Skip to main content

Advertisement

Log in

Enhanced resistance to blister blight in transgenic tea (Camellia sinensis [L.] O. Kuntze) by overexpression of class I chitinase gene from potato (Solanum tuberosum)

  • Original Paper
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

Tea is the second most consumed beverage in the world. A crop loss of up to 43 % has been reported due to blister blight disease of tea caused by a fungus, Exobasidium vexans. Thus, it directly affects the tea industry qualitatively and quantitatively. Solanum tuberosum class I chitinase gene (AF153195) is a plant pathogenesis-related gene. It was introduced into tea genome via Agrobacterium-mediated transformation with hygromycin phosphotransferase (hpt) gene conferring hygromycin resistance as plant selectable marker. A total of 41 hygromycin resistant plantlets were obtained, and PCR analysis established 12 plantlets confirming about the stable integration of transgene in the plant genome. Real-time PCR detected transgene expression in four transgenic plantlets (T28, C57, C9, and T31). Resistance to biotrophic fungal pathogen, E. vexans, was tested by detached leaf infection assay of greenhouse acclimated plantlets. An inhibitory activity against the fungal pathogen was evident from the detached leaves from the transformants compared with the control. Fungal lesion formed on control plantlet whereas the transgenic plantlets showed resistance to inoculated fungal pathogen by the formation of hypersensitivity reaction area. This result suggests that constitutive expression of the potato class I chitinase gene can be exploited to improve resistance to fungal pathogen, E. vexans, in economical perennial plantation crop like tea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abeles FB, Bosshart RP, Forrence LE, Habig WH (1970) Preparation and purification of glucanase and chitinase from bean leaves. Plant Physiol 47:129–134

    Article  Google Scholar 

  • Agnihothrudu V, Chandramouli B (1990) Blister blight of tea and its control. Planters’ Chron 85:205–217

    Google Scholar 

  • Agnihothrudu V, Chandramouli B (1991) Blister blight of tea, its control and future line of research. In: Yamanishi T (ed) Proceedings of the international symposium on tea science. Japan, Shizuoki, pp 655–659

    Google Scholar 

  • Anand A, Zhou T, Trick HN, Gill BS, Bockus WW, Muthukrishnan S (2003) Greenhouse and field testing of transgenic wheat plants stably expressing genes for thaumatin-like protein, chitinase and glucanase against Fusarium graminearum. J Exp Bot 54:1101–1111

    Article  CAS  PubMed  Google Scholar 

  • Ancillo G, Witte B, Schmelzer E, Kombrink E (1999) A distinct member of the basic (class I) chitinase gene family in potato is specifically expressed in epidermal cells. Plant Mol Biol 39(6):1137–1151

    Article  CAS  PubMed  Google Scholar 

  • Bartnicki-Garcia S (1968) Cell wall chemistry, morphogenesis, and taxonomy of fungi. Annu Rev Microbiol 22:87–108

    Article  CAS  PubMed  Google Scholar 

  • Barua DN (1994) Science and practice in tea culture. Tea Res Assoc, Calcutta, 509 pp

    Google Scholar 

  • Bezbaruah HP, Dutta AC (1977) Tea germplasm collection of Tocklai Experimental Station. Two Bud 24(2):22–30

    Google Scholar 

  • Bhattacharyya MK, Stermer BA, Dixon RA (1994) Reduced variation in transgene expression from a binary vector with selectable markers at the right and left T-DNA borders. Plant J 6(6):957–968

    Article  CAS  Google Scholar 

  • Bieri S, Potrykus I, Futterer J (2003) Effects of combined expression of antifungal barley seed proteins in transgenic wheat on powdery mildew infection. Mol Breed 11:37–48

    Article  CAS  Google Scholar 

  • Bliffeld M, Mundy J, Potrykus I, Futterer J (1999) Genetic engineering of wheat for increased resistance to powdery mildew disease. Theor Appl Genet 98:1079–1086

    Article  CAS  Google Scholar 

  • Bowles DJ (1990) Defense related proteins in higher plants. Annu Rev Biochem 59:873–907

