Skip to main content

Advertisement

Log in

Lactic acid bacteria as mucosal delivery vehicles: a realistic therapeutic option

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Recombinant lactic acid bacteria (LAB), in particular lactococci and lactobacilli, have gained increasing interest as mucosal delivery vehicles in recent years. With the development of mucosal vaccines, studies on LAB expression systems have been mainly focused on the generation of genetic tools for antigen expression in different locations. Recombinant LAB show advantages in a wide range of aspects over other mucosal delivery systems and represent an attractive candidate for the delivery of therapeutic and prophylactic molecules in different applications. Here, we review the recent data on the use of recombinant LAB as mucosal delivery vectors and the associated health benefits, including the prevention and treatment of inflammatory bowel diseases (IBDs), autoimmune disorders, and infections by pathogenic microorganisms from mucosal surfaces. In addition, we discuss the use of LAB as vehicles to deliver DNA directly to eukaryotic cells. Researches from the last 5 years demonstrate that LAB as vectors for mucosal delivery of therapeutic molecules seem to be a realistic therapeutic option both in human and animal diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ahmed B, Loos M, Vanrompay D, Cox E (2014) Oral immunization with Lactococcus lactis-expressing EspB induces protective immune responses against Escherichia coli O157:H7 in a murine model of colonization. Vaccine 32(31):3909–3916. doi:10.1016/j.vaccine.2014.05.054

    Article  CAS  PubMed  Google Scholar 

  • Almada G, Haro C, Vintini E, Medina M (2015) Safety of a nasal vaccine against Streptococcus pneumoniae using heat-killed Lactobacillus casei as adjuvant. Immunobiology 220(1):109–116. doi:10.1016/j.imbio.2014.08.013

    Article  CAS  PubMed  Google Scholar 

  • Alvarez B, Krogh-Andersen K, Tellgren-Roth C, Martinez N, Gunaydin G, Lin Y, Martin MC, Alvarez MA, Hammarstrom L, Marcotte H (2015) An exopolysaccharide-deficient mutant of Lactobacillus rhamnosus GG efficiently displays a protective llama antibody fragment against rotavirus on its surface. Appl Environ Microbiol 81(17):5784–5793. doi:10.1128/AEM.00945-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alvarez-Sieiro P, Martin MC, Redruello B, Del Rio B, Ladero V, Palanski BA, Khosla C, Fernandez M, Alvarez MA (2014) Generation of food-grade recombinant Lactobacillus casei delivering Myxococcus xanthus prolyl endopeptidase. Appl Microbiol Biotechnol 98(15):6689–6700. doi:10.1007/s00253-014-5730-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andersen KK, Marcotte H, Alvarez B, Boyaka PN, Hammarstrom L (2011) In situ gastrointestinal protection against anthrax edema toxin by single-chain antibody fragment producing lactobacilli. BMC Biotechnol 11:126. doi:10.1186/1472-6750-11-126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asensi GF, de Sales NF, Dutra FF, Feijo DF, Bozza MT, Ulrich RG, Miyoshi A, de Morais K, Azevedo VA, Silva JT, Le Loir Y, Paschoalin VM (2013) Oral immunization with Lactococcus lactis secreting attenuated recombinant staphylococcal enterotoxin B induces a protective immune response in a murine model. Microb Cell Factories 12:32. doi:10.1186/1475-2859-12-32

    Article  CAS  Google Scholar 

  • Bautista-Garfias CR, Lozano AR, Martinez CR, Martinez JA, Millan JV, Garcia GR, Castaneda-Arriola R, Aguilar-Figueroa BR (2015) Co-immunization of cattle with a vaccine against babesiosis and Lactobacillus casei increases specific IgG1 levels to Babesia bovis and B. bigemina. Parasitol Int 64(5):319–323. doi:10.1016/j.parint.2015.04.005

    Article  CAS  PubMed  Google Scholar 

  • Bermudez-Humaran LG, Aubry C, Motta JP, Deraison C, Steidler L, Vergnolle N, Chatel JM, Langella P (2013) Engineering lactococci and lactobacilli for human health. Curr Opin Microbiol 16(3):278–283. doi:10.1016/j.mib.2013.06.002

    Article  CAS  PubMed  Google Scholar 

  • Bermudez-Humaran LG, Motta JP, Aubry C, Kharrat P, Rous-Martin L, Sallenave JM, Deraison C, Vergnolle N, Langella P (2015) Serine protease inhibitors protect better than IL-10 and TGF-beta anti-inflammatory cytokines against mouse colitis when delivered by recombinant lactococci. Microbial Cell Factories 14:26. doi:10.1186/s12934-015-0198-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Braat H, Rottiers P, Hommes DW, Huyghebaert N, Remaut E, Remon JP, van Deventer SJ, Neirynck S, Peppelenbosch MP, Steidler L (2006) A phase I trial with transgenic bacteria expressing interleukin-10 in Crohn’s disease. Clin Gastroenterol Hepatol 4(6):754–759. doi:10.1016/j.cgh.2006.03.028

    Article  CAS  PubMed  Google Scholar 

  • Butler MW, Robertson I, Greene CM, O’Neill SJ, Taggart CC, McElvaney NG (2006) Elafin prevents lipopolysaccharide-induced AP-1 and NF-kappaB activation via an effect on the ubiquitin-proteasome pathway. J Biol Chem 281(46):34730–34735. doi:10.1074/jbc.M604844200

