Skip to main content

Microbes and Soil Health for Sustainable Crop Production

  • Chapter
  • First Online:
Microbial Metatranscriptomics Belowground

Abstract

In the last few decades increased population and climatic changes are the most severe challenge to our farmers that demands more crop productivity. To meet this challenge, they are using limitless inorganic fertilizers and chemicals in their field to enhance their crop production and stress management that caused a big threat to soil degradation and also puts our fertile soils and lives of humans in danger as these chemicals are very harmful to soil and animal health. Recently, researchers have found plant growth-promoting bacteria (PGPB) as one of the most promising ways to meet the needs of increasing population in an effective manner with increased crop growth and productivity with no harmful impact on soil, plants, and animals. Rhizospheric microbes not only help in increased crop production but it also enhances soil fertility as well as helps the plant in mitigating the various biotic and abiotic stresses. Thereby, exploring the beneficial properties of these microorganisms we may improve crop growth and productivity in a sustainable way.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd-Alla MH, Issa AA, Ohyama T (2014) Impact of harsh environmental conditions on nodule formation and dinitrogen fixation of legumes. Advances in biology and ecology of nitrogen fixation 9. https://doi.org/10.5772/56997

  • Abdul S, Mansoor A, Abdul K, Singh P, Suman K, Alok K, Abdul S, Kumar SA, Darokar MP, Shukla AK, Padmapriya T (2007) Novel strain of Bacillus as a bioinoculant. United States Patent Application 20070092491

    Google Scholar 

  • Adediran GA, Ngwenya BT, Mosselmans JFW, Heal KV, Harvie BA (2015) Mechanisms behind bacteria induced plant growth promotion and Zn accumulation in Brassica juncea. J Hazard Mater 283:490–499

    Article  CAS  PubMed  Google Scholar 

  • Aeron A, Dubey RC, Maheshwari DK, Pandey P, Bajpai VK, Kang SC (2011) Multifarious activity of bioformulated Pseudomonas fluorescens PS1 and biocontrol of Sclerotinia sclerotiorum in Indian rapeseed (Brassica campestris L.). Eur J Plant Pathol 131(1):81–93

    Article  Google Scholar 

  • Ahmad M, Zahir ZA, Asghar HN, Asghar M (2011) Inducing salt tolerance in mung bean through coinoculation with rhizobia and plant-growth-promoting rhizobacteria containing 1-aminocyclopropane-1-carboxylate deaminase. Can J Microbiol 57(7):578–589

    Article  CAS  PubMed  Google Scholar 

  • Akbaba M, Ozaktan H (2018) Biocontrol of angular leaf spot disease and colonization of cucumber (Cucumis sativus L.) by endophytic bacteria. Egypt J Biol Pest Control 28(1):14

    Article  Google Scholar 

  • Amaresan N, Murugesan S, Kumar K, Sankaranarayanan A (eds) (2020) Microbial mitigation of stress response of food legumes. CRC Press, Boca Raton, FL

    Google Scholar 

  • Angus AA, Lee A, Lum MR, Shehayeb M, Hessabi R, Fujishige NA, Yerrapragada S, Kano S, Song N, Yang P, De Los Santos PE (2013) Nodulation and effective nitrogen fixation of Macroptilium atropurpureum (siratro) by Burkholderia tuberum, a nodulating and plant growth promoting beta-proteobacterium, are influenced by environmental factors. Plant Soil 369(1–2):543–562

    Article  CAS  Google Scholar 

  • Antoun H, Prévost D (2005) Ecology of plant growth promoting rhizobacteria. In: PGPR: biocontrol and biofertilization. Springer, Dordrecht, pp 1–38

    Google Scholar 

  • Anusha BG, Gopalakrishnan S, Naik MK, Sharma M (2019) Evaluation of Streptomyces spp. and Bacillus spp. for biocontrol of Fusarium wilt in chickpea (Cicer arietinum L.). Arch Phytopathol Plant Protect 52(5-6):417–442

    Article  CAS  Google Scholar 

  • Armada E, Roldán A, Azcon R (2014) Differential activity of autochthonous bacteria in controlling drought stress in native Lavandula and Salvia plants species under drought conditions in natural arid soil. Microb Ecol 67(2):410–420

    Article  CAS  PubMed  Google Scholar 

  • Arnon DI, Stout PR (1939) The essentiality of certain elements in minute quantity for plants with special reference to copper. Plant Physiol 14(2):371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arora NK, Verma M, Prakash J, Mishra J (2016) Regulation of biopesticides: global concerns and policies. In: Bioformulations: for sustainable agriculture. Springer, New Delhi, pp 283–299

    Google Scholar 

  • Asaf S, Khan AL, Khan MA, Imran QM, Yun BW, Lee IJ (2017) Osmoprotective functions conferred to soybean plants via inoculation with Sphingomonas sp. LK11 and exogenous trehalose. Microbiol Res 205:135–145

    Article  CAS  PubMed  Google Scholar 

  • Babu AG, Kim JD, Oh BT (2013) Enhancement of heavy metal phytoremediation by Alnus firma with endophytic Bacillus thuringiensis GDB-1. J Hazard Mater 250:477–483

    Article  PubMed  CAS  Google Scholar 

  • Babu AG, Shea PJ, Sudhakar D, Jung IB, Oh BT (2015) Potential use of Pseudomonas koreensis AGB-1 in association with Miscanthus sinensis to remediate heavy metal (loid)-contaminated mining site soil. J Environ Manag 151:160–166

    Article  CAS  Google Scholar 

  • Bae YS, Park KS, Lee YG, Choi OH (2007) A simple and rapid method for functional analysis of plant growth-promoting rhizobacteria using the development of cucumber adventitious root system. Plant Pathol J 23(3):223–225

