Skip to main content

Advertisement

Log in

Nisin-induced expression of recombinant T cell epitopes of major Japanese cedar pollen allergens in Lactococcus lactis

  • Applied Genetics and Molecular Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Japanese cedar pollinosis is a seasonal allergic disease caused by two major pollen allergens: Cry j 1 and Cry j 2 antigens. To develop an oral vaccine to treat pollinosis, we constructed recombinant Lactococcus lactis harboring the gene encoding fused T cell epitopes from the Cry j 1 and Cry j 2 antigens. The recombinant T cell epitope peptide was designed to contain the fused cholera toxin B subunit as an adjuvant and a FLAG tag at the C-terminus. An expression plasmid was constructed by inserting the T cell epitope peptide gene into the multiple cloning sites of plasmid pNZ8148, an Escherichia coli-L. lactis shuttle vector. The constructed plasmid was transformed into L. lactis NZ9000 for expression induced by nisin, an antibacterial peptide from L. lactis. The expression of the epitope peptide was induced with 10–40 ng/mL nisin, and the expressed T cell epitope peptide was detected by western blot analysis using an anti-FLAG antibody and an antibody against the T cell epitopes. The concentration of the epitope peptide was estimated to be ~ 22 mg/L of culture in the presence of 40 ng/mL nisin, although it varied depending on the nisin concentration, the culture time, and the bacterial concentration when nisin was added. The expression of the recombinant epitope peptide in L. lactis, an organism generally recognized as safe, as demonstrated in this study, may contribute to the development of an oral vaccine for the treatment of pollinosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahmed B, Loos M, Vanrompay D, Cox E (2014) Oral immunization with Lactococcus lactis-expressing EspB induces protective immune responses against Escherichia coli O157:H7 in a murine model of colonization. Vaccine 32:3909–3916

    Article  CAS  PubMed  Google Scholar 

  • Berlec A, Malovrh T, Zadravec P, Steyer A, Ravnikar M, Sabotič J, Poljšak-Prijatelj M, Štrukelj B (2013) Expression of a hepatitis A virus antigen in Lactococcus lactis and Escherichia coli and evaluation of its immunogenicity. Appl Microbiol Biotechnol 97:4333–4342

    Article  CAS  PubMed  Google Scholar 

  • Bermúdez-Humarán LG, Aubry C, Motta JP, Deraison C, Steidler L, Vergnolle N, Chatel JM, Langella P (2013) Engineering lactococci and lactobacilli for human health. Curr Opin Microbiol 16:278–283

    Article  PubMed  Google Scholar 

  • Chen S, Zhang R, Duan G, Shi J (2011) Food-grade expression of Helicobacter pylori ureB subunit in Lactococcus lactis and its immunoreactivity. Curr Microbiol 62:1726–1731

    Article  CAS  PubMed  Google Scholar 

  • Hoang VV, Zou Y, Kurata K, Enomoto K (2015) Expression of recombinant T-cell epitopes of major Japanese cedar pollen allergens fused with cholera toxin B subunit in Escherichia coli. Protein Expr Purif 109:62–69

    Article  CAS  PubMed  Google Scholar 

  • Joan SS, Pui-Fong J, Song AA, Chang LY, Yusoff K, AbuBakar S, Rahim RA (2016) Oral vaccine of Lactococcus lactis harbouring pandemic H1N1 2009 haemagglutinin 1 and nisP anchor fusion protein elevates anti-HA1 sIgA levels in mice. Biotechnol Lett 38:793–799

    Article  CAS  PubMed  Google Scholar 

  • Kawabe Y, Hayashida Y, Numata K, Harada S, Hayashida Y, Ito A, Kamihira M (2012) Oral immunotherapy for pollen allergy using T-cell epitope-containing egg white derived from genetically manipulated chickens. PLoS One 7:e48512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Komiyama N, Sone T, Shimizu K, Morikubo K, Kino K (1994) cDNA cloning and expression of Cry j II the second major allergen of Japanese cedar pollen. Biochem Biophys Res Commun 201:1021–1028

    Article  CAS  PubMed  Google Scholar 

  • Medina M, Villena J, Vintiñi E, Hebert EM, Raya R, Alvarez S (2008) Nasal immunization with Lactococcus lactis expressing the pneumococcal protective protein A induces protective immunity in mice. Infect Immun 76:2696–2705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mierau I, Kleerebezem M (2005) 10 years of the nisin-controlled gene expression system (NICE) in Lactococcus lactis. Appl Microbiol Biotechnol 68:705–717

    Article  CAS  PubMed  Google Scholar 

  • Mierau I, Olieman K, Mond J, Smid EJ (2005) Optimization of the Lactococcus lactis nisin-controlled gene expression system NICE for industrial applications. Microb Cell Factories 4:16

    Article  Google Scholar 

  • Namba M, Kurose M, Torigoe K, Hino K, Taniguchi Y, Fukuda S, Usui M, Kurimoto M (1994) Molecular cloning of the second major allergen, Cry j II, from Japanese cedar pollen. FEBS Lett 353:124–128

    Article  CAS  PubMed  Google Scholar 

  • Ohkouchi K, Kawamoto S, Tatsugawa K, Yoshikawa N, Takaoka Y, Miyauchi S, Aki T, Yamashita M, Murooka Y, Ono K (2012) Prophylactic effect of Lactobacillus oral vaccine expressing a Japanese cedar pollen allergen. J Biosci Bioeng 113:536–541

