Skip to main content

Probiotic Bacteria as a Functional Delivery Vehicle for the Development of Live Oral Vaccines

  • Chapter
  • First Online:
Probiotic Bacteria and Postbiotic Metabolites: Role in Animal and Human Health

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 2))

Abstract

Probiotics improve the immune system and help to fight with different infection. The LAB ability in eliciting the immune response against foreign antigens has led to their use as candidate vectors for mucosal vaccines. Here, the use of LAB as oral vaccine carriers and various expression systems intended to the production of heterologous proteins are reviewed and discussed. Lactococcus lactis, Lactobacillus strains, and Streptococcus gordonii are lactic acid bacteria (LAB) currently being advocated for use as live antigen delivery vehicles to mucosal sites. Since these vehicles differ in their life span and mode of antigen delivery within the small intestine, in this chapter we tried to determine the promising LAB candidates for the development of oral vaccines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adachi K, Kawana K, Yokoyama T, Fujii T, Tomio A, Miura S, Tomio K, Kojima S, Oda K, Sewaki T (2010) Oral immunization with a Lactobacillus casei vaccine expressing human papillomavirus (HPV) type 16 E7 is an effective strategy to induce mucosal cytotoxic lymphocytes against HPV16 E7. Vaccine 28:2810–2817

    Article  CAS  PubMed  Google Scholar 

  • Adams CA (2010) The probiotic paradox: live and dead cells are biological response modifiers. Nutr Res Rev 23:37–46

    Article  CAS  PubMed  Google Scholar 

  • Adel M, El-Sayed A-FM, Yeganeh S, Dadar M, Giri SS (2017) Effect of potential probiotic Lactococcus lactis subsp. lactis on growth performance, intestinal microbiota, digestive enzyme activities, and disease resistance of Litopenaeus vannamei. Probiotics Antimicrob Proteins 9:150–156

    Article  CAS  PubMed  Google Scholar 

  • Aires KA, Cianciarullo AM, Carneiro SM, Villa LL, Boccardo E, Pérez-Martinez G, Perez-Arellano I, Oliveira MLS, Ho PL (2006) Production of human papillomavirus type 16 L1 virus-like particles by recombinant Lactobacillus casei cells. Appl Environ Microbiol 72:745–752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akira S, Takeda K, Kaisho T (2001) Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol 2:675

    Article  CAS  PubMed  Google Scholar 

  • Aliramaei MR, Khorasgani MR, Rahmani MR, Esfahani SHZ, Emamzadeh R (2020) Expression of Helicobacter pylori CagL gene in Lactococcus lactis MG1363 and evaluation of its immunogenicity as an oral vaccine in mice. Microb Pathog 142:103926

    Article  CAS  Google Scholar 

  • Allen SJ, Jordan S, Storey M, Thornton CA, Gravenor MB, Garaiova I, Plummer SF, Wang D, Morgan G (2014) Probiotics in the prevention of eczema: a randomised controlled trial. Arch Dis Child 99:1014–1019

    Article  PubMed  PubMed Central  Google Scholar 

  • Amdekar S, Dwivedi D, Roy P, Kushwah S, Singh V (2010) Probiotics: multifarious oral vaccine against infectious traumas. FEMS Immunol Med Microbiol 58:299–306

    Article  CAS  PubMed  Google Scholar 

  • Anand A, Sato M, Aoyagi H (2019) Screening of phosphate-accumulating probiotics for potential use in chronic kidney disorder. Food Sci Technol Res 25:89–96

    Article  CAS  Google Scholar 

  • Azcárate-Peril MA, Sikes M, Bruno-Bárcena JM (2011) The intestinal microbiota, gastrointestinal environment and colorectal cancer: a putative role for probiotics in prevention of colorectal cancer? Am J Physiol Gastrointest Liver Physiol 301:G401–G424

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bahey-El-Din M, Gahan CG, Griffin BT (2010) Lactococcus lactis as a cell factory for delivery of therapeutic proteins. Curr Gene Ther 10:34–45