    Article  CAS  PubMed  Google Scholar 

  • Bradeen JM, Iorizzo M, Mollov MS, Raasch J, Kramer LC, Millett BP, Phillips SA, Jiang J, Carputo D (2009) Higher copy numbers of the potato RB transgene correspond to enhanced transcript and late blight resistance levels. Mol Plant-Microbe Interact 22(4):437–446

    Article  CAS  PubMed  Google Scholar 

  • Broglie K, Chet I, Holliday M, Cressman R, Biddle P, Knowlton S, Mauvais CJ, Broglie R (1991) Transgenic plants with enhanced resistance to the fungal pathogen Rhizoctonia solani. Science 254:1194–1197

    Article  CAS  PubMed  Google Scholar 

  • Candela M, Vitali B, Matteuzzi D, Brigidi P (2004) Evaluation of the rrn operon copy number in Bifidobacterium using real-time PCR. Lett Appl Microbiol 38:229–232

    Article  CAS  PubMed  Google Scholar 

  • Collinge BD, Kragh KM, Mikkelsen JD, Nielsen KK, Rasmussen U, Vad K (1993) Plant chitinases. Plant J 3:31–40

    Article  CAS  PubMed  Google Scholar 

  • Dana MM, Pintor-Toro JA, Cubero B (2006) Transgenic tobacco plants overexpressing chitinases of fungal origin show enhanced resistance to biotic and abiotic stress agents. Plant Physiol 142:722–730

    Article  PubMed Central  Google Scholar 

  • Datta K, Tu J, Oliva N, Ona I, Velazhahan R, Mew TW, Muthukrishnan S, Datta SK (2001) Enhanced resistance to sheath blight by constitutive expression of infection-related rice chitinase in transgenic elite indica rice cultivars. Plant Sci 160:405–414

    Article  CAS  PubMed  Google Scholar 

  • Debnath S, Paul AK (1994) Susceptibility of tea cultivars to blister blight disease and some of their anatomical and morphological characters. Two Bud 41:48–49

    Google Scholar 

  • Debnath S, Paul AK (2005) Field studies of tea cultivars for their tolerances to Exobasidium vexans causing blister blight disease of tea, Camellia sinensis (L). O Kuntze Inter Jour Trop Agri 23(1–4):253–258

    Google Scholar 

  • Deka A, Deka PC, Mondal TK (2006) Tea. In: Parthasarathy VA, Chattopadhyay PK, Bose TK (eds) Plantation crops, vol xi. Naya Udyog, Kolkata, pp 1–147

    Google Scholar 

  • Deprez RHL, Fijnvandraat AC, Ruijter JM, Moorman AFM (2002) Sensitivity and accuracy of quantitative real-time polymerase chain reaction using SYBR green I depends on cDNA synthesis conditions. Anal Biochem 307:63–69

    Article  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Felcher KJ, Douches DS (2003) Expression of a fungal glucose oxidase gene in three potato cultivars with different susceptibility to late blight (Phytophthora infestans Mont. deBary). J Am Soc HortIc Sci 128(2):238–245

    CAS  Google Scholar 

  • Gao AG, Hakimi SM, Mittanck CA, Wu Y, Woerner BM, Stark DM, Shah DM, Liang J, Rommens CM (2000) Fungal pathogen protection in potato by expression of a plant defensin peptide. Nat Biotechnol 18:1307–1310

    Article  CAS  PubMed  Google Scholar 

  • Gohain B, Borchetia S, Bhuyan LP, Rahman A, Sakata K, Mizutani M, Shimizu B, Gurusubramaniam G, Ravindranath R, Hazarika M, Das S (2012) Understanding Darjeeling tea flavour on a molecular basis. Plant Mol Biol 78:577–597

    Article  CAS  PubMed  Google Scholar 

  • Goth RW, Keane J (1997) A detached leaf method to evaluate late blight resistance in potato and tomato. Am J Potato Res 74:347–353

    Article  Google Scholar 

  • Grison R, Grezes-Besset B, Schneider M, Lucante N, Olsen L, Leguay J, Toppan A (1996) Field tolerance to fungal pathogens of Brassica napus constitutively expressing a chimeric chitinase gene. Nat Biotechnol 114:643–646