    Article  CAS  PubMed  Google Scholar 

  • Cano-Garrido O, Seras-Franzoso J, Garcia-Fruitos E (2015) Lactic acid bacteria: reviewing the potential of a promising delivery live vector for biomedical purposes. Microb Cell Factories 14:137. doi:10.1186/s12934-015-0313-6

    Article  Google Scholar 

  • Cao HP, Wang HN, Yang X, Zhang AY, Li X, Ding MD, Liu ST, Zhang ZK, Yang F (2013) Lactococcus lactis anchoring avian infectious bronchitis virus multi-epitope peptide EpiC induced specific immune responses in chickens. Biosci Biotechnol Biochem 77(7):1499–1504. doi:10.1271/bbb.130157

    Article  CAS  PubMed  Google Scholar 

  • Chancey CJ, Khanna KV, Seegers JF, Zhang GW, Hildreth J, Langan A, Markham RB (2006) Lactobacilli-expressed single-chain variable fragment (scFv) specific for intercellular adhesion molecule 1 (ICAM-1) blocks cell-associated HIV-1 transmission across a cervical epithelial monolayer. J Immunol 176(9):5627–5636

    Article  CAS  PubMed  Google Scholar 

  • Chen CY, Tsen HY, Lin CL, Lin CK, Chuang LT, Chen CS, Chiang YC (2013) Enhancement of the immune response against Salmonella infection of mice by heat-killed multispecies combinations of lactic acid bacteria. J Med Microbiol 62(Pt 11):1657–1664. doi:10.1099/jmm.0.061010-0

    Article  CAS  PubMed  Google Scholar 

  • Chowdhury MY, Li R, Kim JH, Park ME, Kim TH, Pathinayake P, Weeratunga P, Song MK, Son HY, Hong SP, Sung MH, Lee JS, Kim CJ (2014) Mucosal vaccination with recombinant Lactobacillus casei-displayed CTA1-conjugated consensus matrix protein-2 (sM2) induces broad protection against divergent influenza subtypes in BALB/c mice. PLoS One 9(4):e94051. doi:10.1371/journal.pone.0094051

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Daniel C, Roussel Y, Kleerebezem M, Pot B (2011) Recombinant lactic acid bacteria as mucosal biotherapeutic agents. Trends Biotechnol 29(10):499–508. doi:10.1016/j.tibtech.2011.05.002

    Article  CAS  PubMed  Google Scholar 

  • Daudel D, Weidinger G, Spreng S (2007) Use of attenuated bacteria as delivery vectors for DNA vaccines. Expert Rev Vaccines 6(1):97–110. doi:10.1586/14760584.6.1.97

    Article  CAS  PubMed  Google Scholar 

  • de Azevedo M, Karczewski J, Lefevre F, Azevedo V, Miyoshi A, Wells JM, Langella P, Chatel JM (2012) In vitro and in vivo characterization of DNA delivery using recombinant Lactococcus lactis expressing a mutated form of L. monocytogenes Internalin A. Bmc Microbiol 12:299. doi:10.1186/1471-2180-12-299

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • de Azevedo M, Meijerink M, Taverne N, Pereira VB, LeBlanc JG, Azevedo V, Miyoshi A, Langella P, Wells JM, Chatel JM (2015) Recombinant invasive Lactococcus lactis can transfer DNA vaccines either directly to dendritic cells or across an epithelial cell monolayer. Vaccine 33(38):4807–4812. doi:10.1016/j.vaccine.2015.07.077

    Article  PubMed  CAS  Google Scholar 

  • de LeBlanc AD, del Carmen S, Chatel JM, Miyoshi A, Azevedo V, Langella P, Bermudez-Humaran LG, LeBlanc JG (2015) Current review of genetically modified lactic acid bacteria for the prevention and treatment of colitis using murine models. Gastroenterol Res Pract 2015:146972. doi:10.1155/2015/146972

    PubMed  PubMed Central  Google Scholar 

  • de Vrese M, Schrezenmeir J (2008) Probiotics, prebiotics, and synbiotics. Adv Biochem Eng Biotechnol 111:1–66. doi:10.1007/10_2008_097

    PubMed  Google Scholar 

  • del Carmen S, Rosique RM, Saraiva T, Zurita-Turk M, Miyoshi A, Azevedo V, de LeBlanc AD, Langella P, Bermudez-Humaran LG, LeBlanc JG (2014) Protective effects of Lactococci strains delivering either IL-10 protein or cDNA in a TNBS-induced chronic colitis model. J Clin Gastroenterol 48:S12–S17

    Article  PubMed  CAS  Google Scholar 

  • Dimitrijevic R, Ivanovic N, Mathiesen G, Petrusic V, Zivkovic I, Djordjevic B, Dimitrijevic L (2014) Effects of Lactobacillus rhamnosus LA68 on the immune system of C57BL/6 mice upon oral administration. J Dairy Res 81(2):202–207. doi:10.1017/S0022029914000028

    Article  CAS  PubMed  Google Scholar 

  • Gao S, Li D, Liu Y, Zha E, Zhou T, Yue X (2015) Oral immunization with recombinant hepatitis E virus antigen displayed on the Lactococcus lactis surface enhances ORF2-specific mucosal and systemic immune responses in mice. Int Immunopharmacol 24(1):140–145. doi:10.1016/j.intimp.2014.10.032