    Article  Google Scholar 

  • Bahme JB, Schroth MN (1987) Spatial-temporal colonization patterns of a rhizobacterium on underground organs of potato. Phytopathology 77(7):1093–1100

    Article  Google Scholar 

  • Baker KF, Cook RJ (1974) Biological control of plant pathogens. W. H. Freeman and Company, San Francisco, CA

    Google Scholar 

  • Bano Q, Ilyas N, Bano A, Zafar N, Akram A, Hassan F (2013) Effect of Azospirillum inoculation on maize (Zea mays L.) under drought stress. Pak J Bot 45(S1):13–20

    CAS  Google Scholar 

  • Barak R, Chet I (1990) Lectin of Sclerotium rolfsii: its purification and possible function in fungal-fungal interaction. J Appl Bacteriol 69(1):101–112

    Article  CAS  Google Scholar 

  • Bashan Y, De-Bashan LE (2005) Plant growth-promoting. In: Encyclopedia of soils in the environment, vol 1. Academic Press, Amsterdam, pp 103–115

    Chapter  Google Scholar 

  • Behn O (2008) Influence of Pseudomonas fluorescens and arbuscular mycorrhiza on the growth, yield, quality and resistance of wheat infected with Gaeumannomyces graminis. J Plant Dis Prot 115(1):4–8

    Article  Google Scholar 

  • Bélanger RR, Avis TJ (2002) Ecological processes and interactions occurring in leaf surface fungi. The American Phytopathological Society, Saint Paul, MN, pp 193–208

    Google Scholar 

  • Berg G, Zachow C, Müller H, Philipps J, Tilcher R (2013) Next-generation bio-products sowing the seeds of success for sustainable agriculture. Agronomy 3(4):648–656

    Article  Google Scholar 

  • Bhattacharjee R, Dey U (2014) Biofertilizer, a way towards organic agriculture: a review. Afr J Microbiol Res 8(24):2332–2343

    Article  Google Scholar 

  • Bhowmik SN, Singh CS (2004) Mass multiplication of AM inoculum: effect of plant growth-promoting rhizobacteria and yeast in rapid culturing of Glomus mosseae. Curr Sci 86:705–709

    Google Scholar 

  • Bilal S, Shahzad R, Khan AL, Kang SM, Imran QM, Al-Harrasi A, Yun BW, Lee IJ (2018) Endophytic microbial consortia of phytohormones-producing fungus Paecilomyces formosus LHL10 and bacteria Sphingomonas sp. LK11 to Glycine max L. regulates physio-hormonal changes to attenuate aluminum and zinc stresses. Front Plant Sci 9:1273

    Article  PubMed  PubMed Central  Google Scholar 

  • Brahmaprakash GP, Sahu PK (2012) Biofertilizers for sustainability. J Indian Inst Sci 92(1):37–62

    CAS  Google Scholar 

  • Bulgarelli D, Schlaeppi K, Spaepen S, Van Themaat EVL, Schulze-Lefert P (2013) Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64:807–838

    Article  CAS  PubMed  Google Scholar 

  • Burris RH, Roberts GP (1993) Biological nitrogen fixation. Annu Rev Nutr 13(1):317–335

    Article  CAS  PubMed  Google Scholar 

  • Chandler D, Grant WP, Greaves J (2010) Biopesticides: pest management and regulation. CABI, Wallingford

    Google Scholar 

  • Chang P, Gerhardt KE, Huang XD, Yu XM, Glick BR, Gerwing PD, Greenberg BM (2014) Plant growth-promoting bacteria facilitate the growth of barley and oats in salt-impacted soil: implications for phytoremediation of saline soils. Int J Phytoremediation 16(11):1133–1147

    Article  CAS  PubMed  Google Scholar 

  • Chattopadhyay I, Biswas K, Bandyopadhyay U, Banerjee RK (2004) Turmeric and curcumin: biological actions and medicinal applications. Curr Sci 87:44–53

    CAS  Google Scholar 

  • Chen L, Luo S, Li X, Wan Y, Chen J, Liu C (2014) Interaction of Cd-hyperaccumulator Solanum nigrum L. and functional endophyte Pseudomonas sp. Lk9 on soil heavy metals uptake. Soil Biol Biochem 68:300–308

    Article  CAS  Google Scholar 

  • Cheng Z, Woody OZ, McConkey BJ, Glick BR (2012) Combined effects of the plant growth-promoting bacterium Pseudomonas putida UW4 and salinity stress on the Brassica napus proteome. Appl Soil Ecol 61:255–263

    Article  Google Scholar 

  • Corrêa BO, Schafer JT, Moura AB (2014) Spectrum of biocontrol bacteria to control leaf, root and vascular diseases of dry bean. Biol Control 72:71–75

    Article  Google Scholar 

  • Dadnia MR, Moaveni P (2011) Response of corn (Zea mays L.) production in response to PGPRs under different rates of phosphorus. Res Crops 12(2):352–355

    Google Scholar 

  • Daranas N, Roselló G, Cabrefiga J, Donati I, Francés J, Badosa E, Spinelli F, Montesinos E, Bonaterra A (2019) Biological control of bacterial plant diseases with Lactobacillus plantarum strains selected for their broad-spectrum activity. Ann Appl Biol 174(1):92–105

    Article  PubMed  Google Scholar 

  • Dashti NH, Ali NY, Cherian VM, Montasser MS (2012) Application of plant growth-promoting rhizobacteria (PGPR) in combination with a mild strain of cucumber mosaic virus (CMV) associated with viral satellite RNAs to enhance growth and protection against a virulent strain of CMV in tomato. Can J Plant Pathol 34(2):177–186