    Article  Google Scholar 

  • He Y, Jones HD, Chen S, Chen XM, Wang DW, Li KX, Wang DS, Xia LQ (2010) Agrobacterium-mediated transformation of durum wheat (Triticum turgidum L. var. durum cv Stewart) with improved efficiency. J Exp Bot 61(6):1567–1581

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hoshikawa K, Ishihara G, Takahashi H, Nakamura I (2012) Enhanced resistance to gray mold (Botrytis cinerea) in transgenic potato plants expressing thionin genes isolated from Brassicaceae species. Plant Biotechnol 29:87–93

    Article  CAS  Google Scholar 

  • Jeyaramraja PR, Meenakshi S (2005) Agrobacterium tumefaciens-mediated transformation of embryogenic tissues of tea (Camellia sinensis (L.) O. Kuntze). Plant Mol Biol Report 23:299a–299i

    Article  Google Scholar 

  • Jia Z, Gou J, Sun Y, Yuan L, Tang Q, Yang X, Pei Y, Luo K (2010) Enhanced resistance to fungal pathogens in transgenic Populus tomentosa Carr. by overexpression of an nsLTP-like antimicrobial protein gene from motherwort (Leonurus japonicus). Tree Physiol 30:1599–1605

    Article  CAS  PubMed  Google Scholar 

  • John KMM, Joshi SD, Mandal AKA, Kumar SR, Kumar RR (2009) Agrobacterium rhizogenes-mediated hairy root production in tea leaves [Camellia sinensis (L.) O. Kuntze]. Indian J Biotecnol 8:430–434

    CAS  Google Scholar 

  • Kapila J, De Rycke R, Van Montagu M, Angenon G (1996) An Agrobacterium-mediated transient gene expression system for intact leaves. Plant Sci 122:101–108

    Article  Google Scholar 

  • Khan MS, Zaidi A, Wani PA (2006) Role of phosphate-solubilizing microorganisms in sustainable agriculture-A review. Agron Sustain Dev 27:29–43

    Article  Google Scholar 

  • Kohli A, Gahakwa D, Vain P, Laurie DA, Christou P (1999) Transgene expression in rice engineered through particle bombardment: molecular factors controlling stable expression and transgene silencing. Planta 208:88–97

    Article  CAS  Google Scholar 

  • Lee C, Kim J, Shin SG, Hwang S (2006) Absolute and relative QPCR quantification of plasmid copy number in Escherichia coli. J Biotechnol 123:273–280

    Article  CAS  PubMed  Google Scholar 

  • Lee C, Lee S, Shin SG, Hwang S (2008) Real-time PCR determination of rRNA gene copy number: absolute and relative quantification assays with Escherichia coli. Appl Microbiol Biotechnol 78:371–376

    Article  CAS  PubMed  Google Scholar 

  • Li JF, Nebenführ A (2010) FAST technique for Agrobacterium-mediated transient gene expression in seedlings of Arabidopsis and other plant species. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, Cold Spring Harb Protoc

    Google Scholar 

  • Lopez SJ, Kumar RR, Pius PK, Muraleedharan N (2004) Agrobacterium tumefaciens–mediated genetic transformation in tea (Camellia sinensis (L.) O. Kuntze). Plant Mol Biol Report 22:201a–201j

    Article  Google Scholar 

  • Meins F Jr, Fritig B, Linthorst HJM, Mikkelsen JD, Neuhaus JM, Ryals J (1994) Plant chitinase genes. Plant Mol Biol Report 12:S22–S28

    Article  CAS  Google Scholar 

  • Mohanpuria P, Kumar V, Ahuja PS, Yadav SK (2010) Agrobacterium-mediated silencing of caffeine synthesis through root transformation in Camellia sinensis L. Mol Biotechnol 48:235–243

    Article  Google Scholar 

  • Mohanpuria P, Kumar V, Ahuja PS, Yadav SK (2011) Producing low-caffeine tea through post-transcriptional silencing of caffeine synthase mRNA. Plant Mol Biol 76:523–534

    Article  CAS  PubMed  Google Scholar 

  • Mondal TK, Bhattacharya A, Ahuja PS, Chand PK (2001a) Transgenic tea (Camellia sinensis (L) O. Kuntze cv. Kangra Jat) plants obtained by Agrobacterium mediated transformation of somatic embryos. Plant Cell Rep 20:712–720

    Article  CAS  Google Scholar 

  • Mondal TK, Bhattacharya A, Ahuja PS, Chand PK (2001b) Transgenic tea (Camellia sinensis (L) O. Kuntze cv. Kangra Jat) plants obtained by Agrobacterium-mediated transformation of somatic embryos. Plant Cell Rep 20:712–720

    Article  CAS  Google Scholar 

  • Muthukrishnan S, Liang GH, Trick HN, Gill BS (2001) Pathogenesis-related proteins and their genes in cereals. Plant Cell, Tissue and Organ Culture, 64:93–114.