    Article  CAS  PubMed  Google Scholar 

  • Gareau MG, Sherman PM, Walker WA (2010) Probiotics and the gut microbiota in intestinal health and disease. Nat Rev Gastroenterol Hepatol 7(9):503–514. doi:10.1038/nrgastro.2010.117

    Article  PubMed  PubMed Central  Google Scholar 

  • Geriletu XR, Jia H, Terkawi MA, Xuan X, Zhang H (2011) Immunogenicity of orally administrated recombinant Lactobacillus casei Zhang expressing cryptosporidium parvum surface adhesion protein P23 in mice. Curr Microbiol 62(5):1573–1580. doi:10.1007/s00284-011-9894-4

    Article  CAS  PubMed  Google Scholar 

  • Grillot-Courvalin C, Goussard S, Huetz F, Ojcius DM, Courvalin P (1998) Functional gene transfer from intracellular bacteria to mammalian cells. Nat Biotechnol 16(9):862–866. doi:10.1038/Nbt0998-862

    Article  CAS  PubMed  Google Scholar 

  • Gunaydin G, Zhang R, Hammarstrom L, Marcotte H (2014) Engineered Lactobacillus rhamnosus GG expressing IgG-binding domains of protein G: capture of hyperimmune bovine colostrum antibodies and protection against diarrhea in a mouse pup rotavirus infection model. Vaccine 32(4):470–477. doi:10.1016/j.vaccine.2013.11.057

    Article  CAS  PubMed  Google Scholar 

  • Guo S, Yan W, McDonough SP, Lin N, Wu KJ, He H, Xiang H, Yang M, Moreira MA, Chang YF (2015) The recombinant Lactococcus lactis oral vaccine induces protection against C. Difficile spore challenge in a mouse model. Vaccine 33(13):1586–1595. doi:10.1016/j.vaccine.2015.02.006

    Article  CAS  PubMed  Google Scholar 

  • Hanniffy SB, Carter AT, Hitchin E, Wells JM (2007) Mucosal delivery of a pneumococcal vaccine using Lactococcus lactis affords protection against respiratory infection. J Infect Dis 195(2):185–193. doi:10.1086/509807

    Article  CAS  PubMed  Google Scholar 

  • Henriksen PA, Hitt M, Xing Z, Wang J, Haslett C, Riemersma RA, Webb DJ, Kotelevtsev YV, Sallenave JM (2004) Adenoviral gene delivery of elafin and secretory leukocyte protease inhibitor attenuates NF-kappa B-dependent inflammatory responses of human endothelial cells and macrophages to atherogenic stimuli. J Immunol 172(7):4535–4544

    Article  CAS  PubMed  Google Scholar 

  • Hiramatsu Y, Yamamoto M, Satho T, Irie K, Kai A, Uyeda S, Fukumitsu Y, Toda A, Miyata T, Miake F, Arakawa T, Kashige N (2014) Recombinant fusion protein of cholera toxin B subunit with YVAD secreted by Lactobacillus casei inhibits lipopolysaccharide-induced caspase-1 activation and subsequent IL-1 beta secretion in Caco-2 cells. Bmc Biotechnol 14:38. doi:10.1186/1472-6750-14-38

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Holmgren J, Czerkinsky C (2005) Mucosal immunity and vaccines. Nat Med 11(4 Suppl):S45–S53. doi:10.1038/nm1213

    Article  CAS  PubMed  Google Scholar 

  • Hongying F, Xianbo W, Fang Y, Yang B, Beiguo L (2014) Oral immunization with recombinant Lactobacillus acidophilus expressing the adhesin Hp0410 of Helicobacter pylori induces mucosal and systemic immune responses. Clin Vaccine Immunol 21(2):126–132. doi:10.1128/CVI.00434-13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hu KF, Lovgren-Bengtsson K, Morein B (2001) Immunostimulating complexes (ISCOMs) for nasal vaccination. Adv Drug Deliv Rev 51(1–3):149–159. doi:10.1016/S0169-409x(01)00165-X

    Article  CAS  PubMed  Google Scholar 

  • Jiang XP, Yu ML, Qiao XY, Liu M, Tang LJ, Jiang YP, Cui W, Li YJ (2014) Up-regulation of MDP and tuftsin gene expression in Th1 and Th17 cells as an adjuvant for an oral Lactobacillus casei vaccine against anti-transmissible gastroenteritis virus. Appl Microbiol Biotechnol 98(19):8301–8312. doi:10.1007/s00253-014-5893-2

    Article  CAS  PubMed  Google Scholar 

  • Jin L, Zhu AH, Wang Y, Lu Y, Liu JJ (2010) HSP65 serves as an immunogenic carrier for a diabetogenic peptide P277 inducing anti-inflammatory immune response in NOD mice by nasal administration. Vaccine 28(19):3312–3317. doi:10.1016/j.vaccine.2010.02.100

    Article  CAS  Google Scholar 

  • Kawana K, Adachi K, Kojima S, Taguchi A, Tomio K, Yamashita A, Nishida H, Nagasaka K, Arimoto T, Yokoyama T, Wada-Hiraike O, Oda K, Sewaki T, Osuga Y, Fujii T (2014) Oral vaccination against HPV E7 for treatment of cervical intraepithelial neoplasia grade 3 (CIN3) elicits E7-specific mucosal immunity in the cervix of CIN3 patients. Vaccine 32(47):6233–6239. doi:10.1016/j.vaccine.2014.09.020