    Article  CAS  PubMed  Google Scholar 

  • Bermúdez-Humarán LG (2009) Lactococcus lactis as a live vector for mucosal delivery of therapeutic proteins. Hum Vaccin 5:264–267

    Article  PubMed  Google Scholar 

  • Bermúdez-Humarán LG, Kharrat P, Chatel J-M, Langella P (2011) Lactococci and lactobacilli as mucosal delivery vectors for therapeutic proteins and DNA vaccines, microbial cell factories. BioMed Central:1–10

    Google Scholar 

  • Bisanz JE, Enos MK, PrayGod G, Seney S, Macklaim JM, Chilton S, Willner D, Knight R, Fusch C, Fusch G (2015) Microbiota at multiple body sites during pregnancy in a rural Tanzanian population and effects of Moringa-supplemented probiotic yogurt. Appl Environ Microbiol 81:4965–4975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boersma W, Shaw M, Claassen E (2000) Probiotic bacteria as live oral vaccines Lactobacillus as the versatile delivery vehicle. In: Probiotics 3. Springer, New York, pp 234–270

    Chapter  Google Scholar 

  • Cervin AU (2018) The potential for topical probiotic treatment of chronic rhinosinusitis, a personal perspective. Front Cell Infect Microbiol 7:530

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cheun H, Kawamoto K, Hiramatsu M, Tamaoki H, Shirahata T, Igimi S, Makino SI (2004) Protective immunity of SpaA-antigen producing Lactococcus lactis against Erysipelothrix rhusiopathiae infection. J Appl Microbiol 96:1347–1353

    Article  CAS  PubMed  Google Scholar 

  • Cremon C, Barbaro MR, Ventura M, Barbara G (2018) Pre-and probiotic overview. Curr Opin Pharmacol 43:87–92

    Article  CAS  PubMed  Google Scholar 

  • Crill WD, Hughes HR, Delorey MJ, Chang G-JJ (2009) Humoral immune responses of dengue fever patients using epitope-specific serotype-2 virus-like particle antigens. PLoS One 4:e4991

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cross ML, Ganner A, Teilab D, Fray LM (2004) Patterns of cytokine induction by gram-positive and gram-negative probiotic bacteria. FEMS Immunol Med Microbiol 42:173–180

    Article  CAS  PubMed  Google Scholar 

  • Cui L-C, Guan X-T, Liu Z-M, Tian C-Y, Xu Y-G (2015) Recombinant lactobacillus expressing G protein of spring viremia of carp virus (SVCV) combined with ORF81 protein of koi herpesvirus (KHV): a promising way to induce protective immunity against SVCV and KHV infection in cyprinid fish via oral vaccination. Vaccine 33:3092–3099

    Article  CAS  PubMed  Google Scholar 

  • Dadar M, Dhama K, Vakharia VN, Hoseinifar SH, Karthik K, Tiwari R, Khandia R, Munjal A, Salgado-Miranda C, Joshi SK (2017) Advances in aquaculture vaccines against fish pathogens: global status and current trends. Rev Fisher Sci Aquac 25:184–217

    Article  Google Scholar 

  • Dadar M, Chakraborty S, Dhama K, Prasad M, Khandia R, Hassan S, Munjal A, Tiwari R, Karthik K, Kumar D (2018) Advances in designing and developing vaccines, drugs and therapeutic approaches to counter human papilloma virus. Front Immunol 9:2478

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Daniel C, Sebbane F, Poiret S, Goudercourt D, Dewulf J, Mullet C, Simonet M, Pot B (2009) Protection against Yersinia pseudotuberculosis infection conferred by a Lactococcus lactis mucosal delivery vector secreting LcrV. Vaccine 27:1141–1144

    Article  CAS  PubMed  Google Scholar 

  • De Azevedo M, Karczewski J, Lefévre F, Azevedo V, Miyoshi A, Wells JM, Langella P, Chatel J-M (2012) In vitro and in vivo characterization of DNA delivery using recombinant Lactococcus lactis expressing a mutated form of L. monocytogenes Internalin A. BMC Microbiol 12:1–9