  • Napoli CC, Lemieux C, Jorgensen R (1990) Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in traits. Plant Cell 2:279–289

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Neuhaus JM (1999) Plant chitinases (PR-3, PR-4, PR-8, PR-11). In: Datta SK, Muthukrishnan S (eds) Pathogenesis-related proteins in plants. CRC Press, Boca Raton, Fla, pp 77–105

    Google Scholar 

  • Nishizawa Y, Nishio Z, Nakazono M, Soma M, Nakajima E, Ugaki M, Hibi T (1999) Enhanced resistance to blast (Magnaporthe grisea) in transgenic Japonica rice by constitutive expression of rice chitianse. Theor Appl Genet 99:383–390

    Article  CAS  PubMed  Google Scholar 

  • Ohta S, Mita S, Hattori T, Nakamura K (1990) Construction and expression in tobacco of a β-glucuronidase (GUS) reporter gene containing an intron within the coding sequence. Plant Cell Physiol 31:805–813

    CAS  Google Scholar 

  • Oldach KH, Becker D, Lörz H (2001) Heterologous expression of genes mediating enhanced fungal resistance in transgenic wheat. Molecular Plant–Microbe. Interactions 14:832–838

    CAS  Google Scholar 

  • Ordish G (1952) Untaken harvest. Constable & Co. Ltd., London, p 171

    Google Scholar 

  • Osborn RW, De Samblanx GW, Thevissen K, Goderis I, Torrekens S, Van Leuven F, Attenborough S, Rees SB, Broekaert WF (1995) Isolation and characterization of plant defensins from seeds of Asteraceae, Fabaceae, Hippocastanaceae and Saxifragaceae. FEBS Lett 368:257–262

    Article  CAS  PubMed  Google Scholar 

  • Portieles R, Ayra C, Gonzales E, Gallo A, Rodriguez R, Chacon O, Lopez Y, Rodriguez M, Castillo J, Pujol M, Enriques G, Borroto C, Trujiullo L, Thomma BP, Borras-Hidalgo O (2010) NmDef02, a novel antimicrobial gene isolated from Nicotiana megalosiphon confers high-level pathogen resistance under greenhouse and field conditions. Plant Biotechnol J 8:678–690

    Article  CAS  PubMed  Google Scholar 

  • Premkumar R (1996) Forecasting blister blight disease of tea. Ann Rep UPASI Sci Dept 70:47–48

    Google Scholar 

  • Pushnova EA, Geier M, Zhu YS (2000) An easy and accurate agarose gel assay for quantitation of bacterial plasmid copy numbers. Anal Biochem 284:70–76

    Article  CAS  PubMed  Google Scholar 

  • Rahman M, Rao AQ, Batool F, Azam S, Shahid AA, Husnain T (2012) Transgene copy number and phenotypic variations in transgenic basmati rice. J Anim Plant Sci 22(4):1004–1013

    Google Scholar 

  • Rajalakshmi N, Ramarethinam S (2000) The role of Exobasidium vexans Massee in flavonoid synthesis by Camellia assamica Shneider. J Plant Crops 28:19–29

    Google Scholar 

  • Rasmussen R (2001) Quantification on the LightCycler. In: Meuer S, Wittwer C, Nakagawara K (eds) Rapid cycle real-time PCR: methods and applications. Springer, Berlin

    Google Scholar 

  • Richmond MH, Sykes RB (1973) The ß-lactamases of gram-negative bacteria and their possible physiological role. Adv Microb Physiol 9:31–88

