress in cancer cells. Int J Mol Sci. 2019;20(6):1348.

    Article  CAS  PubMed Central  Google Scholar 

  136. Egea J, et al. European contribution to the study of ROS: a summary of the findings and prospects for the future from the COST action BM1203 (EU-ROS). Redox Biol. 2017;13:94–162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Kanda Y, et al. Reactive oxygen species mediate adipocyte differentiation in mesenchymal stem cells. Life Sci. 2011;89(7–8):250–8.

    Article  CAS  PubMed  Google Scholar 

  138. Ruskovska T, Bernlohr DA. Oxidative stress and protein carbonylation in adipose tissue - implications for insulin resistance and diabetes mellitus. J Proteome. 2013;92:323–34.

    Article  CAS  Google Scholar 

  139. Ayala A. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxidative Med Cell Longev. 2014;2014:1–31.

    Article  CAS  Google Scholar 

  140. Houten SM, Wanders RJA. A general introduction to the biochemistry of mitochondrial fatty acid β-oxidation. J Inherit Metab Dis. 2010;33(5):469–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Bartlett K, Eaton S. Mitochondrial beta-oxidation. Eur J Biochem. 2004;271(3):462–9.

    Article  CAS  PubMed  Google Scholar 

  142. Grevengoed TJ, Klett EL, Coleman RA. Acyl-CoA metabolism and partitioning. Annu Rev Nutr. 2014;34:1–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Knottnerus SJG, et al. Disorders of mitochondrial long-chain fatty acid oxidation and the carnitine shuttle. Rev Endocr Metab Disord. 2018;19(1):93–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Wanders RJA, et al. The enzymology of mitochondrial fatty acid beta-oxidation and its application to follow-up analysis of positive neonatal screening results. J Inherit Metab Dis. 2010;33(5):479–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Wanders RJ, Waterham HR. Biochemistry of mammalian peroxisomes revisited. Annu Rev Biochem. 2006;75:295–332.

    Article  CAS  PubMed  Google Scholar 

  146. Douglas DN, et al. Oxidative stress attenuates lipid synthesis and increases mitochondrial fatty acid oxidation in hepatoma cells infected with hepatitis C virus. J Biol Chem. 2016;291:1974–90.

    Article  CAS  PubMed  Google Scholar 

  147. Rosca MG, et al. Oxidation of fatty acids is the source of increased mitochondrial reactive oxygen species production in kidney cortical tubules in early diabetes. Diabetes. 2012;61(8):2074–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Boveris A, Oshino N, Chance B. The cellular production of hydrogen peroxide. Biochem J. 1972;128(3):617–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Reddy JK, Hashimoto T. Peroxisomal beta-oxidation and peroxisome proliferator-activated receptor alpha: an adaptive metabolic system. Annu Rev Nutr. 2001;21:193–230.

    Article  CAS  PubMed  Google Scholar 

  150. Fransen M, et al. Role of peroxisomes in ROS/RNS-metabolism: implications for human disease. Biochim Biophys Acta. 2012;1822(9):1363–73.

    Article  CAS  PubMed  Google Scholar 

  151. Kasai H, et al. Formation of 8-hydroxydeoxyguanosine in liver DNA of rats following long-term exposure to a peroxisome proliferator. Cancer Res. 1989;49(10):2603–5.

    CAS  PubMed  Google Scholar 

  152. Schrader M, Fahimi HD. Peroxisomes and oxidative stress. Biochim Biophys Acta. 2006;1763(12):1755–66.

    Article  CAS  PubMed  Google Scholar 

  153. Terlecky SR, Terlecky LJ, Giordano CR. Peroxisomes, oxidative stress, and inflammation. World J Biol Chem. 2012;3(5):93–7.

    Article  PubMed  PubMed Central  Google Scholar 

  154. Adibhatla RM, Hatcher JF. Phospholipase A(2), reactive oxygen species, and lipid peroxidation in CNS pathologies. BMB Rep. 2008;41(8):560–7.