    Article  Google Scholar 

  • De Souza LA, de Andrade SAL, de Souza SCR, Schiavinato MA (2012) Arbuscular mycorrhiza confers Pb tolerance in Calopogonium mucunoides. Acta Physiol Plant 34(2):523–531

    Article  CAS  Google Scholar 

  • De Zelicourt A, Al-Yousif M, Hirt H (2013) Rhizosphere microbes as essential partners for plant stress tolerance. Mol Plant 6(2):242–245

    Article  PubMed  CAS  Google Scholar 

  • Deaker R, Roughley RJ, Kennedy IR (2004) Legume seed inoculation technology—a review. Soil Biol Biochem 36(8):1275–1288

    Article  CAS  Google Scholar 

  • Del Amor FM, Cuadra-Crespo P (2012) Plant growth-promoting bacteria as a tool to improve salinity tolerance in sweet pepper. Funct Plant Biol 39(1):82–90

    Article  PubMed  CAS  Google Scholar 

  • del Rosario Cappellari L, Santoro MV, Nievas F, Giordano W, Banchio E (2013) Increase of secondary metabolite content in marigold by inoculation with plant growth-promoting rhizobacteria. Appl Soil Ecol 70:16–22

    Article  Google Scholar 

  • Doran JW, Sarrantonio M, Janke R (1994) Strategies to promote soil quality and health. In: Soil biota: management in sustainable farming systems. CSIRO, Melbourne, pp 230–237

    Google Scholar 

  • Dudeja SS, Singh NP, Sharma P, Gupta SC, Chandra R, Dhar B, Bansal RK, Brahmaprakash GP, Potdukhe SR, Gundappagol RC, Gaikawad BG (2011) Biofertilizer technology and pulse production. In: Bioaugmentation, biostimulation and biocontrol. Springer, Berlin, Heidelberg, pp 43–63

    Chapter  Google Scholar 

  • Egamberdieva D, Kamilova F, Validov S, Gafurova L, Kucharova Z, Lugtenberg B (2008) High incidence of plant growth-stimulating bacteria associated with the rhizosphere of wheat grown on salinated soil in Uzbekistan. Environ Microbiol 10(1):1–9

    CAS  PubMed  Google Scholar 

  • Ekin Z (2010) Performance of phosphate solubilizing bacteria for improving growth and yield of sunflower (Helianthus annuus L.) in the presence of phosphorus fertilizer. Afr J Biotechnol 9(25):3794–3800

    CAS  Google Scholar 

  • El-Daim IAA, Bejai S, Meijer J (2014) Improved heat stress tolerance of wheat seedlings by bacterial seed treatment. Plant Soil 379(1–2):337–350

    Article  CAS  Google Scholar 

  • Elkan C (1992, May) Reasoning about action in first-order logic. In: Proceedings of the binennial conference—Canadian Society for Computational Studies of Intelligence. Canadian Information Processing Society, Mississauga, pp 221–227

    Google Scholar 

  • Fasciglione G, Casanovas EM, Quillehauquy V, Yommi AK, Goñi MG, Roura SI, Barassi CA (2015) Azospirillum inoculation effects on growth, product quality and storage life of lettuce plants grown under salt stress. Sci Hortic 195:154–162

    Article  CAS  Google Scholar 

  • Fernández LA, Zalba P, Gómez MA, Sagardoy MA (2007) Phosphate-solubilization activity of bacterial strains in soil and their effect on soybean growth under greenhouse conditions. Biol Fertil Soils 43(6):805–809

    Article  CAS  Google Scholar 

  • Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA (2008) Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320(5878):889–892

    Article  CAS  PubMed  Google Scholar 

  • García-Seco D, Bonilla A, Algar E, García-Villaraco A, Mañero JG, Ramos-Solano B (2013) Enhanced blackberry production using Pseudomonas fluorescens as elicitor. Agron Sustain Dev 33(2):385–392

    Article  Google Scholar 

  • Ghorbanpour M, Hatami M, Khavazi K (2013) Role of plant growth promoting rhizobacteria on antioxidant enzyme activities and tropane alkaloid production of Hyoscyamus niger under water deficit stress. Turk J Biol 37(3):350–360

    CAS  Google Scholar 

  • Gupta S, Dikshit AK (2010) Biopesticides: an ecofriendly approach for pest control. J Biopest 3:186

    Google Scholar 

  • Haas D, Défago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3(4):307–319

    Article  CAS  PubMed  Google Scholar 

  • Habtegebriel B, Boydom A (2016) Biocontrol of faba bean black root rot caused by Fusarium solani using seed dressing and soil application of Trichoderma harzianum. J Biol Control 30(3):169–176

    Article  Google Scholar 

  • Hartmann A, Schmid M, Van Tuinen D, Berg G (2009) Plant-driven selection of microbes. Plant Soil 321(1-2):235–257

    Article  CAS  Google Scholar 

  • Hashem A, Abd-Allah EF, Alqarawi AA, Wirth S, Egamberdieva D (2019) Comparing symbiotic performance and physiological responses of two soybean cultivars to arbuscular mycorrhizal fungi under salt stress. Saudi J Biol Sci 26(1):38–48

    Article  CAS  PubMed  Google Scholar 

  • Herridge DF, Peoples MB, Boddey RM (2008) Global inputs of biological nitrogen fixation in agricultural systems. Plant Soil 311(1-2):1–18

    Article  CAS  Google Scholar 

  • Hou MP, Oluranti BO (2013) Evaluation of plant growth promoting potential of four rhizobacterial species for indigenous system. J Cent South Univ 20(1):164–171

    Article  CAS  Google Scholar 

  • Hristozkova M, Geneva M, Stancheva I, Boychinova M, Djonova E (2016) Contribution of arbuscular mycorrhizal fungi in attenuation of heavy metal impact on Calendula officinalis development. Appl Soil Ecol 101:57–63