    Article  CAS  PubMed  Google Scholar 

  • Ririe KM, Rasmussen RP, Wittwer CT (1997) Product differentiation by analysis of DNA melting curves during the polymerase chain reaction. Anal Biochem 245:154–160

    Article  CAS  PubMed  Google Scholar 

  • Roberts WK, Selitrennikoff CP (1988) Plant and bacterial chitinases differ in antifungal activity. J Gen Microbiol 134:169–176

    CAS  Google Scholar 

  • Roberts CS, Rajagopal S, Smith LA, Nguyen TA, Yang W, Nugroho S, Ravi KS, Cao M-L, Vijhayachandra K, Patell V, Harcourt RL, Dransfield L, Desamero N, Slamet I, Keese P, Kilian A, Jefferson RA (1998) A comprehensive set of modular vectors for advanced manipulations and efficient transformation of plants by both Agrobacterium and direct DNA uptake methods. In: Rockefeller Foundation Meet Int Program Rice Biotechnol. Mallaca, Malaysia. 15–19

  • Rohini VK, Rao S (2001) Transformation of peanut (Arachi hypogaea L.) with tobacco chitinase gene: variable response of transformants to leaf spot disease. Plant Sci 160:889–898

    Article  CAS  PubMed  Google Scholar 

  • Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386

    CAS  PubMed  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular Cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Sandal I, Saini U, Lacroix B (2007) Agrobacterium-mediated genetic transformation of tea leaf explants: effects of counter-acting bactericidity of leaf polyphenols without loss of bacterial virulence. Plant Cell Rep 26:169–176

    Article  CAS  PubMed  Google Scholar 

  • Saravanakumar D, Vijayakumar C, Kumar N, Samiyappan R (2007) PGPR-induced defense responses in the tea plant against blister blight disease. Crop Prot 26:556–565

    Article  Google Scholar 

  • Sela-Buurlage MB, Ponstein AS, Bres-Vloemans SA, Melchers LS, van den Elzen PJM, Cornelissen BJC (1993) Only specific tobacco (Nicotiana tabacum) chitinases and β-1,3-glucanases exhibit antifungal activity. Plant Physiol 101:857–863

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shin S, Mackintosh CA, Lewis J, Heinen SJ, Radmer L, Dill-Macky R, Baldridge GD, Zeyen RJ, Muehlbauer GJ (2008) Transgenic wheat expressing a barley class II chitinase gene has enhanced resistance against Fusarium graminearum. J Exp Bot 59(9):2371–2378

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Simmons C (1994) The physiology and molecular biology of plant 1,3-β-D-glucanases and 1,3; 1,4-β-D-glucanases. Crit Rev Plant Sci 13:325–387

    CAS  Google Scholar 

  • Singh HR, Bhattacharyya N, Agarwala N, Bhagawati P, Deka M, Das S (2014) Exogenous gene transfer in Assam tea [Camellia assamica (Masters)] by Agrobacterium-mediated transformation using somatic embryo. Eur J Exp Biol 4(3):166–175

    CAS  Google Scholar 

  • Sugha SK (1997) Perpetuation and seasonal build up of Exobasidium vexans, causal agent of blister blight of tea in Himachal Pradesh. Trop Sci 37:123–128

    Google Scholar 

  • Takahashi W, Fujimori M, Miura Y, Komatsu T, Nishizawa Y, Hibi T, Takamizo T (2005) Increased resistance to crown rust disease in transgenic Italian ryegrass (Lolium multiflorum Lam.) expressing the rice chitinase gene. Plant Cell Rep 23:811–818

    Article  CAS  PubMed  Google Scholar 

  • Tanaka J, Taniguchi F (2006) Estimation of the genome size of tea (Camellia sinensis), camellia (C. japonica), and their interspecific hybrids by flow cytometry. J Remote Sens Soc Jpn 101:1–7

    Google Scholar 

  • Tohidfar M, Mohammadi M, Ghareyazie B (2005) Agrobacterium-mediated transformation of cotton (Gossypium hirsutum) using a heterologous bean chitinase gene. Plant Cell Tissue Org Cult 83:83–96

    Article  CAS  Google Scholar 

  • Tuzun S, Rao MN, Vogeli U, Schardl CL, Kuc J (1989) Induced systemic resistance to blue mold: early induction and accumulation of b-1, 3-glucanases, chitinases, and other pathogenesis-related proteins (b-proteins) in immunized tobacco. Phytopathology 79:979–983