    Article  CAS  Google Scholar 

  • del Rio B, Redruello B, Fernandez M, Martin MC, Ladero V, Alvarez MA (2018) Lactic acid bacteria as a live delivery system for the in situ production of nanobodies in the human gastrointestinal tract. Front Microbiol 9:3179

    Google Scholar 

  • Delcenserie V, Martel D, Lamoureux M, Amiot J, Boutin Y, Roy D (2008) Immunomodulatory effects of probiotics in the intestinal tract. Curr Issues Mol Biol 10:37

    CAS  PubMed  Google Scholar 

  • Detmer A, Glenting J (2006) Live bacterial vaccines–a review and identification of potential hazards. Microb Cell Factories 5:23

    Article  CAS  Google Scholar 

  • Ferreira L, Ferreira RC, Schumann W (2005) Bacillus subtilis as a tool for vaccine development: from antigen factories to delivery vectors. An Acad Bras Cienc 77:113–124

    Article  CAS  PubMed  Google Scholar 

  • Foligne B, Zoumpopoulou G, Dewulf J, Younes AB, Chareyre F, Sirard J-C, Pot B, Grangette C (2007) A key role of dendritic cells in probiotic functionality. PLoS One 2:e313

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Frei R, Akdis M, O’Mahony L (2015) Prebiotics, probiotics, synbiotics, and the immune system: experimental data and clinical evidence. Curr Opin Gastroenterol 31:153–158

    Article  CAS  PubMed  Google Scholar 

  • Galdeano CM, Perdigon G (2006) The probiotic bacterium Lactobacillus casei induces activation of the gut mucosal immune system through innate immunity. Clin Vaccine Immunol 13:219–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galdeano CM, Cazorla SI, Dumit JML, Vélez E, Perdigón G (2019) Beneficial effects of probiotic consumption on the immune system. Ann Nutr Metab 74:115–124

    Article  CAS  Google Scholar 

  • Glenting J, Poulsen LK, Kato K, Madsen SM, Frøkiær H, Wendt C, Sørensen HW (2007) Production of recombinant peanut allergen Ara h 2 using Lactococcus lactis. Microb Cell Factories 6:28

    Article  CAS  Google Scholar 

  • Günaydın G, Zhang R, Hammarström L, Marcotte H (2014) Engineered Lactobacillus rhamnosus GG expressing IgG-binding domains of protein G: capture of hyperimmune bovine colostrum antibodies and protection against diarrhea in a mouse pup rotavirus infection model. Vaccine 32:470–477

    Article  PubMed  CAS  Google Scholar 

  • Hoseinifar SH, Dadar M, Ringø E (2017) Modulation of nutrient digestibility and digestive enzyme activities in aquatic animals: the functional feed additives scenario. Aquac Res 48:3987–4000

    Article  CAS  Google Scholar 

  • Jandhyala SM, Talukdar R, Subramanyam C, Vuyyuru H, Sasikala M, Reddy DN (2015) Role of the normal gut microbiota. World J Gastroenterol: WJG 21:8787

    Article  CAS  PubMed  Google Scholar 

  • Jiang B, Li Z, Ou B, Duan Q, Zhu G (2019) Targeting ideal oral vaccine vectors based on probiotics: a systematical view. Appl Microbiol Biotechnol 1-13

    Google Scholar 

  • Johansson MA, Sjögren YM, Persson J-O, Nilsson C, Sverremark-Ekström E (2011) Early colonization with a group of Lactobacilli decreases the risk for allergy at five years of age despite allergic heredity. PLoS One 6:e23031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kajikawa A, Satoh E, Leer RJ, Yamamoto S, Igimi S (2007) Intragastric immunization with recombinant Lactobacillus casei expressing flagellar antigen confers antibody-independent protective immunity against Salmonella enterica serovar Enteritidis. Vaccine 25:3599–3605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kajikawa A, Zhang L, Long J, Nordone S, Stoeker L, LaVoy A, Bumgardner S, Klaenhammer T, Dean G (2012) Construction and immunological evaluation of dual cell surface display of HIV-1 gag and Salmonella enterica serovar Typhimurium FliC in Lactobacillus acidophilus for vaccine delivery. Clin Vaccine Immunol 19:1374–1381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kajikawa A, Zhang L, LaVoy A, Bumgardner S, Klaenhammer TR, Dean GA (2015) Mucosal immunogenicity of genetically modified Lactobacillus acidophilus expressing an HIV-1 epitope within the surface layer protein. PLoS One 10:e0141713