    Article  CAS  PubMed  Google Scholar 

  • Kruger C, Hu Y, Pan Q, Marcotte H, Hultberg A, Delwar D, van Dalen PJ, Pouwels PH, Leer RJ, Kelly CG, van Dollenweerd C, Ma JK, Hammarstrom L (2002) In situ delivery of passive immunity by lactobacilli producing single-chain antibodies. Nat Biotechnol 20(7):702–706. doi:10.1038/nbt0702-702

    Article  PubMed  CAS  Google Scholar 

  • LeBlanc JG, Aubry C, Cortes-Perez NG, de LeBlanc AD, Vergnolle N, Langella P, Azevedo V, Chatel JM, Miyoshi A, Bermudez-Humaran LG (2013) Mucosal targeting of therapeutic molecules using genetically modified lactic acid bacteria: an update. FEMS Microbiol Lett 344(1):1–9. doi:10.1111/1574-6968.12159

    Article  CAS  PubMed  Google Scholar 

  • Lei H, Peng X, Ouyang J, Zhao D, Jiao H, Shu H, Ge X (2015a) Intranasal immunization of recombinant Lactococcus lactis induces protection against H5N1 virus in ferrets. Virus Res 196:56–59. doi:10.1016/j.virusres.2014.11.009

    Article  CAS  PubMed  Google Scholar 

  • Lei H, Peng X, Jiao H, Zhao D, Ouyang J (2015b) Broadly protective immunity against divergent influenza viruses by oral co-administration of Lactococcus lactis expressing nucleoprotein adjuvanted with cholera toxin B subunit in mice. Microb Cell Factories 14:111. doi:10.1186/s12934-015-0287-4

    Article  CAS  Google Scholar 

  • Lei H, Peng X, Ouyang J, Zhao D, Jiao H, Shu H, Ge X (2015c) Protective immunity against influenza H5N1 virus challenge in chickens by oral administration of recombinant Lactococcus lactis expressing neuraminidase. BMC Vet Res 11:85. doi:10.1186/s12917-015-0399-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lei H, Peng X, Shu H, Zhao D (2015d) Intranasal immunization with live recombinant Lactococcus lactis combined with heat-labile toxin B subunit protects chickens from highly pathogenic avian influenza H5N1 virus. J Med Virol 87(1):39–44. doi:10.1002/jmv.23983

    Article  CAS  PubMed  Google Scholar 

  • Lei H, Peng X, Zhao D, Ouyang J, Jiao H, Shu H, Ge X (2015e) Lactococcus lactis displayed neuraminidase confers cross protective immunity against influenza a viruses in mice. Virology 476:189–195. doi:10.1016/j.virol.2014.12.017

    Article  CAS  PubMed  Google Scholar 

  • Li YG, Tian FL, Gao FS, Tang XS, Xia C (2007) Immune responses generated by Lactobacillus as a carrier in DNA immunization against foot-and-mouth disease virus. Vaccine 25(5):902–911. doi:10.1016/j.vaccine.2006.09.034

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Li X, Liu H, Zhuang S, Yang J, Zhang F (2014a) Intranasal immunization with recombinant Lactococci carrying human papillomavirus E7 protein and mouse interleukin-12 DNA induces E7-specific antitumor effects in C57BL/6 mice. Oncol Lett 7(2):576–582. doi:10.3892/ol.2013.1743

    PubMed  Google Scholar 

  • Li X, Xing Y, Guo L, Lv X, Song H, Xi T (2014b) Oral immunization with recombinant Lactococcus lactis delivering a multi-epitope antigen CTB-UE attenuates Helicobacter pylori infection in mice. Pathog Dis 72(1):78–86. doi:10.1111/2049-632X.12173

    Article  CAS  PubMed  Google Scholar 

  • Li HS, Piao DC, Jiang T, Bok JD, Cho CS, Lee YS, Kang SK, Choi YJ (2015a) Recombinant interleukin 6 with M cell-targeting moiety produced in Lactococcus lactis IL1403 as a potent mucosal adjuvant for peroral immunization. Vaccine 33(16):1959–1967. doi:10.1016/j.vaccine.2015.02.061

    Article  CAS  PubMed  Google Scholar 

  • Li R, Chowdhury MY, Kim JH, Kim TH, Pathinayake P, Koo WS, Park ME, Yoon JE, Roh JB, Hong SP, Sung MH, Lee JS, Kim CJ (2015b) Mucosally administered Lactobacillus surface-displayed influenza antigens (sM2 and HA2) with cholera toxin subunit A1 (CTA1) induce broadly protective immune responses against divergent influenza subtypes. Vet Microbiol 179(3–4):250–263. doi:10.1016/j.vetmic.2015.07.020

    Article  CAS  PubMed  Google Scholar 

  • Liu FN, Wen K, Li GH, Yang XD, Kocher J, Bui T, Jones D, Pelzer K, Clark-Deener S, Yuan LJ (2014a) Dual functions of Lactobacillus acidophilus NCFM as protection against rotavirus diarrhea. J Pediatr Gastroenterol Nutr 58(2):169–176. doi:10.1097/Mpg.0000000000000197