    Article  Google Scholar 

  • Jarak M, Mrkovački N, Bjelić D, Jošić D, Hajnal-Jafari T, Stamenov D (2012) Effects of plant growth promoting rhizobacteria on maize in greenhouse and field trial. Afr J Microbiol Res 6(27):5683–5690

    CAS  Google Scholar 

  • Jha Y, Subramanian RB (2014) PGPR regulate caspase-like activity, programmed cell death, and antioxidant enzyme activity in paddy under salinity. Physiol Mol Biol Plants 20(2):201–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jha Y, Sablok G, Subbarao N, Sudhakar R, Fazil MT, Subramanian RB, Squartini A, Kumar S (2014) Bacterial-induced expression of RAB18 protein in Oryza sativa salinity stress and insights into molecular interaction with GTP ligand. J Mol Recognit 27(9):521–527

    Article  CAS  PubMed  Google Scholar 

  • Jing YX, Yan JL, He HD, Yang DJ, Xiao L, Zhong T, Yuan M, Cai XD, Li SB (2014) Characterization of bacteria in the rhizosphere soils of Polygonum pubescens and their potential in promoting growth and Cd, Pb, Zn uptake by Brassica napus. Int J Phytoremediation 16(4):321–333

    Article  CAS  PubMed  Google Scholar 

  • Kang SM, Radhakrishnan R, Khan AL, Kim MJ, Park JM, Kim BR, Shin DH, Lee IJ (2014) Gibberellin secreting rhizobacterium, Pseudomonas putida H-2-3 modulates the hormonal and stress physiology of soybean to improve the plant growth under saline and drought conditions. Plant Physiol Biochem 84:115–124

    Article  CAS  PubMed  Google Scholar 

  • Kanthaiah K, Velu RK (2019) Characterization of the bioactive metabolite from a plant growth promoting rhizobacteria Pseudomonas aeruginosa VRKK1 and exploitation of antibacterial behaviour against Xanthomonas campestris a causative agent of bacterial blight disease in cowpea. Arch Phytopathol Plant Prot. https://doi.org/10.1080/03235408.2018.1557883

  • Karakurt H, Kotan R, Dadasoglu F, Aslantas R, Şahin F (2011) Effects of plant growth promoting rhizobacteria on fruit set, pomological and chemical characteristics, color values, and vegetative growth of sour cherry (Prunus cerasus cv. Kütahya). Turk J Biol 35(3):283–291

    CAS  Google Scholar 

  • Kaschuk G, Alberton O, Hungria M (2011) Quantifying effects of different agricultural land uses on soil microbial biomass and activity in Brazilian biomes: inferences to improve soil quality. Plant Soil 338(1–2):467–481

    Article  CAS  Google Scholar 

  • Kasotia A, Varma A, Choudhary DK (2015) Pseudomonas-mediated mitigation of salt stress and growth promotion in Glycine max. Agric Res 4(1):31–41

    Article  CAS  Google Scholar 

  • Kayim M, Yones AM, Endes A (2018) Biocontrol of Alternaria alternata causing leaf spot disease on Faba bean (Vicia faba L.) using some Trichoderma harzianum isolates under in vitro condition. Harran Tarımve Gıda Bilimleri Dergisi 22(2):169–178

    Article  Google Scholar 

  • Khater MMMN (2010) Biological control of Sclerotinia Sclerotiorum - the causal agent of white basal rot disease of beans (Phaseolus vulgaris). Doctoral dissertation, Alexandria University

    Google Scholar 

  • Kim MJ, Radhakrishnan R, Kang SM, You YH, Jeong EJ, Kim JG, Lee IJ (2017) Plant growth promoting effect of Bacillus amyloliquefaciens H-2-5 on crop plants and influence on physiological changes in soybean under soil salinity. Physiol Mol Biol Plants 23(3):571–580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kloepper JW, Hume DJ, Scher FM, Singleton C, Tipping B, Laliberte M, Frauley K, Kutchaw T, Simonson C, Lifshitz R, Zaleska I (1988) Plant growth-promoting rhizobacteria on canola (rapeseed). Plant Dis 72(1):42–46

    Article  Google Scholar 

  • Kuchlan MK, Kuchlan P, Husain SM (2017) Effect of foliar application of growth activator, promoter and antioxidant on seed quality of soybean. Legume Res 40(2):313–318

    Google Scholar 

  • Kumar B, Trivedi P, Pandey A (2007) Pseudomonas corrugata: a suitable bacterial inoculant for maize grown under rainfed conditions of Himalayan region. Soil Biol Biochem 39(12):3093–3100

    Article  CAS  Google Scholar 

  • Kumar A, Meena R, Meena VS, Bisht JK, Pattanayak A (2016) Towards the stress management and environmental sustainability. J Clean Prod 100(137):821–822

    Article  Google Scholar 

  • Kushwaha SK, Kumar S, Chaudhary B (2018) Efficacy of Trichoderma against Sclerotium rolfsii causing collar rot disease of lentil under in vitro conditions. J Appl Nat Sci 10(1):307–312

    Article  CAS  Google Scholar 

  • Lim JH, Kim SD (2013) Induction of drought stress resistance by multi-functional PGPR Bacillus licheniformis K11 in pepper. Plant Pathol J 29(2):201

    Article  PubMed  PubMed Central  Google Scholar 

  • Linu MS, Stephen J, Jisha MS (2009) Phosphate solubilizing Gluconacetobacter sp., Burkholderia sp. and their potential interaction with cowpea (Vigna unguiculata (L.) Walp.). Int J Agric Res 4(2):79–87