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kałużna-Czaplińska J, Gątarek P, Chartrand MS, Dadar M, Bjørklund G (2017) Is there a relationship between intestinal microbiota, dietary compounds, and obesity? Trends Food Sci Technol 70:105–113

    Article  CAS  Google Scholar 

  • Kassayova M, Bobrov N, Strojný L, Kiskova T, Mikeš J, Demečková V, Orendáš P, Bojkova B, Péč M, Kubatka P (2014) Preventive effects of probiotic bacteria Lactobacillus plantarum and dietary fiber in chemically-induced mammary carcinogenesis. Anticancer Res 34:4969–4975

    PubMed  Google Scholar 

  • Kawashima T, Ikari N, Kouchi T, Kowatari Y, Kubota Y, Shimojo N, Tsuji NM (2018) The molecular mechanism for activating IgA production by pediococcus acidilactici K15 and the clinical impact in a randomized trial. Sci Rep 8:1–9

    Article  Google Scholar 

  • Lammers KM, Brigidi P, Vitali B, Gionchetti P, Rizzello F, Caramelli E, Matteuzzi D, Campieri M (2003) Immunomodulatory effects of probiotic bacteria DNA: IL-1 and IL-10 response in human peripheral blood mononuclear cells. FEMS Immunol Med Microbiol 38:165–172

    Article  CAS  PubMed  Google Scholar 

  • Le Loir Y, Azevedo V, Oliveira SC, Freitas DA, Miyoshi A, Bermúdez-Humarán LG, Nouaille S, Ribeiro LA, Leclercq S, Gabriel JE (2005) Protein secretion in Lactococcus lactis: an efficient way to increase the overall heterologous protein production. Microb Cell Factories 4:2

    Article  CAS  Google Scholar 

  • LeCureux JS, Dean GA (2018) Lactobacillus mucosal vaccine vectors: immune responses against bacterial and viral antigens. Msphere 3

    Google Scholar 

  • Lee P, Faubert GM (2006) Expression of the Giardia lamblia cyst wall protein 2 in Lactococcus lactis. Microbiology 152:1981–1990

    Article  CAS  PubMed  Google Scholar 

  • Lee SF, March RJ, Halperin SA, Faulkner G, Gao L (1999) Surface expression of a protective recombinant pertussis toxin S1 subunit fragment in Streptococcus gordonii. Infect Immun 67:1511–1516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee MH, Roussel Y, Wilks M, Tabaqchali S (2001) Expression of Helicobacter pylori urease subunit B gene in Lactococcus lactis MG1363 and its use as a vaccine delivery system against H. pylori infection in mice. Vaccine 19:3927–3935

    Article  CAS  PubMed  Google Scholar 

  • Lee J-S, Poo H, Han DP, Hong S-P, Kim K, Cho MW, Kim E, Sung M-H, Kim C-J (2006) Mucosal immunization with surface-displayed severe acute respiratory syndrome coronavirus spike protein on Lactobacillus casei induces neutralizing antibodies in mice. J Virol 80:4079–4087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee T-Y, Kim Y-H, Lee K-S, Kim J-K, Lee I-H, Yang J-M, Sung M-H, Park J-S, Poo H (2010) Human papillomavirus type 16 E6-specific antitumor immunity is induced by oral administration of HPV16 E6-expressing Lactobacillus casei in C57BL/6 mice. Cancer Immunol Immunother 59:1727–1737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Licciardi PV, Tang ML (2011) Vaccine adjuvant properties of probiotic bacteria. Discov Med 12:525–533

    PubMed  Google Scholar 

  • Li-Li Z, Min L, Jun-Wei G, Xin-Yuan Q, Yi-Jing L, Di-Qiu L (2012) Expression of infectious pancreatic necrosis virus (IPNV) VP2–VP3 fusion protein in Lactobacillus casei and immunogenicity in rainbow trouts. Vaccine 30:1823–1829

