Skip to main content
Log in

ROS and energy metabolism in cancer cells: alliance for fast growth

  • Review
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

In normal cells, the cellular reactive oxygen species (ROS) level is proportional to the activity of mitochondrial electron transport and tightly controlled by endogenous antioxidant system. However, energy metabolism and ROS homeostasis in cancer cells are much different from those in normal cells. For example, a majority of cellular glucose is metabolized through aerobic glycolysis (“Warburg effect”) and the pentose phosphate pathway. Cancer cells harbor functional mitochondria, but many mutations in nuclear DNA-encoded mitochondrial genes and mitochondrial genome result in the mitochondrial metabolic reprogramming. The other characteristic of cancer cells is to maintain much higher ROS level than normal cells. Ironically, cancer cells overexpress the ROS-producing NADPH oxidase and the ROS-eliminating antioxidant enzymes, both of which enzyme systems share NADPH as a reducing power source. In this article, we review the complex connection between ROS and energy metabolisms in cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anastasiou, D., G. Poulogiannis, J.M. Asara, M.B. Boxer, J.K. Jiang, M. Shen, G. Bellinger, et al. 2011. Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses. Science 334(6060): 1278–1283.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Arnold, R.S., J. Shi, E. Murad, A.M. Whalen, C.Q. Sun, R. Polavarapu, S. Parthasarathy, J.A. Petros, and J.D. Lambeth. 2001. Hydrogen peroxide mediates the cell growth and transformation caused by the mitogenic oxidase Nox1. Proceedings of the National Academy of Sciences of the United States of America 98(10): 5550–5555.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Baliga, M.S., H. Wang, P. Zhuo, J.L. Schwartz, and A.M. Diamond. 2007. Selenium and GPx-1 overexpression protect mammalian cells against UV-induced DNA damage. Biological Trace Element Research 115(3): 227–242.

    Article  CAS  PubMed  Google Scholar 

  • Bedard, K., and K.H. Krause. 2007. The NOX family of ROS-generating NADPH oxidases: Physiology and pathophysiology. Physiological Reviews 87(1): 245–313.

    Article  CAS  PubMed  Google Scholar 

  • Bensaad, K., A. Tsuruta, M.A. Selak, M.N. Vidal, K. Nakano, R. Bartrons, E. Gottlieb, and K.H. Vousden. 2006. TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell 126(1): 107–120.

    Article  CAS  PubMed  Google Scholar 

  • Biteau, B., J. Labarre, and M.B. Toledano. 2003. ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin. Nature 425(6961): 980–984.

    Article  CAS  PubMed  Google Scholar 

  • Bonner, M.Y., and J.L. Arbiser. 2012. Targeting NADPH oxidases for the treatment of cancer and inflammation. Cellular and Molecular Life Sciences 69(14): 2435–2442.

    Article  CAS  PubMed  Google Scholar 

  • Chae, H.Z., H.J. Kim, S.W. Kang, and S.G. Rhee. 1999. Characterization of three isoforms of mammalian peroxiredoxin that reduce peroxides in the presence of thioredoxin. Diabetes Research and Clinical Practice 45(2–3): 101–112.

    Article  CAS  PubMed  Google Scholar 

  • Chang, T.S., C.S. Cho, S. Park, S. Yu, S.W. Kang, and S.G. Rhee. 2004. Peroxiredoxin III, a mitochondrion-specific peroxidase, regulates apoptotic signaling by mitochondria. Journal of Biological Chemistry 279(40): 41975–41984.

    Article  CAS  PubMed  Google Scholar 

  • Choi, H., S. Kim, P. Mukhopadhyay, S. Cho, J. Woo, G. Storz, and S.E. Ryu. 2001. Structural basis of the redox switch in the OxyR transcription factor. Cell 105(1): 103–113.

    Article  CAS  PubMed  Google Scholar 

  • Choi, M.H., I.K. Lee, G.W. Kim, B.U. Kim, Y.H. Han, D.Y. Yu, H.S. Park, et al. 2005. Regulation of PDGF signalling and vascular remodelling by peroxiredoxin II. Nature 435(7040): 347–353.

    Article  CAS  PubMed  Google Scholar 

  • Christofk, H.R., M.G. Vander Heiden, N. Wu, J.M. Asara, and L.C. Cantley. 2008. Pyruvate kinase M2 is a phosphotyrosine-binding protein. Nature 452(7184): 181–186.