    Article  CAS  Google Scholar 

  • Liu N, Xu S, Yao X, Zhang G, Mao W, Hu Q, Feng Z, Gong Y (2016) Studies on the control of ascochyta blight in field peas (Pisum sativum L.) caused by Ascochyta pinodes in Zhejiang Province, China. Front Microbiol 7:481

    PubMed  PubMed Central  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Oliveira RS, Nai F, Rajkumar M, Luo Y, Rocha I, Freitas H (2015) The hyperaccumulator Sedum plumbizincicola harbors metal-resistant endophytic bacteria that improve its phytoextraction capacity in multi-metal contaminated soil. J Environ Manag 156:62–69

    Article  CAS  Google Scholar 

  • Mandal LN, Mandal B (1987) Transformation of zinc fractions in rice soils. Soil Sci 143(3):205–212

    Article  CAS  Google Scholar 

  • Mani D, Kumar C, Patel NK (2015) Integrated micro-biochemical approach for phytoremediation of cadmium and zinc contaminated soils. Ecotoxicol Environ Saf 111:86–95

    Article  CAS  PubMed  Google Scholar 

  • Mani D, Kumar C, Patel NK (2016) Integrated micro-biochemical approach for phytoremediation of cadmium and lead contaminated soils using Gladiolus grandiflorus L cut flower. Ecotoxicol Environ Saf 124:435–446

    Article  CAS  PubMed  Google Scholar 

  • Marrone PG (2009) Barriers to adoption of biological control agents and biological pesticides. In: Integrated pest management. Cambridge University Press, Cambridge, UK, pp 163–178

    Google Scholar 

  • Martins SJ, Rocha GA, de Melo HC, de Castro Georg R, Ulhôa CJ, de Campos Dianese É, Oshiquiri LH, da Cunha MG, da Rocha MR, de Araújo LG, Vaz KS (2018) Plant-associated bacteria mitigate drought stress in soybean. Environ Sci Pollut Res 25(14):13676–13686

    Article  CAS  Google Scholar 

  • Mathew DC, Ho YN, Gicana RG, Mathew GM, Chien MC, Huang CC (2015) A rhizosphere-associated symbiont, Photobacterium spp. strain MELD1, and its targeted synergistic activity for phytoprotection against mercury. PLoS One 10(3):e0121178

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mayo S, Gutierrez S, Malmierca MG, Lorenzana A, Campelo MP, Hermosa R, Casquero PA (2015) Influence of Rhizoctonia solani and Trichoderma spp. in growth of bean (Phaseolus vulgaris L.) and in the induction of plant defense-related genes. Front Plant Sci 6:685

    Article  PubMed  PubMed Central  Google Scholar 

  • Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37(5):634–663

    Article  CAS  PubMed  Google Scholar 

  • Miller RM, Jastrow JD (2000) Mycorrhizal fungi influence soil structure. In: Arbuscular mycorrhizas: physiology and function. Springer, Dordrecht, pp 3–18

    Chapter  Google Scholar 

  • Mishra J, Tewari S, Singh S, Arora NK (2015) Biopesticides: where we stand? In: Plant microbe’s symbiosis: applied facets. Springer, New Delhi, pp 37–75

    Chapter  Google Scholar 

  • Mitchell CW (1973) Soil classification with particular reference to the seventh approximation. J Soil Sci 24(4):411–420

    Article  Google Scholar 

  • Mmbaga GW, Mtei KM, Ndakidemi PA (2014) Extrapolations on the use of rhizobium inoculants supplemented with phosphorus (P) and potassium (K) on growth and nutrition of legumes. Agric Sci 5(12):1207

    Google Scholar 

  • Mondani F, Khani K, Honarmand SJ, Saeidi M (2019) Evaluating effects of plant growth-promoting rhizobacteria on the radiation use efficiency and yield of soybean (Glycine max) under water deficit stress condition. Agric Water Manag 213:707–713

    Article  Google Scholar 

  • Motsara MR, Bhattacharyya P, Srivastava B (1995) Biofertiliser technology, marketing and usage: a sourcebook-cum-glossary. Fertiliser Development and Consultation Organization, New Delhi

    Google Scholar 

  • Nautiyal CS, Srivastava S, Chauhan PS, Seem K, Mishra A, Sopory SK (2013) Plant growth-promoting bacteria Bacillus amyloliquefaciens NBRISN13 modulates gene expression profile of leaf and rhizosphere community in rice during salt stress. Plant Physiol Biochem 66:1–9

    Article  CAS  PubMed  Google Scholar 

  • Naveed M, Hussain MB, Zahir ZA, Mitter B, Sessitsch A (2014) Drought stress amelioration in wheat through inoculation with Burkholderia phytofirmans strain PsJN. Plant Growth Regul 73(2):121–131

    Article  CAS  Google Scholar 

  • Nico M, Ribaudo CM, Gori JI, Cantore ML, Curá JA (2012) Uptake of phosphate and promotion of vegetative growth in glucose-exuding rice plants (Oryza sativa) inoculated with plant growth-promoting bacteria. Appl Soil Ecol 61:190–195

    Article  Google Scholar 

  • Nirmalkar VK, Said PP, Kaushik DK (2017) Efficacy of fungicides and bio-agents against Pyricularia grisea in paddy and yield gap analysis thought frontline demonstration. Int J Curr Microbiol App Sci 6(4):2338–2346

    Article  CAS  Google Scholar 

  • Oliveira CA, Sa NM, Gomes EA, Marriel IE, Scotti MR, Guimaraes CT, Schaffert RE, Alves VM (2009) Assessment of the mycorrhizal community in the rhizosphere of maize (Zea mays L.) genotypes contrasting for phosphorus efficiency in the acid savannas of Brazil using denaturing gradient gel electrophoresis (DGGE). Appl Soil Ecol 41(3):249–258