    Article  CAS  Google Scholar 

  • Lilly DM, Stillwell RH (1965) Probiotics: growth-promoting factors produced by microorganisms. Science 147:747–748

    Article  CAS  PubMed  Google Scholar 

  • Maghvan MA, Jafari P, Hoseini SD, Behrozikhah AM (2019) Cloning and expression of B. mellitensis bp26 Gene in Lactococcus lactis as a food grade vaccine. Avicenna J Med Biotechnol 11:264

    Google Scholar 

  • Mercenier A, Muller-Alouf H, Grangette C (2000) Lactic acid bacteria as live vaccines. Curr Issues Mol Biol 2:17–26

    CAS  PubMed  Google Scholar 

  • Mierau I, Kleerebezem M (2005) 10 years of the nisin-controlled gene expression system (NICE) in Lactococcus lactis. Appl Microbiol Biotechnol 68:705–717

    Article  CAS  PubMed  Google Scholar 

  • Min L, Li-Li Z, Jun-Wei G, Xin-Yuan Q, Yi-Jing L, Di-Qiu L (2012) Immunogenicity of Lactobacillus-expressing VP2 and VP3 of the infectious pancreatic necrosis virus (IPNV) in rainbow trout. Fish Shellfish Immunol 32:196–203

    Article  PubMed  CAS  Google Scholar 

  • Mohammadi E, Golchin M (2020) High protection of mice against Brucella abortus by oral immunization with recombinant probiotic Lactobacillus casei vector vaccine, expressing the outer membrane protein OMP19 of Brucella species. Comp Immunol Microbiol Infect Dis 101470

    Google Scholar 

  • Mojgani N, Shahali Y, Dadar M (2020) Immune modulatory capacity of probiotic lactic acid bacteria and applications in vaccine development. Benefic Microbes 11:213–226

    Article  CAS  Google Scholar 

  • Morelli L, Capurso L (2012) FAO/WHO guidelines on probiotics: 10 years later. J Clin Gastroenterol 46:S1–S2

    Article  PubMed  Google Scholar 

  • Morello E, Bermudez-Humaran L, Llull D, Solé V, Miraglio N, Langella P, Poquet I (2008) Lactococcus lactis, an efficient cell factory for recombinant protein production and secretion. J Mol Microbiol Biotechnol 14:48–58

    CAS  PubMed  Google Scholar 

  • Naderi-Samani M, Soltani M, Dadar M, Taheri-Mirghaed A, Zargar A, Ahmadivand S, Hassanzadeh R, Goudarzi LM (2020) Oral immunization of trout fry with recombinant Lactococcus lactis NZ3900 expressing G gene of viral hemorrhagic septicaemia virus (VHSV). Fish Shellfish Immunol 105:62–70

    Article  CAS  PubMed  Google Scholar 

  • Neto MPC, de Souza Aquino J, da Silva LDFR, de Oliveira Silva R, de Lima Guimaraes KS, de Oliveira Y, de Souza EL, Magnani M, Vidal H, de Brito Alves JL (2018) Gut microbiota and probiotics intervention: a potential therapeutic target for management of cardiometabolic disorders and chronic kidney disease? Pharmacol Res 130:152–163

    Article  CAS  Google Scholar 

  • Oak SJ, Jha R (2019) The effects of probiotics in lactose intolerance: a systematic review. Crit Rev Food Sci Nutr 59:1675–1683

    Article  CAS  PubMed  Google Scholar 

  • Pandey KR, Naik SR, Vakil BV (2015) Probiotics, prebiotics and synbiotics-a review. J Food Sci Technol 52:7577–7587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pei H, Liu J, Cheng Y, Sun C, Wang C, Lu Y, Ding J, Zhou J, Xiang H (2005) Expression of SARS-coronavirus nucleocapsid protein in Escherichia coli and Lactococcus lactis for serodiagnosis and mucosal vaccination. Appl Microbiol Biotechnol 68:220–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perdigon G, Alvarez S, Rachid M, Agüero G, Gobbato N (1995) Immune system stimulation by probiotics. J Dairy Sci 78:1597–1606