    Article  CAS  PubMed  Google Scholar 

  • Cosentino, C., D. Grieco, and V. Costanzo. 2011. ATM activates the pentose phosphate pathway promoting anti-oxidant defence and DNA repair. EMBO Journal 30(3): 546–555.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Crosas-Molist, E., E. Bertran, P. Sancho, J. Lopez-Luque, J. Fernando, A. Sanchez, M. Fernandez, E. Navarro, and I. Fabregat. 2014. The NADPH oxidase NOX4 inhibits hepatocyte proliferation and liver cancer progression. Free Radical Biology and Medicine 69: 338–347.

    Article  CAS  PubMed  Google Scholar 

  • Cullen, J.J., F.A. Mitros, and L.W. Oberley. 2003. Expression of antioxidant enzymes in diseases of the human pancreas: Another link between chronic pancreatitis and pancreatic cancer. Pancreas 26(1): 23–27.

    Article  CAS  PubMed  Google Scholar 

  • D’Alessandro, A., I. Amelio, C.R. Berkers, A. Antonov, K.H. Vousden, G. Melino, and L. Zolla. 2014. Metabolic effect of TAp63alpha: Enhanced glycolysis and pentose phosphate pathway, resulting in increased antioxidant defense. Oncotarget 5(17): 7722–7733.

    PubMed Central  PubMed  Google Scholar 

  • Du, W., P. Jiang, A. Mancuso, A. Stonestrom, M.D. Brewer, A.J. Minn, T.W. Mak, M. Wu, and X. Yang. 2013. TAp73 enhances the pentose phosphate pathway and supports cell proliferation. Nature Cell Biology 15(8): 991–1000.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Eaton, P., N. Wright, D.J. Hearse, and M.J. Shattock. 2002. Glyceraldehyde phosphate dehydrogenase oxidation during cardiac ischemia and reperfusion. Journal of Molecular and Cellular Cardiology 34(11): 1549–1560.

    Article  CAS  PubMed  Google Scholar 

  • Ergen, H.A., U. Gormus, F. Narter, U. Zeybek, S. Bulgurcuoglu, and T. Isbir. 2007. Investigation of NAD(P)H:quinone oxidoreductase 1 (NQO1) C609T polymorphism in prostate cancer. Anticancer Research 27(6B): 4107–4110.

    CAS  PubMed  Google Scholar 

  • Fagerholm, R., B. Hofstetter, J. Tommiska, K. Aaltonen, R. Vrtel, K. Syrjakoski, A. Kallioniemi, et al. 2008. NAD(P)H:quinone oxidoreductase 1 NQO1*2 genotype (P187S) is a strong prognostic and predictive factor in breast cancer. Nature Genetics 40(7): 844–853.

    Article  CAS  PubMed  Google Scholar 

  • Fan, J., J. Ye, J.J. Kamphorst, T. Shlomi, C.B. Thompson, and J.D. Rabinowitz. 2014. Quantitative flux analysis reveals folate-dependent NADPH production. Nature 510(7504): 298–302.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Favaro, E., K. Bensaad, M.G. Chong, D.A. Tennant, D.J. Ferguson, C. Snell, G. Steers, et al. 2012. Glucose utilization via glycogen phosphorylase sustains proliferation and prevents premature senescence in cancer cells. Cell Metabolism 16(6): 751–764.

    Article  CAS  PubMed  Google Scholar 

  • Gladyshev, V.N., V.M. Factor, F. Housseau, and D.L. Hatfield. 1998. Contrasting patterns of regulation of the antioxidant selenoproteins, thioredoxin reductase, and glutathione peroxidase, in cancer cells. Biochemical and Biophysical Research Communications 251(2): 488–493.

    Article  CAS  PubMed  Google Scholar 

  • Guo, Z., S. Kozlov, M.F. Lavin, M.D. Person, and T.T. Paull. 2010. ATM activation by oxidative stress. Science 330(6003): 517–521.

    Article  CAS  PubMed  Google Scholar 

  • Guptasarma, P., D. Balasubramanian, S. Matsugo, and I. Saito. 1992. Hydroxyl radical mediated damage to proteins, with special reference to the crystallins. Biochemistry 31(17): 4296–4303.

    Article  CAS  PubMed  Google Scholar 

  • Hwang, N.R., S.H. Yim, Y.M. Kim, J. Jeong, E.J. Song, Y. Lee, J.H. Lee, S. Choi, and K.J. Lee. 2009. Oxidative modifications of glyceraldehyde-3-phosphate dehydrogenase play a key role in its multiple cellular functions. The Biochemical Journal 423(2): 253–264.

    Article  CAS  PubMed  Google Scholar 

  • Ishii, T., O. Sunami, H. Nakajima, H. Nishio, T. Takeuchi, and F. Hata. 1999. Critical role of sulfenic acid formation of thiols in the inactivation of glyceraldehyde-3-phosphate dehydrogenase by nitric oxide. Biochemical Pharmacology 58(1): 133–143.