    Article  Google Scholar 

  • Omomowo IO, Fadiji AE, Omomowo OI (2018) Assessment of bio-efficacy of Glomus versiforme and Trichoderma harzianum in inhibiting powdery mildew disease and enhancing the growth of cowpea. Ann Agric Sci 63(1):9–17

    Article  Google Scholar 

  • Park YG, Mun BG, Kang SM, Hussain A, Shahzad R, Seo CW, Kim AY, Lee SU, Oh KY, Lee DY, Lee IJ (2017) Bacillus aryabhattai SRB02 tolerates oxidative and nitrosative stress and promotes the growth of soybean by modulating the production of phytohormones. PLoS One 12(3):e0173203

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Parr JF, Hornick SB, Kaufman DD (1994) Use of microbial inoculants and organic fertilizers in agricultural production. ASPAC Food & Fertilizer Technology Center, Taiwan

    Google Scholar 

  • Patole SP, Shankara K, Pradhan RS, Dhore SB (2017) Isolation and characterization of toxin from Alternaria helianthi inciting blight in sunflower. Int J Curr Microbiol App Sci 6(10):2892–2896

    Article  CAS  Google Scholar 

  • Pedraza RO (2008) Recent advances in nitrogen-fixing acetic acid bacteria. Int J Food Microbiol 125(1):25–35

    Article  CAS  PubMed  Google Scholar 

  • Płociniczak T, Sinkkonen A, Romantschuk M, Piotrowska-Seget Z (2013) Characterization of Enterobacter intermedius MH8b and its use for the enhancement of heavy metals uptake by Sinapis alba L. Appl Soil Ecol 63:1–7

    Article  Google Scholar 

  • Qureshi MA, Ahmad ZA, Akhtar N, Iqbal A, Mujeeb F, Shakir MA (2012) Role of phosphate solubilizing bacteria (PSB) in enhancing P availability and promoting cotton growth. J Anim Plant Sci 22(1):204–210

    CAS  Google Scholar 

  • Rathore US, Singh SK, Kumar S (2018a) Identification of resistant sources for Alternaria Blight of Pigeonpea (Cajanus cajan L. Millsp). Int J Curr Microbiol Appl Sci 7(4):3380–3393

    Article  CAS  Google Scholar 

  • Rathore US, Singh SK, Kumar S, Saloni R (2018b) Application of botanicals for effective management of Alternaria blight of pigeon pea. J Pharmacog Phytochem 2:328–338

    Google Scholar 

  • Richardson AE, Barea JM, McNeill AM, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321(1-2):305–339

    Article  CAS  Google Scholar 

  • Rodriguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17(4–5):319–339

    Article  CAS  PubMed  Google Scholar 

  • Sabaté DC, Brandan CP, Petroselli G, Erra-Balsells R, Audisio MC (2018) Biocontrol of Sclerotinia sclerotiorum (Lib.) de Bary on common bean by native lipopeptide-producer Bacillus strains. Microbiol Res 211:21–30

    Article  PubMed  CAS  Google Scholar 

  • Saeed KS, Ahmed SA, Hassan IA, Ahmed PH (2015) Effect of bio-fertilizer and chemical fertilizer on growth and yield in cucumber (Cucumis sativus) in green house condition. Pak J Biol Sci 18(3):129–134

    Article  CAS  Google Scholar 

  • Saha M, Sarkar S, Sarkar B, Sharma BK, Bhattacharjee S, Tribedi P (2016) Microbial siderophores and their potential applications: a review. Environ Sci Pollut Res 23(5):3984–3999

    Article  CAS  Google Scholar 

  • Salama AB, Hamed ER, Shehata HS (2011) Effect of plant growth promoting rhizobacteria (PGPR) on the healthy and productivity of soy bean plant. Planta Medica 77(12):1299

    Article  Google Scholar 

  • Sarkar A, Islam T, Biswas G, Alam S, Hossain M, Talukder N (2012) Screening for phosphate solubilizing bacteria inhabiting the rhizoplane of rice grown in acidic soil in Bangladesh. Acta microbiologica et immunologica Hungarica 59(2):199–213

    Article  CAS  PubMed  Google Scholar 

  • Sarker A, Talukder NM, Islam MT (2014) Phosphate solubilizing bacteria promote growth and enhance nutrient uptake by wheat. Plant Sci Today 1(2):86–93

    Article  Google Scholar 

  • Sauchelli V (1969) Trace elements in agriculture. Van Nostrand, New York

    Google Scholar 

  • Scher FM, Baker R (1980) Mechanism of biological control in a Fusarium-suppressive soil. Phytopathology 70(5):412–417

    Article  Google Scholar 

  • Scher FM, Dupler M, Baker R (1984) Effect of synthetic iron chelates on population densities of Fusarium oxysporum and the biological control agent Pseudomonas putida in soil. Can J Microbiol 30(10):1271–1275

    Article  CAS  Google Scholar 

  • Schippers B, Bakker AW, Bakker PA (1987) Interactions of deleterious and beneficial rhizosphere microorganisms and the effect of cropping practices. Annu Rev Phytopathol 25(1):339–358

    Article  Google Scholar 

  • Schroth MN, Hancock JG (1982) Disease-suppressive soil and root-colonizing bacteria. Science 216(4553):1376–1381

    Article  CAS  PubMed  Google Scholar 

  • Seneviratne M, Gunaratne S, Bandara T, Weerasundara L, Rajakaruna N, Seneviratne G, Vithanage M (2016) Plant growth promotion by Bradyrhizobium japonicum under heavy metal stress. S Afr J Bot 105:19–24

    Article  CAS  Google Scholar 

  • Shahab S, Ahmed N, Khan NS (2009) Indole acetic acid production and enhanced plant growth promotion by indigenous PSBs. Afr J Agric Res 4(11):1312–1316