    Article  CAS  PubMed  Google Scholar 

  155. Yusupov M, et al. Effect of head group and lipid tail oxidation in the cell membrane revealed through integrated simulations and experiments. Sci Rep. 2017;7(1):5761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Biernacki M, et al. Redox system and phospholipid metabolism in the kidney of hypertensive rats after FAAH inhibitor URB597 administration. Redox Biol. 2018;15:41–50.

    Article  CAS  PubMed  Google Scholar 

  157. Rao MA, Hatcher JF. Phospholipase A2, reactive oxygen species, and lipid peroxidation in cerebral ischemia. Free Radic Biol Med. 2006;40(3):376–87.

    Article  CAS  Google Scholar 

  158. Cortes VA, et al. Physiological and pathological implications of cholesterol. Front Biosci (Landmark Ed). 2014;19:416–28.

    Article  CAS  Google Scholar 

  159. Murphy RC, Johnson KM. Cholesterol, reactive oxygen species, and the formation of biologically active mediators. J Biol Chem. 2008;283(23):15521–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Wang C, et al. Cholesterol enhances colorectal cancer progression via ROS elevation and MAPK signaling pathway activation. Cell Physiol Biochem. 2017;42(2):729–42.

    Article  CAS  PubMed  Google Scholar 

  161. Alcalá M, et al. Increased inflammation, oxidative stress and mitochondrial respiration in brown adipose tissue from obese mice. Sci Rep. 2017;7(1):16082.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Wu J, et al. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell. 2012;150(2):366–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Cousin B, et al. Occurrence of brown adipocytes in rat white adipose tissue: molecular and morphological characterization. J Cell Sci. 1992;103(Pt 4):931–42.

    Article  CAS  PubMed  Google Scholar 

  164. Harms M, Seale P. Brown and beige fat: development, function and therapeutic potential. Nat Med. 2013;19(10):1252–63.

    Article  CAS  PubMed  Google Scholar 

  165. Kim SH, Plutzky J. Brown fat and browning for the treatment of obesity and related metabolic disorders. Diabetes Metab J. 2016;40(1):12–21.

    Article  PubMed  PubMed Central  Google Scholar 

  166. Chouchani ET, et al. Mitochondrial ROS regulate thermogenic energy expenditure and sulfenylation of UCP1. Nature. 2016;532(7597):112–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Jastroch M. Uncoupling protein 1 controls reactive oxygen species in brown adipose tissue. Proc Natl Acad Sci. 2017;114(30):7744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Jeremic N, Chaturvedi P, Tyagi SC. Browning of white fat: novel insight into factors, mechanisms, and therapeutics. J Cell Physiol. 2017;232(1):61–8.

    Article  CAS  PubMed  Google Scholar 

  169. Koppen A, Kalkhoven E. Brown vs white adipocytes: the PPARgamma coregulator story. FEBS Lett. 2010;584(15):3250–9.

    Article  CAS  PubMed  Google Scholar 

  170. Polvani S, Tarocchi M, Galli A. PPARγ and oxidative stress: con(β) catenating NRF2 and FOXO. PPAR Res. 2012;2012:641087.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. Corona JC, Duchen MR. PPARγ as a therapeutic target to rescue mitochondrial function in neurological disease. Free Radic Biol Med. 2016;100:153–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Gonzalez-Donquiles C, et al. The NRF2 transcription factor plays a dual role in colorectal cancer: a systematic review. PLoS One. 2017;12(5):e0177549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Grant No. 81770580).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao-Dong Sun or Yuanyuan Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yang, Y., Wu, Y., Sun, XD., Zhang, Y. (2021). Reactive Oxygen Species, Glucose Metabolism, and Lipid Metabolism. In: Huang, C., Zhang, Y. (eds) Oxidative Stress. Springer, Singapore. https://doi.org/10.1007/978-981-16-0522-2_9

Download citation

Publish with us

Policies and ethics