    Article  CAS  Google Scholar 

  • Van der Krol AR, Mur LA, Beld M, Mol JNM, Stuitje AR (1990) Flavonoid genes in petunia: addition of a limited number of genes copies may lead to a suppression of gene expression. Plant Cell 2:291–299

    Article  PubMed Central  PubMed  Google Scholar 

  • Venkataram CS (1967) Development of spraying technique and usage of fungicide against diseases of tea. Ann Rep UPASI Sci Dept Tea Sect 68:31–56

    Google Scholar 

  • Vilalta A, Whitlow V, Martin T (2002) Real-time PCR determination of Escherichia coli genomic DNA contamination in plasmid preparations. Anal Biochem 301:151–153

    Article  CAS  PubMed  Google Scholar 

  • Whelan JA, Russel NB, Whelan MA (2003) A method for the absolute quantification of cDNA using real time PCR. J Immunol Methods 278:261–269

    Article  CAS  PubMed  Google Scholar 

  • Wilhelm J, Pingoud A, Hahn M (2003) Real-time PCR-based method for the estimation of genome sizes. Nucleic Acids Res 31:e56

    Article  PubMed Central  PubMed  Google Scholar 

  • Wilson KC, Clifford MN (eds) (1992a) Tea: cultivation to consumption. Chapman & Hall, London, pp 331–352

    Book  Google Scholar 

  • Wilson KC, Clifford MN (eds) (1992b) Tea: cultivation to consumption. Chapman & Hall, London, 769 pp

    Google Scholar 

  • Yamamoto T, Iketani H, Leki H, Nishizawa Y, Notsuka K, Hibi T, Hayashi T, Matsuta N (2000) Transgenic grapevine plants expressing a rice chitinase with enhanced resistance to fungal pathogens. Plant Cell Rep 19:639–646

    Article  CAS  Google Scholar 

  • Yang L, Hu C, Li N, Zhang J, Yan J, Deng Z (2011) Transformation of sweet orange [Citrus sinensis (L.) Osbeck] with pthA-nls for acquiring resistance to citrus canker disease. Plant Mol Biol 75:11–23

    Article  CAS  PubMed  Google Scholar 

  • Yin Z, Malepszy S (2003) The transgenes are expressed with different level in plants. Biotechnologia 2(61):236–260

    Google Scholar 

  • Yuan L, Wang L, Han Z, Jiang Y, Zhao L, Liu H, Yang L, Luo K (2012a) Molecular cloning and characterization of PtrLAR3, a gene encoding leucoanthocyanidin reductase from Populus trichocarpa, and its constitutive expression enhances fungal resistance in transgenic plants. J Exp Bot 63(7):2513–2524

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yuan L, Wang L, Han Z, Jiang Y, Zhao L, Liu H, Yang L, Luo K (2012b) Molecular cloning and characterization of PtrLAR3, a gene encoding leucoanthocyanidin reductase from Populus trichocarpa, and its constitutive expression enhances fungal resistance in transgenic plants. J Exp Bot 63(7):513–524

    Article  Google Scholar 

  • Zhu Q, Maher EA, Masoud S, Dixon RA, Lamb CJ (1994) Enhanced protection against fungal attack by constitutive co-expression of chitinase and glucanase genes in transgenic tobacco. Biotechnology 12:807–812

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by generous funding from Department of Biotechnology, Govt. of India. HRS was Senior Research Fellow supported by Council of Scientific and Industrial Research, Govt. of India. The authors are also thankful to reviewers for guiding us to enhance the quality of our text.

Compliance with ethical standards

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Ranjit Singh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary 1

(DOC 32 kb)

Supplementary 2

(DOC 29 kb)

Supplementary 3

(DOC 134 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, H.R., Deka, M. & Das, S. Enhanced resistance to blister blight in transgenic tea (Camellia sinensis [L.] O. Kuntze) by overexpression of class I chitinase gene from potato (Solanum tuberosum). Funct Integr Genomics 15, 461–480 (2015). https://doi.org/10.1007/s10142-015-0436-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-015-0436-1

Keywords

Navigation