    Article  CAS  PubMed  Google Scholar 

  • Perdigón G, Fuller R, Raya R (2001) Lactic acid bacteria and their effect on the immune system. Curr Issues Intest Microbiol 2:27–42

    PubMed  Google Scholar 

  • Peterson CT, Sharma V, Elmén L, Peterson SN (2015) Immune homeostasis, dysbiosis and therapeutic modulation of the gut microbiota. Clin Exp Immunol 179:363–377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pontes DS, De Azevedo MSP, Chatel J-M, Langella P, Azevedo V, Miyoshi A (2011) Lactococcus lactis as a live vector: heterologous protein production and DNA delivery systems. Protein Expr Purif 79:165–175

    Article  CAS  PubMed  Google Scholar 

  • Poo H, Pyo HM, Lee TY, Yoon SW, Lee JS, Kim CJ, Sung MH, Lee SH (2006) Oral administration of human papillomavirus type 16 E7 displayed on Lactobacillus casei induces E7-specific antitumor effects in C57/BL6 mice. Int J Cancer 119:1702–1709

    Article  CAS  PubMed  Google Scholar 

  • Pouwels PH, Leer RJ, Shaw M, den Bak-Glashouwer M-JH, Tielen FD, Smit E, Martinez B, Jore J, Conway PL (1998) Lactic acid bacteria as antigen delivery vehicles for oral immunization purposes. Int J Food Microbiol 41:155–167

    Article  CAS  PubMed  Google Scholar 

  • Power SE, O’Toole PW, Stanton C, Ross RP, Fitzgerald GF (2014) Intestinal microbiota, diet and health. Br J Nutr 111:387–402

    Article  CAS  PubMed  Google Scholar 

  • Pradhan D, Mallappa RH, Grover S (2020) Comprehensive approaches for assessing the safety of probiotic bacteria. Food Control 108:106872

    Article  CAS  Google Scholar 

  • Qiao X, Li G, Wang X, Li X, Liu M, Li Y (2009) Recombinant porcine rotavirus VP4 and VP4-LTB expressed in Lactobacillus casei induced mucosal and systemic antibody responses in mice. BMC Microbiol 9:1–11

    Article  CAS  Google Scholar 

  • Reid G, Jass J, Sebulsky MT, McCormick JK (2003) Potential uses of probiotics in clinical practice. Clin Microbiol Rev 16:658–672

    Article  PubMed  PubMed Central  Google Scholar 

  • Rizzardini G, Eskesen D, Calder PC, Capetti A, Jespersen L, Clerici M (2012) Evaluation of the immune benefits of two probiotic strains Bifidobacterium animalis ssp. lactis, BB-12® and Lactobacillus paracasei ssp. paracasei, L. casei 431® in an influenza vaccination model: a randomised, double-blind, placebo-controlled study. Br J Nutr 107:876–884

    Article  CAS  PubMed  Google Scholar 

  • Rolfe RD (2000) The role of probiotic cultures in the control of gastrointestinal health. J Nutr 130:396S–402S

    Article  CAS  PubMed  Google Scholar 

  • Roshan D, Souza DRP (2012) Lactococcus lactis: an efficient Gram positive cell factory for the production and secretion of recombinant protein

    Google Scholar 

  • Rosshart SP, Vassallo BG, Angeletti D, Hutchinson DS, Morgan AP, Takeda K, Hickman HD, McCulloch JA, Badger JH, Ajami NJ (2017) Wild mouse gut microbiota promotes host fitness and improves disease resistance. Cell 171:1015–1028. e1013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Safari R, Adel M, Lazado CC, Caipang CMA, Dadar M (2016) Host-derived probiotics Enterococcus casseliflavus improves resistance against Streptococcus iniae infection in rainbow trout (Oncorhynchus mykiss) via immunomodulation. Fish Shellfish Immunol 52:198–205

    Article  CAS  PubMed  Google Scholar 

  • Sánchez B, Delgado S, Blanco-Míguez A, Lourenço A, Gueimonde M, Margolles A (2017) Probiotics, gut microbiota, and their influence on host health and disease. Mol Nutr Food Res 61:1600240