    Article  CAS  PubMed  Google Scholar 

  • Jeon, S.M., N.S. Chandel, and N. Hay. 2012. AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress. Nature 485(7400): 661–665.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jeon, S.M., S.J. Lee, T.K. Kwon, K.J. Kim, and Y.S. Bae. 2010. NADPH oxidase is involved in protein kinase CKII down-regulation-mediated senescence through elevation of the level of reactive oxygen species in human colon cancer cells. FEBS Letters 584(14): 3137–3142.

    Article  CAS  PubMed  Google Scholar 

  • Jeong, W., S.J. Park, T.S. Chang, D.Y. Lee, and S.G. Rhee. 2006. Molecular mechanism of the reduction of cysteine sulfinic acid of peroxiredoxin to cysteine by mammalian sulfiredoxin. Journal of Biological Chemistry 281(20): 14400–14407.

    Article  CAS  PubMed  Google Scholar 

  • Jiang, P., W. Du, X. Wang, A. Mancuso, X. Gao, M. Wu, and X. Yang. 2011. p53 regulates biosynthesis through direct inactivation of glucose-6-phosphate dehydrogenase. Nature Cell Biology 13(3): 310–316.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jiang, P., W. Du, and X. Yang. 2013. A critical role of glucose-6-phosphate dehydrogenase in TAp73-mediated cell proliferation. Cell Cycle 12(24): 3720–3726.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kang, D.H., D.J. Lee, K.W. Lee, Y.S. Park, J.Y. Lee, S.H. Lee, Y.J. Koh, et al. 2011. Peroxiredoxin II is an essential antioxidant enzyme that prevents the oxidative inactivation of VEGF receptor-2 in vascular endothelial cells. Molecular Cell 44(4): 545–558.

    Article  CAS  PubMed  Google Scholar 

  • Kang, S.W., S.G. Rhee, T.S. Chang, W. Jeong, and M.H. Choi. 2005. 2-Cys peroxiredoxin function in intracellular signal transduction: Therapeutic implications. Trends in Molecular Medicine 11(12): 571–578.

    Article  CAS  PubMed  Google Scholar 

  • Kato, K., T. Ogura, A. Kishimoto, Y. Minegishi, N. Nakajima, M. Miyazaki, and H. Esumi. 2002. Critical roles of AMP-activated protein kinase in constitutive tolerance of cancer cells to nutrient deprivation and tumor formation. Oncogene 21(39): 6082–6090.

    Article  CAS  PubMed  Google Scholar 

  • Laderoute, K.R., K. Amin, J.M. Calaoagan, M. Knapp, T. Le, J. Orduna, M. Foretz, and B. Viollet. 2006. 5′-AMP-activated protein kinase (AMPK) is induced by low-oxygen and glucose deprivation conditions found in solid-tumor microenvironments. Molecular and Cellular Biology 26(14): 5336–5347.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu, C.X., Q.Q. Yin, H.C. Zhou, Y.L. Wu, J.X. Pu, L. Xia, W. Liu, et al. 2012. Adenanthin targets peroxiredoxin I and II to induce differentiation of leukemic cells. Nature Chemical Biology 8(5): 486–493.

    Article  CAS  PubMed  Google Scholar 

  • Locasale, J.W. 2013. Serine, glycine and one-carbon units: Cancer metabolism in full circle. Nature Reviews Cancer 13(8): 572–583. doi:10.1038/nrc3557.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lubos, E., J. Loscalzo, and D.E. Handy. 2011. Glutathione peroxidase-1 in health and disease: from molecular mechanisms to therapeutic opportunities. Antioxidants & Redox Signaling 15(7): 1957–1997.

    Article  CAS  Google Scholar 

  • Maddocks, O.D., C.R. Berkers, S.M. Mason, L. Zheng, K. Blyth, E. Gottlieb, and K.H. Vousden. 2013. Serine starvation induces stress and p53-dependent metabolic remodelling in cancer cells. Nature 493(7433): 542–546.

    Article  CAS  PubMed  Google Scholar 

  • Morigasaki, S., K. Shimada, A. Ikner, M. Yanagida, and K. Shiozaki. 2008. Glycolytic enzyme GAPDH promotes peroxide stress signaling through multistep phosphorelay to a MAPK cascade. Molecular Cell 30(1): 108–113.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Muchowicz, A., M. Firczuk, J. Chlebowska, D. Nowis, J. Stachura, J. Barankiewicz, A. Trzeciecka, et al. 2014. Adenanthin targets proteins involved in the regulation of disulphide bonds. Biochemical Pharmacology 89(2): 210–216.