    Google Scholar 

  • Shaharoona B, Jamro GM, Zahir ZA, Arshad M, Memon KS (2007) Effectiveness of various Pseudomonas spp. and Burkholderia caryophylli containing ACC-deaminase for improving growth and yield of wheat (Triticum aestivum I.). J Microbiol Biotechnol 17(8):1300

    CAS  PubMed  Google Scholar 

  • Sharma K, Dak G, Agrawal A, Bhatnagar M, Sharma R (2007) Effect of phosphate solubilizing bacteria on the germination of Cicer arietinum seeds and seedling growth. J Herbal Med Toxicol 1(1):61–63

    Google Scholar 

  • Sharma A, Shankhdhar D, Shankhdhar SC (2013a) Enhancing grain iron content of rice by the application of plant growth promoting rhizobacteria. Plant Soil Environ 59(2):89–94

    Article  CAS  Google Scholar 

  • Sharma S, Gaur RK, Choudhary DK (2013b) Solubilization of inorganic phosphate (Pi) and plant growth-promotion (PGP) activities by root-nodule bacteria isolated from cultivated legume, moth bean (Vigna aconitifolia L.) of the great Indian Thar desert. Res J Biotechnol 8(3):4–10

    CAS  Google Scholar 

  • Shen M, Kang YJ, Wang HL, Zhang XS, Zhao QX (2012) Effect of plant growth-promoting rhizobacteria (PGPRs) on plant growth, yield, and quality of tomato (Lycopersicon esculentum Mill.) under simulated seawater irrigation. J Gen Appl Microbiol 58(4):253–262

    Article  CAS  PubMed  Google Scholar 

  • Shiferaw B (2004) Harnessing improved BNF for the poor: assessment of technological, policy and Institutional constraints and research needs. In: Symbiotic nitrogen fixation: challenges and future prospects for application in tropical agroecosystems. Science Publishers, New Hampshire, p 1

    Google Scholar 

  • Shukla N, Awasthi RP, Rawat L, Kumar J (2012a) Biochemical and physiological responses of rice (Oryza sativa L.) as influenced by Trichoderma harzianum under drought stress. Plant Physiol Biochem 54:78–88

    Article  CAS  PubMed  Google Scholar 

  • Shukla PS, Agarwal PK, Jha B (2012b) Improved salinity tolerance of Arachis hypogaea (L.) by the interaction of halotolerant plant-growth-promoting rhizobacteria. J Plant Growth Regul 31(2):195–206

    Article  CAS  Google Scholar 

  • Simarmata R, Ngadiman N, Rohman S, Simanjuntak P (2018) Amelioration of salt tolerance in soybean (Glycine Max. L) by plant-growth promoting endophytic bacteria produce 1-aminocyclopropane-1-carboxylase deaminase. J Trop Gen Bot 22(2):81–93

    Google Scholar 

  • Singh S (2014) A review on possible elicitor molecules of cyanobacteria: their role in improving plant growth and providing tolerance against biotic or abiotic stress. J Appl Microbiol 117(5):1221–1244

    Article  CAS  PubMed  Google Scholar 

  • Singh B, Natesan SKA, Singh BK, Usha K (2005) Improving zinc efficiency of cereals under zinc deficiency. Curr Sci 88:36–44

    CAS  Google Scholar 

  • Singh HR, Deka M, Das S (2015a) Enhanced resistance to blister blight in transgenic tea (Camellia sinensis [L.] O. Kuntze) by overexpression of class I chitinase gene from potato (Solanum tuberosum). Funct Integr Genomics 15(4):461–480

    Article  CAS  PubMed  Google Scholar 

  • Singh RK, Rai N, Singh M, Saha S, Singh SN (2015b) Detection of tomato leaf curl virus resistance and inheritance in tomato (Solanum lycopersicum L.). J Agric Sci 153(1):78–89

    Article  Google Scholar 

  • Sosa-Gómez DR, Moscardi F (1998) Laboratory and field studies on the infection of stink bugs, Nezara viridula, Piezodorus guildinii, and Euschistus heros (Hemiptera: Pentatomidae) with Metarhizium anisopliae and Beauveria bassiana in Brazil. J Invertebr Pathol 71(2):115–120

    Article  Google Scholar 

  • Srivastava S, Verma PC, Chaudhry V, Singh N, Abhilash PC, Kumar KV, Sharma N, Singh N (2013) Influence of inoculation of arsenic-resistant Staphylococcus arlettae on growth and arsenic uptake in Brassica juncea (L.) Czern. Var. R-46. J Hazard Mater 262:1039–1047

    Article  CAS  PubMed  Google Scholar 

  • Staudinger C, Mehmeti-Tershani V, Gil-Quintana E, Gonzalez EM, Hofhansl F, Bachmann G, Wienkoop S (2016) Evidence for a rhizobia-induced drought stress response strategy in Medicago truncatula. J Proteome 136:202–213

    Article  CAS  Google Scholar 

  • Steenhoudt O, Vanderleyden J (2000) Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiol Rev 24(4):487–506

    Article  CAS  PubMed  Google Scholar 

  • Stutz EW, Défago G, Kern H (1986) Naturally occurring fluorescent Pseudomonads involved in suppression. Phytopathology 76:181–185

    Article  Google Scholar 

  • Suarez C, Cardinale M, Ratering S, Steffens D, Jung S, Montoya AMZ, Geissler-Plaum R, Schnell S (2015) Plant growth-promoting effects of Hartmannibacter diazotrophicus on summer barley (Hordeum vulgare L.) under salt stress. Appl Soil Ecol 95:23–30