    Article  PubMed  Google Scholar 

  • Liu JK, Wei CH, Hou XL, Yu LY (2014b) Passive protection of mice pups through oral or intranasal immunization of dams with recombinant Lactobacillus casei vaccine against ETEC F41. Res Vet Sci 96(2):283–287. doi:10.1016/j.rysc.2014.01.010

    Article  CAS  PubMed  Google Scholar 

  • Luo XR, Herold KC, Miller SD (2010) Immunotherapy of type 1 diabetes: where are we and where should we be going? Immunity 32(4):488–499. doi:10.1016/j.immuni.2010.04.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma D, Gao M, Dalloul RA, Ge J, Ma C, Li J (2013) Protective effects of oral immunization with live Lactococcus lactis expressing Eimeria tenella 3-1E protein. Parasitol Res 112(12):4161–4167. doi:10.1007/s00436-013-3607-9

    Article  PubMed  Google Scholar 

  • Ma YJ, Liu JJ, Hou J, Dong YK, Lu Y, Jin L, Cao R, Li TM, Wu J (2014) Oral administration of recombinant Lactococcus lactis expressing HSP65 and tandemly repeated P277 reduces the incidence of type I diabetes in non-obese diabetic mice. Plos One 9(8):e105701. doi:10.1371/journal.pone.0105701

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Macpherson AJ, Koller Y, Mccoy KD (2015) The bilateral responsiveness between intestinal microbes and IgA. Trends Immunol 36(8):460–470. doi:10.1016/j.it.2015.06.006

    Article  CAS  PubMed  Google Scholar 

  • Marcotte H, Koll-Klais P, Hultberg A, Zhao Y, Gmur R, Mandar R, Mikelsaar M, Hammarstrom L (2006) Expression of single-chain antibody against RgpA protease of Porphyromonas gingivalis in Lactobacillus. J Appl Microbiol 100(2):256–263. doi:10.1111/j.1365-2672.2005.02786.x

    Article  CAS  PubMed  Google Scholar 

  • Martin R, Chain F, Miquel S, Natividad JM, Sokol H, Verdu EF, Langella P, Bermudez-Humaran LG (2014) Effects in the use of a genetically engineered strain of Lactococcus lactis delivering in situ IL-10 as a therapy to treat low-grade colon inflammation. Human Vaccines Immunotherapeutics 10(6):1611–1621. doi:10.4161/hv.28549

    Article  CAS  PubMed  Google Scholar 

  • Minic R, Gavrovic-Jankulovic M, Petrusic V, Zivkovic I, Eijsink VG, Dimitrijevic L, Mathiesen G (2015) Effects of orally applied Fes p1-displaying L. plantarum WCFS1 on Fes p1 induced allergy in mice. J Biotechnol 199:23–28. doi:10.1016/j.jbiotec.2015.01.028

    Article  CAS  PubMed  Google Scholar 

  • Mobergslien A, Vasovic V, Mathiesen G, Fredriksen L, Westby P, Eijsink VG, Peng Q, Sioud M (2015) Recombinant Lactobacillus plantarum induces immune responses to cancer testis antigen NY-ESO-1 and maturation of dendritic cells. Hum Vaccin Immunother:1–10 doi:10.1080/21645515.2015.1056952

  • Motta JP, Bermudez-Humaran LG, Deraison C, Martin L, Rolland C, Rousset P, Boue J, Dietrich G, Chapman K, Kharrat P, Vinel JP, Alric L, Mas E, Sallenave JM, Langella P, Vergnolle N (2012) Food-grade bacteria expressing elafin protect against inflammation and restore colon homeostasis. Sci Transl Med 4(158):158ra144. doi:10.1126/scitranslmed.3004212

    Article  PubMed  CAS  Google Scholar 

  • Nguyen T, Nguyen M, Geiger B, Mathiesen G, Eijsink VGH, Peterbauer CK, Haltrich D, Nguyen TH (2015) Heterologous expression of a recombinant lactobacillal beta-galactosidase in Lactobacillus plantarum: effect of different parameters on the sakacin P-based expression system. Microbial Cell Factories 14:30. doi:10.1186/s12934-015-0214-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Norton PM, Wells JM, Brown HW, Macpherson AM, Le Page RW (1997) Protection against tetanus toxin in mice nasally immunized with recombinant Lactococcus lactis expressing tetanus toxin fragment C. Vaccine 15(6–7):616–619

    Article  CAS  PubMed  Google Scholar 

  • Nouaille S, Ribeiro LA, Miyoshi A, Pontes D, Le Loir Y, Oliveira SC, Langella P, Azevedo V (2003) Heterologous protein production and delivery systems for Lactococcus lactis. Genet Mol Res 2(1):102–111

    PubMed  Google Scholar 

  • Ohkouchi K, Kawamoto S, Tatsugawa K, Yoshikawa N, Takaoka Y, Miyauchi S, Aki T, Yamashita M, Murooka Y, Ono K (2012) Prophylactic effect of Lactobacillus oral vaccine expressing a Japanese cedar pollen allergen. J Biosci Bioeng 113(4):536–541. doi:10.1016/j.jbiosc.2011.11.025