    Article  CAS  PubMed  Google Scholar 

  • Newmeyer, D.D., and S. Ferguson-Miller. 2003. Mitochondria: Releasing power for life and unleashing the machineries of death. Cell 112(4): 481–490.

    Article  CAS  PubMed  Google Scholar 

  • Park, H.S., J.N. Chun, H.Y. Jung, C. Choi, and Y.S. Bae. 2006. Role of NADPH oxidase 4 in lipopolysaccharide-induced proinflammatory responses by human aortic endothelial cells. Cardiovascular Research 72(3): 447–455.

    Article  CAS  PubMed  Google Scholar 

  • Parzefall, W., C. Freiler, O. Lorenz, H. Koudelka, T. Riegler, M. Nejabat, E. Kainzbauer, B. Grasl-Kraupp, and R. Schulte-Hermann. 2014. Superoxide deficiency attenuates promotion of hepatocarcinogenesis by cytotoxicity in NADPH oxidase knockout mice. Archives of Toxicology, 1–11.

  • Ralser, M., M.M. Wamelink, A. Kowald, B. Gerisch, G. Heeren, E.A. Struys, E. Klipp, et al. 2007. Dynamic rerouting of the carbohydrate flux is key to counteracting oxidative stress. Journal of Biology 6(4): 10.

    Article  PubMed Central  PubMed  Google Scholar 

  • Rodacka, A., J. Strumillo, E. Serafin, and M. Puchala. 2014. Effect of resveratrol and tiron on the inactivation of glyceraldehyde-3-phosphate dehydrogenase induced by superoxide anion radical. Current Medicinal Chemistry 21(8): 1061–1069.

    Article  CAS  PubMed  Google Scholar 

  • Salmeen, A., J.N. Andersen, M.P. Myers, T.C. Meng, J.A. Hinks, N.K. Tonks, and D. Barford. 2003. Redox regulation of protein tyrosine phosphatase 1B involves a sulphenyl-amide intermediate. Nature 423(6941): 769–773.

    Article  CAS  PubMed  Google Scholar 

  • Shacter, E. 2000. Quantification and significance of protein oxidation in biological samples. Drug Metabolism Reviews 32(3–4): 307–326.

    Article  CAS  PubMed  Google Scholar 

  • Soethoudt, M., A.V. Peskin, N. Dickerhof, L.N. Paton, P.E. Pace, and C.C. Winterbourn. 2014. Interaction of adenanthin with glutathione and thiol enzymes: Selectivity for thioredoxin reductase and inhibition of peroxiredoxin recycling. Free Radical Biology and Medicine 77: 331–339.

    Article  CAS  PubMed  Google Scholar 

  • Souza, J.M., and R. Radi. 1998. Glyceraldehyde-3-phosphate dehydrogenase inactivation by peroxynitrite. Archives of Biochemistry and Biophysics 360(2): 187–194.

    Article  CAS  PubMed  Google Scholar 

  • Suh, Y.A., R.S. Arnold, B. Lassegue, J. Shi, X. Xu, D. Sorescu, A.B. Chung, K.K. Griendling, and J.D. Lambeth. 1999. Cell transformation by the superoxide-generating oxidase Mox1. Nature 401(6748): 79–82.

    Article  CAS  PubMed  Google Scholar 

  • Sullivan, L.B., E. Martinez-Garcia, H. Nguyen, A.R. Mullen, E. Dufour, S. Sudarshan, J.D. Licht, R.J. Deberardinis, and N.S. Chandel. 2013. The proto-oncometabolite fumarate binds glutathione to amplify ROS-dependent signaling. Molecular Cell 51(2): 236–248.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sundaresan, M., Z.X. Yu, V.J. Ferrans, K. Irani, and T. Finkel. 1995. Requirement for generation of H2O2 for platelet-derived growth factor signal transduction. Science 270(5234): 296–299.

    Article  CAS  PubMed  Google Scholar 

  • Tonks, N.K. 2005. Redox redux: Revisiting PTPs and the control of cell signaling. Cell 121(5): 667–670.

    Article  CAS  PubMed  Google Scholar 

  • Tonks, N.K. 2006. Protein tyrosine phosphatases: From genes, to function, to disease. Nature Reviews Molecular Cell Biology 7(11): 833–846.

    Article  CAS  PubMed  Google Scholar 

  • Trachootham, D., J. Alexandre, and P. Huang. 2009. Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nature Reviews Drug Discovery 8(7): 579–591.