    Article  CAS  PubMed  Google Scholar 

  • Okamoto Y, Okubo K, Yonekura S, Hashiguchi K, Goto M, Otsuka T, Murata T, Nakao Y, Kanazawa C, Nagakura H, Okawa T, Nakano K, Hisamitsu M, Kaneko S, Konno A (2015) Efficacy and safety of sublingual immunotherapy for two seasons in patients with Japanese cedar pollinosis. Int Arch Allergy Immunol 166:177–188

    Article  CAS  PubMed  Google Scholar 

  • Pontes DS, de Azevedo MS, Chatel JM, Langella P, Azevedo V, Miyoshi A (2011) Lactococcus lactis as a live vector: heterologous protein production and DNA delivery systems. Protein Expr Purif 79:165–175

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro LA, Azevedo V, Loir YL, Olivera SC, Dieye Y, Piard JC, Gruss A, Langella P (2002) Production and targeting of the Brucella abortus antigen L7/L12 in Lactococcus lactis: a first step towards food-grade live vaccines against brucellosis. Appl Environ Microbiol 68:910–916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saito Y (2014) Japanese cedar pollinosis: discovery, nomenclature, and epidemiological trends. Proc Jpn Acad Ser B Phys Biol Sci 90:203–210

    Article  PubMed  PubMed Central  Google Scholar 

  • Sakaguchi M, Inouye S, Taniai M, Ando S, Usui M, Matuhasi T (1990) Identification of the second major allergen of Japanese cedar pollen. Allergy 45:309–312

    Article  CAS  PubMed  Google Scholar 

  • Sakashita M, Yamada T, Imoto Y, Hirota T, Tamari M, Ito Y, Kubo S, Osawa Y, Takahashi N, Fujieda S (2015) Long-term sublingual immunotherapy for Japanese cedar pollinosis and the levels of IL-17A and complement components 3a and 5a. Cytokine 75:181–185

    Article  CAS  PubMed  Google Scholar 

  • Sone T, Komiyama N, Shimizu K, Kusakabe T, Morikubo K, Kino K (1994) Cloning and sequencing of cDNA coding for Cry j I, a major allergen of Japanese cedar pollen. Biochem Biophys Res Commun 199:619–625

    Article  CAS  PubMed  Google Scholar 

  • Sone T, Morikubo K, Miyahara M, Komiyama N, Shimizu K, Tsunoo H, Kino K (1998) T cell epitopes in Japanese cedar (Cryptomeria japonica) pollen allergens: choice of major T cell epitopes in Cry j 1 and Cry j 2 toward design of the peptide-based immunotherapeutics for the management of Japanese cedar pollinosis. J Immunol 161:448–457

    CAS  PubMed  Google Scholar 

  • Takagi H, Takaiwa F (2016) Production of rice seed-based allergy vaccines. Methods Mol Biol 1403:713–721

    Article  PubMed  Google Scholar 

  • Takaiwa F, Yang L (2014) Development of a rice-based peptide vaccine for Japanese cedar and cypress pollen allergies. Transgenic Res 23:573–584

    Article  CAS  PubMed  Google Scholar 

  • Tarahomjoo S (2012) Development of vaccine delivery vehicles based on lactic acid bacteria. Mol Biotechnol 51:183–199

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Gao Z, Zhang Y, Pan L (2016) Lactic acid bacteria as mucosal delivery vehicles: a realistic therapeutic option. Appl Microbiol Biotechnol 100:5691–5701

    Article  CAS  PubMed  Google Scholar 

  • Wells J (2011) Mucosal vaccination and therapy with genetically modified lactic acid bacteria. Annu Rev Food Sci Technol 2:423–425

    Article  CAS  PubMed  Google Scholar 

  • Yasueda H, Yui Y, Shimizu T, Shida T (1983) Isolation and partial characterization of the major allergen from Japanese cedar (Cryptomeria japonica) pollen. J Allergy Clin Immunol 71:77–86

    Article  CAS  PubMed  Google Scholar 

  • Zhang XJ, Duan G, Zhang R, Fan Q (2009) Optimized expression of Helicobacter pylori ureB gene in the Lactococcus lactis nisin-controlled gene expression (NICE) system and experimental study of its immunoreactivity. Curr Microbiol 58:308–314

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Zhong J, Huan L (2011) Expression of hepatitis B virus surface antigen determinants in Lactococcus lactis for oral vaccination. Microbiol Res 166:111–120

    Article  CAS  PubMed  Google Scholar 

  • Zhang XJ, Feng SY, Li ZT, Feng YM (2015) Expression of Helicobacter pylori hspA gene in Lactococcus lactis NICE system and experimental study on its immunoreactivity. Gastroenterol Res Pract 2015:750932

  • Zhang R, Duan G, Shi Q, Chen S, Fan Q, Sun N, Xi Y (2016) Construction of a recombinant Lactococcus lactis strain expressing a fusion protein of Omp22 and HpaA from Helicobacter pylori for oral vaccine development. Biotechnol Lett 38:1911–1916

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Shuichi Yada, Dr. Yanshuang Zou, Dr. Meimei Han, Ms. Kyoko Isogai, and Ms. Yoshie Yasuoka for their excellent assistance and useful discussions on this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keiichi Enomoto.

Ethics declarations

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Hoang, V., Ochi, T., Kurata, K. et al. Nisin-induced expression of recombinant T cell epitopes of major Japanese cedar pollen allergens in Lactococcus lactis . Appl Microbiol Biotechnol 102, 261–268 (2018). https://doi.org/10.1007/s00253-017-8579-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-017-8579-8

Keywords

Navigation