    Article  CAS  PubMed  Google Scholar 

  • Pabreja S, Garg T, Rath G, Goyal AK (2014) Mucosal vaccination against tuberculosis using Ag85A-loaded immunostimulating complexes. Artif Cells Nanomed Biotechnol:1–8 doi:10.3109/21691401.2014.966195

  • Pan L, Zhang Z, Lv J, Zhou P, Hu W, Fang Y, Chen H, Liu X, Shao J, Zhao F, Ding Y, Lin T, Chang H, Zhang J, Zhang Y, Wang Y (2014) Induction of mucosal immune responses and protection of cattle against direct-contact challenge by intranasal delivery with foot-and-mouth disease virus antigen mediated by nanoparticles. Int J Nanomedicine 9:5603–5618. doi:10.2147/IJN.S72318

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pant N, Hultberg A, Zhao Y, Svensson L, Pan-Hammarstrom Q, Johansen K, Pouwels PH, Ruggeri FM, Hermans P, Frenken L, Boren T, Marcotte H, Hammarstrom L (2006) Lactobacilli expressing variable domain of llama heavy-chain antibody fragments (lactobodies) confer protection against rotavirus-induced diarrhea. J Infect Dis 194(11):1580–1588. doi:10.1086/508747

    Article  PubMed  Google Scholar 

  • Petrovsky N (2010) Immunomodulation with microbial vaccines to prevent type 1 diabetes mellitus. Nat Rev Endocrinol 6(3):131–138. doi:10.1038/nrendo.2009.273

    Article  CAS  PubMed  Google Scholar 

  • Pontes DS, de Azevedo MS, Chatel JM, Langella P, Azevedo V, Miyoshi A (2011) Lactococcus lactis as a live vector: heterologous protein production and DNA delivery systems. Protein Expr Purif 79(2):165–175. doi:10.1016/j.pep.2011.06.005

    Article  CAS  PubMed  Google Scholar 

  • Ribelles P, Benbouziane B, Langella P, Suarez JE, Bermudez-Humaran LG, Riazi A (2013) Protection against human papillomavirus type 16-induced tumors in mice using non-genetically modified lactic acid bacteria displaying E7 antigen at its surface. Appl Microbiol Biotechnol 97(3):1231–1239. doi:10.1007/s00253-012-4575-1

    Article  CAS  PubMed  Google Scholar 

  • Robert S, Gysemans C, Takiishi T, Korf H, Spagnuolo I, Sebastiani G, Van Huynegem K, Steidler L, Caluwaerts S, Demetter P, Wasserfall CH, Atkinson MA, Dotta F, Rottiers P, Van Belle TL, Mathieu C (2014) Oral delivery of glutamic acid decarboxylase (GAD)-65 and IL10 by Lactococcus lactis reverses diabetes in recent-onset NOD mice. Diabetes 63(8):2876–2887. doi:10.2337/db13-1236

    Article  CAS  PubMed  Google Scholar 

  • Robert S, Van Huynegem K, Gysemans C, Mathieu C, Rottiers P, Steidler L (2015) Trimming of two major type 1 diabetes driving antigens, GAD65 and IA-2, allows for successful expression in Lactococcus lactis. Benef Microbes 6(4):591–601. doi:10.3920/BM2014.0083

    Article  CAS  PubMed  Google Scholar 

  • Robinson K, Chamberlain LM, Schofield KM, Wells JM, Le Page RW (1997) Oral vaccination of mice against tetanus with recombinant Lactococcus lactis. Nat Biotechnol 15(7):653–657. doi:10.1038/nbt0797-653

    Article  CAS  PubMed  Google Scholar 

  • Roland KL, Tinge SA, Killeen KP, Kochi SK (2005) Recent advances in the development of live, attenuated bacterial vectors. Curr Opin Mol Ther 7(1):62–72

    CAS  PubMed  Google Scholar 

  • Saraiva TD, Morais K, Pereira VB, de Azevedo M, Rocha CS, Prosperi CC, Gomes-Santos AC, Bermudez-Humaran L, Faria AM, Blottiere HM, Langella P, Miyoshi A, de LeBlanc AM, LeBlanc JG, Azevedo V (2015) Milk fermented with a 15-lipoxygenase-1-producing Lactococcus lactis alleviates symptoms of colitis in a murine model. Curr Pharm Biotechnol 16(5):424–429

    Article  CAS  PubMed  Google Scholar 

  • Schotte L, Steidler L, Vandekerckhove J, Remaut E (2000) Secretion of biologically active murine interleukin-10 by Lactococcus lactis. Enzym Microb Technol 27(10):761–765

    Article  CAS  Google Scholar 

  • Shaw DM, Gaerthe B, Leer RJ, Van Der Stap JG, Smittenaar C, Heijne Den Bak-Glashouwer M, Thole JE, Tielen FJ, Pouwels PH, Havenith CE (2000) Engineering the microflora to vaccinate the mucosa: serum immunoglobulin G responses and activated draining cervical lymph nodes following mucosal application of tetanus toxin fragment C-expressing lactobacilli. Immunology 100(4):510–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi SH, Yang WT, Yang GL, Cong YL, Huang HB, Wang Q, Cai RP, Ye LP, Hu JT, Zhou JY, Wang CF, Li Y (2014) Immunoprotection against influenza virus H9N2 by the oral administration of recombinant Lactobacillus plantarumNC8 expressing hemagglutinin in BALB/c mice. Virology 464-465:166–176. doi:10.1016/j.virol.2014.07.011