    Article  CAS  Google Scholar 

  • Sartor RB (2004) Therapeutic manipulation of the enteric microflora in inflammatory bowel diseases: antibiotics, probiotics, and prebiotics. Gastroenterology 126:1620–1633

    Article  PubMed  Google Scholar 

  • Sharma A (2019) Importance of probiotics in cancer prevention and treatment. In: Recent developments in applied microbiology and biochemistry. Elsevier, San Diego, CA, pp 33–45

    Chapter  Google Scholar 

  • Shi S-H, Yang W-T, Yang G-L, Cong Y-L, Huang H-B, Wang Q, Cai R-P, Ye L-P, Hu J-T, Zhou J-Y (2014) Immunoprotection against influenza virus H9N2 by the oral administration of recombinant Lactobacillus plantarumNC8 expressing hemagglutinin in BALB/c mice. Virology 464:166–176

    Article  PubMed  CAS  Google Scholar 

  • Shirdast H, Ebrahimzadeh F, Taromchi AH, Mortazavi Y, Esmaeilzadeh A, Sekhavati MH, Nedaei K, Mirabzadeh E (2020) Recombinant Lactococcus Lactis displaying Omp31 antigen of brucella melitensis can induce an immunogenic response in BALB/c mice. Probiotics Antimicrob Proteins:1–10

    Google Scholar 

  • Singh SK, Roeffen W, Mistarz UH, Chourasia BK, Yang F, Rand KD, Sauerwein RW, Theisen M (2017) Construct design, production, and characterization of Plasmodium falciparum 48/45 R0. 6C subunit protein produced in Lactococcus lactis as candidate vaccine. Microb Cell Factories 16:1–11

    Article  CAS  Google Scholar 

  • Tang ML (2009) Probiotics and prebiotics: immunological and clinical effects in allergic disease. In: Microbial host-interaction: tolerance versus allergy. Karger Publishers, Basel, pp 219–238

    Chapter  Google Scholar 

  • Tarahomjoo S (2012) Development of vaccine delivery vehicles based on lactic acid bacteria. Mol Biotechnol 51:183–199

    Article  CAS  PubMed  Google Scholar 

  • Taverniti V, Guglielmetti S (2011) The immunomodulatory properties of probiotic microorganisms beyond their viability (ghost probiotics: proposal of paraprobiotic concept). Genes Nutr 6:261–274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tjalsma H, Antelmann H, Jongbloed JD, Braun PG, Darmon E, Dorenbos R, Dubois J-YF, Westers H, Zanen G, Quax WJ (2004) Proteomics of protein secretion by Bacillus subtilis: separating the “secrets” of the secretome. Microbiol Mol Biol Rev 68:207–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tong CYW (2019) Tutorial topics in infection for the combined infection training programme. Oxford University Press, USA

    Book  Google Scholar 

  • Van Doan H, Hoseinifar SH, Ringø E, Ángeles Esteban M, Dadar M, Dawood MA, Faggio C (2020) Host-associated probiotics: a key factor in sustainable aquaculture. Rev Fisher Sci Aquac 28:16–42

    Article  Google Scholar 

  • Van Hoang V, Ochi T, Kurata K, Arita Y, Ogasahara Y, Enomoto K (2018) Nisin-induced expression of recombinant T cell epitopes of major Japanese cedar pollen allergens in Lactococcus lactis. Appl Microbiol Biotechnol 102:261–268

    Article  CAS  PubMed  Google Scholar 

  • Varankovich NV, Nickerson MT, Korber DR (2015) Probiotic-based strategies for therapeutic and prophylactic use against multiple gastrointestinal diseases. Front Microbiol 6:685

    Article  PubMed  PubMed Central  Google Scholar 

  • Villatoro-Hernández J, Kuipers OP, Saucedo-Cárdenas O, Montes-de-Oca-Luna R (2012) Heterologous protein expression by Lactococcus lactis. In: Recombinant gene expression. Springer, New York, pp 155–165