    Article  CAS  PubMed  Google Scholar 

  • Treton, X., E. Pedruzzi, C. Guichard, Y. Ladeiro, S. Sedghi, M. Vallee, N. Fernandez, et al. 2014. Combined NADPH oxidase 1 and interleukin 10 deficiency induces chronic endoplasmic reticulum stress and causes ulcerative colitis-like disease in mice. PLoS One 9(7): e101669.

    Article  PubMed Central  PubMed  Google Scholar 

  • van Montfort, R.L., M. Congreve, D. Tisi, R. Carr, and H. Jhoti. 2003. Oxidation state of the active-site cysteine in protein tyrosine phosphatase 1B. Nature 423(6941): 773–777.

    Article  PubMed  Google Scholar 

  • Vander Heiden, M.G., L.C. Cantley, and C.B. Thompson. 2009. Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science 324(5930): 1029–1033.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vaughn, A.E., and M. Deshmukh. 2008. Glucose metabolism inhibits apoptosis in neurons and cancer cells by redox inactivation of cytochrome c. Nature Cell Biology 10(12): 1477–1483.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wallace, D.C. 2012. Mitochondria and cancer. Nature Reviews Cancer 12(10): 685–698.

    Article  CAS  PubMed  Google Scholar 

  • Wang, W., H. Fang, L. Groom, A. Cheng, W. Zhang, J. Liu, X. Wang, et al. 2008. Superoxide flashes in single mitochondria. Cell 134(2): 279–290.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Woo, H.A., H.Z. Chae, S.C. Hwang, K.S. Yang, S.W. Kang, K. Kim, and S.G. Rhee. 2003. Reversing the inactivation of peroxiredoxins caused by cysteine sulfinic acid formation. Science 300(5619): 653–656.

    Article  CAS  PubMed  Google Scholar 

  • Woo, H.A., S.H. Yim, D.H. Shin, D. Kang, D.Y. Yu, and S.G. Rhee. 2010. Inactivation of peroxiredoxin I by phosphorylation allows localized H(2)O(2) accumulation for cell signaling. Cell 140(4): 517–528.

    Article  CAS  PubMed  Google Scholar 

  • Wood, Z.A., L.B. Poole, and P.A. Karplus. 2003. Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling. Science 300(5619): 650–653.

    Article  CAS  PubMed  Google Scholar 

  • Yang, C.S., D.M. Shin, K.H. Kim, Z.W. Lee, C.H. Lee, S.G. Park, Y.S. Bae, and E.K. Jo. 2009. NADPH oxidase 2 interaction with TLR2 is required for efficient innate immune responses to mycobacteria via cathelicidin expression. Journal of Immunology 182(6): 3696–3705.

    Article  CAS  Google Scholar 

  • Yang, K.S., S.W. Kang, H.A. Woo, S.C. Hwang, H.Z. Chae, K. Kim, and S.G. Rhee. 2002. Inactivation of human peroxiredoxin I during catalysis as the result of the oxidation of the catalytic site cysteine to cysteine-sulfinic acid. Journal of Biological Chemistry 277(41): 38029–38036.

    Article  CAS  PubMed  Google Scholar 

  • Yoo, S.K., T.W. Starnes, Q. Deng, and A. Huttenlocher. 2011. Lyn is a redox sensor that mediates leukocyte wound attraction in vivo. Nature 480(7375): 109–112.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang, Q., M. Zheng, X.L. Qi, F. Liu, Z.J. Mao, and D.H. Zhang. 2014. Effect of NQO1 C609T polymorphism on prostate cancer risk: a meta-analysis. Onco Targets and Therapy 7: 907–914.

    Article  Google Scholar 

  • Zmijewski, J.W., S. Banerjee, H. Bae, A. Friggeri, E.R. Lazarowski, and E. Abraham. 2010. Exposure to hydrogen peroxide induces oxidation and activation of AMP-activated protein kinase. Journal of Biological Chemistry 285(43): 33154–33164.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by a Grant from the National R&D Program for Cancer Control, Ministry of Health and Welfare, Republic of Korea (1420280), the National Research Foundation Grants (2014R1A2A1A01006934 & 2012M3A9C5048709), and the Research Center for Cellular Homeostasis (2012R1A5A1048236) funded by the Korean government (MSIP).

Conflict of interest

None declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Won Kang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, S.W., Lee, S. & Lee, E.K. ROS and energy metabolism in cancer cells: alliance for fast growth. Arch. Pharm. Res. 38, 338–345 (2015). https://doi.org/10.1007/s12272-015-0550-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-015-0550-6

Keywords

Navigation