    Article  CAS  PubMed  Google Scholar 

  • Shibasaki S, Karasaki M, Tafuku S, Aoki W, Sewaki T, Ueda M (2014) Oral immunization against candidiasis using Lactobacillus casei displaying Enolase 1 from Candida albicans. Sci Pharm 82(3):697–708. doi:10.3797/scipharm.1404-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smelt MJ, de Haan BJ, Bron PA, van Swam I, Meijerink M, Wells JM, Faas MM, de Vos P (2012) L. plantarum, L. salivarius, and L. lactis attenuate Th2 responses and increase Treg frequencies in healthy mice in a strain dependent manner. Plos One 7(10):e47244. doi:10.1371/journal.pone.0047244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song JA, Kim HJ, Hong SK, Lee DH, Lee SW, Song CS, Kim KT, Choi IS, Lee JB, Park SY (2014) Oral intake of Lactobacillus rhamnosus M21 enhances the survival rate of mice lethally infected with influenza virus. J Microbiol Immunol Infect. doi:10.1016/j.jmii.2014.07.011

    Google Scholar 

  • Steidler L, Hans W, Schotte L, Neirynck S, Obermeier F, Falk W, Fiers W, Remaut E (2000) Treatment of murine colitis by Lactococcus lactis secreting interleukin-10. Science 289(5483):1352–1355

    Article  CAS  PubMed  Google Scholar 

  • Steidler L, Neirynck S, Huyghebaert N, Snoeck V, Vermeire A, Goddeeris B, Cox E, Remon JP, Remaut E (2003) Biological containment of genetically modified Lactococcus lactis for intestinal delivery of human interleukin 10. Nat Biotechnol 21(7):785–789. doi:10.1038/nbt840

    Article  CAS  PubMed  Google Scholar 

  • Su J, Li J, Zheng H, You Y, Luo X, Li Y, Li X, Ma X, Li J, Dou Y, Cai X (2014) Adjuvant effects of L. acidophilus LW1 on immune responses to the foot-and-mouth disease virus DNA vaccine in mice. PLoS One 9(8):e104446. doi:10.1371/journal.pone.0104446

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Takiishi T, Korf H, Van Belle TL, Robert S, Grieco FA, Caluwaerts S, Galleri L, Spagnuolo I, Steidler L, Van Huynegem K, Demetter P, Wasserfall C, Atkinson MA, Dotta F, Rottiers P, Gysemans C, Mathieu C (2012) Reversal of autoimmune diabetes by restoration of antigen-specific tolerance using genetically modified Lactococcus lactis in mice. J Clin Investig 122(5):1717–1725. doi:10.1172/JCI60530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsai YT, Cheng PC, Pan TM (2012) The immunomodulatory effects of lactic acid bacteria for improving immune functions and benefits. Appl Microbiol Biotechnol 96(4):853–862. doi:10.1007/s00253-012-4407-3

    Article  CAS  PubMed  Google Scholar 

  • Van Belle TL, Coppieters KT, Von Herrath MG (2011) Type 1 diabetes: etiology, immunology, and therapeutic strategies. Physiol Rev 91(1):79–118. doi:10.1152/physrev.00003.2010

    Article  PubMed  CAS  Google Scholar 

  • Vandenbroucke K, Hans W, Van Huysse J, Neirynck S, Demetter P, Remaut E, Rottiers P, Steidler L (2004) Active delivery of trefoil factors by genetically modified Lactococcus lactis prevents and heals acute colitis in mice. Gastroenterology 127(2):502–513

    Article  CAS  PubMed  Google Scholar 

  • Veloso TR, Mancini S, Giddey M, Vouillamoz J, Que YA, Moreillon P, Entenza JM (2015) Vaccination against Staphylococcus aureus experimental endocarditis using recombinant Lactococcus lactis expressing ClfA or FnbpA. Vaccine 33(30):3512–3517. doi:10.1016/j.vaccine.2015.05.060

    Article  CAS  PubMed  Google Scholar 

  • Vintini EO, Medina MS (2011) Host immunity in the protective response to nasal immunization with a pneumococcal antigen associated to live and heat-killed Lactobacillus casei. BMC Immunol 12:46. doi:10.1186/1471-2172-12-46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waki N, Matsumoto M, Fukui Y, Suganuma H (2014) Effects of probiotic Lactobacillus brevis KB290 on incidence of influenza infection among schoolchildren: an open-label pilot study. Lett Appl Microbiol 59(6):565–571. doi:10.1111/lam.12340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walters WA, Xu Z, Knight R (2014) Meta-analyses of human gut microbes associated with obesity and IBD. FEBS Lett 588(22):4223–4233. doi:10.1016/j.febslet.2014.09.039

    Article  CAS  PubMed  Google Scholar 

  • Wang G, Pan L, Zhang YG, Wang YL, Zhang ZW, Lu JL, Zhou P, Fang YZ, Jiang ST (2011) Intranasal delivery of cationic PLGA nano/microparticles-loaded FMDV DNA vaccine encoding IL-6 elicited protective immunity against FMDV challenge. Plos One 6(11):e27605. doi:10.1371/journal.pone.0027605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Yu Q, Gao J, Yang Q (2012) Mucosal and systemic immune responses induced by recombinant Lactobacillus spp. expressing the hemagglutinin of the avian influenza virus H5N1. Clin Vaccine Immunol 19(2):174–179. doi:10.1128/CVI.05618-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Zhang X, Zhou D, Yang R (2013) Live-attenuated Yersinia pestis vaccines. Expert Rev Vaccines 12(6):677–686. doi:10.1586/erv.13.42