    Chapter  Google Scholar 

  • Villena J, Medina M, Raya R, Alvarez S (2008) Oral immunization with recombinant Lactococcus lactis confers protection against respiratory pneumococcal infection. Can J Microbiol 54:845–853

    Article  CAS  PubMed  Google Scholar 

  • Vitetta L, Saltzman ET, Thomsen M, Nikov T, Hall S (2017) Adjuvant probiotics and the intestinal microbiome: enhancing vaccines and immunotherapy outcomes. Vaccine 5:50

    Article  CAS  Google Scholar 

  • Wang Z, Yu Q, Gao J, Yang Q (2012) Mucosal and systemic immune responses induced by recombinant Lactobacillus spp. expressing the hemagglutinin of the avian influenza virus H5N1. Clin Vaccine Immunol 19:174–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Zhao D, Sun B, Yu M, Wang Y, Ru Y, Jiang Y, Qiao X, Cui W, Zhou H (2020) Oral vaccination with the porcine circovirus type 2 (PCV-2) capsid protein expressed by Lactococcus lactis induces a specific immune response against PCV-2 in mice. J Appl Microbiol 128:74–87

    Article  CAS  PubMed  Google Scholar 

  • Wells JM, Mercenier A (2008) Mucosal delivery of therapeutic and prophylactic molecules using lactic acid bacteria. Nat Rev Microbiol 6:349–362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wells J, Robinson K, Chamberlain L, Schofield K, Le Page R (1996) Lactic acid bacteria as vaccine delivery vehicles. Antonie Van Leeuwenhoek 70:317–330

    Article  CAS  PubMed  Google Scholar 

  • Westerholm-Ormio M, Vaarala O, Tiittanen M, Savilahti E (2010) Infiltration of Foxp3-and Toll-like receptor-4–positive cells in the intestines of children with food allergy. J Pediatr Gastroenterol Nutr 50:367–376

    Article  CAS  PubMed  Google Scholar 

  • Xin K-Q, Hoshino Y, Toda Y, Igimi S, Kojima Y, Jounai N, Ohba K, Kushiro A, Kiwaki M, Hamajima K (2003) Immunogenicity and protective efficacy of orally administered recombinant Lactococcus lactis expressing surface-bound HIV Env. Blood 102:223–228

    Article  CAS  PubMed  Google Scholar 

  • Yeng HW, Shamsudin MN, Rahim RA (2009) Construction of an expression vector for Lactococcus lactis based on an indigenous cryptic plasmid. Afr J Biotechnol 8

    Google Scholar 

  • Yoon S-W, Lee T-Y, Kim S-J, Lee I-H, Sung M-H, Park J-S, Poo H (2012) Oral administration of HPV-16 L2 displayed on Lactobacillus casei induces systematic and mucosal cross-neutralizing effects in Balb/c mice. Vaccine 30:3286–3294

    Article  CAS  PubMed  Google Scholar 

  • Youngster I, Kozer E, Lazarovitch Z, Broide E, Goldman M (2011) Probiotics and the immunological response to infant vaccinations: a prospective, placebo controlled pilot study. Arch Dis Child 96:345–349

    Article  PubMed  Google Scholar 

  • Zhang Z-H, Jiang P-H, Li N-J, Shi M, Huang W (2005) Oral vaccination of mice against rodent malaria with recombinant Lactococcus lactis expressing MSP-119. World J Gastroenterol 11:6975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang R, Peng X, Duan G, Shi Q, Chen S, Wang C, Fan Q, Xi Y (2016) An engineered Lactococcus lactis strain exerts significant immune responses through efficient expression and delivery of Helicobacter pylori Lpp20 antigen. Biotechnol Lett 38:2169–2175

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dadar, M., Shahali, Y., Mojgani, N. (2021). Probiotic Bacteria as a Functional Delivery Vehicle for the Development of Live Oral Vaccines. In: Mojgani, N., Dadar, M. (eds) Probiotic Bacteria and Postbiotic Metabolites: Role in Animal and Human Health. Microorganisms for Sustainability, vol 2. Springer, Singapore. https://doi.org/10.1007/978-981-16-0223-8_13

Download citation

Publish with us

Policies and ethics