    Article  Google Scholar 

  • Subedi S, Shrestha SM, Bahadur KG, Thapa RB, Ghimire SK, Neupane S, Nessa B (2015) Botanical, chemical and biological management of Stemphylium botryosum blight disease of lentil in Nepal. Indian Phytopathol 68(4):415–423

    Google Scholar 

  • Surekha CH, Neelapu NRR, Kamala G, Prasad BS, Ganesh PS (2013) Efficacy of Trichoderma viride to induce disease resistance and antioxidant responses in legume Vigna Mungo infested by Fusarium oxysporum and Alternaria alternata. Int J Agric Sci Res 3(2):285–294

    Google Scholar 

  • Takács T, Cseresnyés I, Kovács R, Parádi I, Kelemen B, Szili-Kovács T, Füzy A (2018) Symbiotic effectivity of dual and tripartite associations on soybean (Glycine max L. Merr.) cultivars inoculated with Bradyrhizobium japonicum and AM fungi. Front Plant Sci 9:1631

    Article  PubMed  PubMed Central  Google Scholar 

  • Thakore Y (2006) The biopesticide market for global agricultural use. Ind Biotechnol 2(3):194–208

    Article  Google Scholar 

  • Tilak KVBR, Ranganayaki N, Pal KK, De R, Saxena AK, Nautiyal CS, Mittal S, Tripathi AK, Johri BN (2005) Diversity of plant growth and soil health supporting bacteria. Curr Sci 89:136–150

    CAS  Google Scholar 

  • Timmusk S (2003) Mechanism of action of the plant growth promoting bacterium Paenibacillus polymyxa. Doctoral dissertation, Acta Universitatis Upsaliensis

    Google Scholar 

  • Tiwari S, Lata C, Chauhan PS, Nautiyal CS (2016) Pseudomonas putida attunes morphophysiological, biochemical and molecular responses in Cicer arietinum L. during drought stress and recovery. Plant Physiol Biochem 99:108–117

    Article  CAS  PubMed  Google Scholar 

  • Tiwari N, Ahmed S, Kumar S, Sarker A (2018) Fusarium wilt: a killer disease of lentil. In: Fusarium-plant diseases, pathogen diversity, genetic diversity, resistance and molecular markers. BoD – Books on Demand, Norderstedt

    Google Scholar 

  • Vaishnav A, Kumari S, Jain S, Varma A, Tuteja N, Choudhary DK (2016) PGPR-mediated expression of salt tolerance gene in soybean through volatiles under sodium nitroprusside. J Basic Microbiol 56(11):1274–1288

    Article  CAS  PubMed  Google Scholar 

  • Van Loon LC (1997) Induced resistance in plants and the role of pathogenesis-related proteins. Eur J Plant Pathol 103(9):753–765

    Article  Google Scholar 

  • Van Peer R, Niemann GJ, Schippers B (1991) Induced resistance and phytoalexin accumulation in biological control of Fusarium wilt of carnation by Pseudomonas sp. strain WCS417r. Phytopathology 81(7):728–734

    Article  Google Scholar 

  • Van Wees SC, Van der Ent S, Pieterse CM (2008) Plant immune responses triggered by beneficial microbes. Curr Opin Plant Biol 11(4):443–448

    Article  PubMed  CAS  Google Scholar 

  • Vardharajula S, Zulfikar Ali S, Grover M, Reddy G, Bandi V (2011) Drought-tolerant plant growth promoting Bacillus spp.: effect on growth, osmolytes, and antioxidant status of maize under drought stress. J Plant Interact 6(1):1–14

    Article  CAS  Google Scholar 

  • Verma JP, Yadav J, Tiwari KN, Kumar A (2013) Effect of indigenous Mesorhizobium spp. and plant growth promoting rhizobacteria on yields and nutrients uptake of chickpea (Cicer arietinum L.) under sustainable agriculture. Ecol Eng 51:282–286

    Article  Google Scholar 

  • Vidhyasekaran P, Kamala N, Ramanathan A, Rajappan K, Paranidharan V, Velazhahan R (2001) Induction of systemic resistance by Pseudomonas fluorescens Pf1 against Xanthomonas oryzae pv. Oryzae in rice leaves. Phytoparasitica 29(2):155

    Article  Google Scholar 

  • Vikram A, Hamzehzarghani H (2008) Effect of phosphate solubilizing bacteria on nodulation and growth parameters of green gram (Vigna radiata L. Wilczek). Res J Microbiol 3(2):62–72

    Article  Google Scholar 

  • Walpola BC, Yoon MH (2013) Isolation and characterization of phosphate solubilizing bacteria and their co-inoculation efficiency on tomato plant growth and phosphorous uptake. Afr J Microbiol Res 7(3):266–275

    CAS  Google Scholar 

  • Wang CJ, Yang W, Wang C, Gu C, Niu DD, Liu HX, Wang YP, Guo JH (2012) Induction of drought tolerance in cucumber plants by a consortium of three plant growth-promoting rhizobacterium strains. PLoS One 7(12):e52565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weller DM, Raaijmakers JM, Gardener BBM, Thomashow LS (2002) Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu Rev Phytopathol 40(1):309–348

    Article  CAS  PubMed  Google Scholar 

  • Zhang JX, Xue AG (2010) Biocontrol of sclerotinia stem rot (Sclerotinia sclerotiorum) of soybean using novel Bacillus subtilis strain SB24 under control conditions. Plant Pathol 59(2):382–391

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nehal, N., Rathore, U.S., Sharma, N. (2021). Microbes and Soil Health for Sustainable Crop Production. In: Nath, M., Bhatt, D., Bhargava, P., Choudhary, D.K. (eds) Microbial Metatranscriptomics Belowground. Springer, Singapore. https://doi.org/10.1007/978-981-15-9758-9_28

Download citation

Publish with us

Policies and ethics