    Article  CAS  PubMed  Google Scholar 

  • Wang DY, Xu SY, Lin Y, Fang ZF, Che LQ, Xue B, Wu D (2014a) Recombinant porcine epidermal growth factor-secreting Lactococcus lactis promotes the growth performance of early-weaned piglets. Bmc Vet Res 10:171. doi:10.1186/S12917-014-0171-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang M, Gao Z, Zhang Z, Pan L, Zhang Y (2014b) Roles of M cells in infection and mucosal vaccines. Hum Vaccin Immunother 10(12):3544–3551. doi:10.4161/hv.36174

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang ZH, Cao XH, Du XG, Feng HB, Di W, He S, Zeng XY (2014c) Mucosal and systemic immunity in mice after intranasal immunization with recombinant Lactococcus lactis expressing ORF6 of PRRSV. Cell Immunol 287(2):69–73. doi:10.1016/j.cellimm.2013.12.004

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Pan L, Zhou P, Lv J, Zhang Z, Wang Y, Zhang Y (2015) Protection against foot-and-mouth disease virus in Guinea pigs via oral Administration of Recombinant Lactobacillus plantarum expressing VP1. PLoS One 10(12):e0143750. doi:10.1371/journal.pone.0143750

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wells JM, Mercenier A (2008) Mucosal delivery of therapeutic and prophylactic molecules using lactic acid bacteria. Nat Rev Microbiol 6(5):349–362. doi:10.1038/nrmicro1840

    Article  CAS  PubMed  Google Scholar 

  • Wells JM, Wilson PW, Norton PM, Gasson MJ, Le Page RW (1993) Lactococcus lactis: high-level expression of tetanus toxin fragment C and protection against lethal challenge. Mol Microbiol 8(6):1155–1162

    Article  CAS  PubMed  Google Scholar 

  • Wendorf J, Chesko J, Kazzaz J, Ugozzoli M, Vajdy M, O’Hagan D, Singh M (2008) A comparison of anionic nanoparticles and microparticles as vaccine delivery systems. Human Vaccines 4(1):44–49

    Article  CAS  PubMed  Google Scholar 

  • Xu S, Wang D, Zhang P, Lin Y, Fang Z, Che L, Wu D (2015a) Oral administration of Lactococcus lactis-expressed recombinant porcine epidermal growth factor stimulates the development and promotes the health of small intestines in early-weaned piglets. J Appl Microbiol 119(1):225–235. doi:10.1111/jam.12833

    Article  CAS  PubMed  Google Scholar 

  • Xu YG, Guan XT, Liu ZM, Tian CY, Cui LC (2015b) Immunogenicity in swine of orally administered recombinant Lactobacillus plantarum expressing classical swine fever virus E2 protein in conjunction with thymosin alpha-1 as an adjuvant. Appl Environ Microbiol 81(11):3745–3752. doi:10.1128/Aem.00127-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Kang Z, Zhou J, Chen J, Du G (2015) High-level expression and characterization of recombinant acid urease for enzymatic degradation of urea in rice wine. Appl Microbiol Biotechnol 99(1):301–308. doi:10.1007/s00253-014-5916-z

    Article  CAS  PubMed  Google Scholar 

  • Zelmer A, Krusch S, Koschinski A, Rohde M, Repp H, Chakraborty T, Weiss S (2005) Functional transfer of eukaryotic expression plasmids to mammalian cells by Listeria monocytogenes: a mechanistic approach. J Gene Med 7(8):1097–1112. doi:10.1002/jgm.764

    Article  PubMed  Google Scholar 

  • Zhang HX, Qiu YY, Zhao YH, Liu XT, Liu M, Yu AL (2014) Immunogenicity of oral vaccination with Lactococcus lactis derived vaccine candidate antigen (UreB) of Helicobacter pylon fused with the human interleukin 2 as adjuvant. Mol Cell Probes 28(1):25–30. doi:10.1016/j.mcp.2013.08.003

    Article  PubMed  CAS  Google Scholar 

  • Zhou H, Gao Y, Gao G, Lou Y (2015) Oral Administration of Recombinant Lactococcus lactis expressing the Cellulase Gene increases digestibility of fiber in geese. Curr Microbiol. doi:10.1007/s00284-015-0904-9

    Google Scholar 

Download references

Acknowledgments

This study was financially supported by the Chinese “863” National Programs for High Technology Research and Development (grant no 2011AA10A211), the National Pig Industrial System (CARS-36-06B), and the Special Fund for Agro-scientific Research in the Public Interest (201203039).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yongguang Zhang or Li Pan.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interests.

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Gao, Z., Zhang, Y. et al. Lactic acid bacteria as mucosal delivery vehicles: a realistic therapeutic option. Appl Microbiol Biotechnol 100, 5691–5701 (2016). https://doi.org/10.1007/s00253-016-7557-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7557-x

Keywords

Navigation