Skip to main content

An Overview on Management of Micronutrients Deficiency in Plants Through Biofortification: A Solution of Hidden Hunger

  • Chapter
  • First Online:
Sustainable Solutions for Elemental Deficiency and Excess in Crop Plants

Abstract

Nowadays, malnutrition is one of the major problems, especially for the poor population of developing countries. The major staple crops are found to be deficient in some mineral elements, especially the micronutrients that result in the problem of hidden hunger. There are several promising strategies that are applied in agricultural fields to solve this problem. They enhance the bio-available concentrations of micronutrients in edible crops. One of the recent strategy is biofortification, which can be used to increase the content and/or bioavailability of vital nutrients in food crops through genetic (genetic transformation/plant breeding) and agronomic pathways (application of nutrient fertilizers). These strategies provide more nutritious diets to more people. Along with the traditional agricultural practices, the “omics” technologies can modify the crops by genetic transformation that improves the uptake, transport, and mineral accumulation in hybrid plants. This chapter has detail information about the nutrient constituents and its uptake in the plants along with a critical comparison of the several strategies that have been developed to enhance mineral levels and bioavailability of micronutrients in most of the important food crops. The use of biofortified crops should be promoted by educating the farmers by government agencies, so that they can be included in their diet to solve the problem of malnutrition up to certain extent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abadía J, Monge E, Montañés L, Heras L (1984) Extraction of iron from plant leaves by Fe (II) chelators. J Plant Nutrit 7(1–5):777–784

    Article  Google Scholar 

  • Adams F (1984) Crop response to lime in the southeastern United States. In: Dinauer RC (ed) Soil Acidity and Liming. ASA-CSSA-SSSA, Madison

    Chapter  Google Scholar 

  • Adegoke AA, Awolusi OO, Stenstrom TA (2016) Organic fertilizers: Public health intricacies. In: Larramendy M (ed) Organic Fertilizers-From Basic Concepts to Applied Outcomes. InTech, Rijeka. https://www.intechopen.com/books/organic-fertilizers-from-basic-concepts-toapplied- outcomes/organic-fertilizers-public-health-intricacies

    Google Scholar 

  • Alejandro S, Höller S, Meier B, Peiter E (2020) Manganese in Plants: From Acquisition to Subcellular Allocation. Front Plant Sci 11:300. https://doi.org/10.3389/fpls.2020.00300

    Article  PubMed  PubMed Central  Google Scholar 

  • Almendros P, Obrador A, Gonzalez D, Alvarez JM (2015) Biofortification of\ zinc in onions (Allium cepa L.) and soil Zn status by the application of different organic Zn complexes. Sci Hortic 186:254–265

    Article  CAS  Google Scholar 

  • Andre CM, Ghislain MP, Bertin O, Mouhssin M, Del Rosario H, Hoffmann L et al (2007) Andean potato cultivars (Solanum tuberosum L.) as a source of antioxidant and mineral micronutrients. J Agric Food Chem 55(2):366–378. https://doi.org/10.1021/jf062740i

    Article  PubMed  CAS  Google Scholar 

  • Aung MS, Masuda H, Kobayashi T, Nakanishi H, Yamakawa T, Nishizawa NK (2013) Iron biofortification of Myanmar rice. Front Plant Sci 4:158

    Article  PubMed  PubMed Central  Google Scholar 

  • Bashir K, Nozoye T, Nagasaka S, Rasheed S, Miyauchi N, Seki M et al (2017) Paralogs and mutants show that one DMA synthase functions in iron homeostasis in rice. J Exp Bot 68:1785–1795

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Banakar R, Alvarez-Fernandez A, Abadia J, Capell T, Christou P (2017) The expression of heterologous Fe (III) phytosiderophore transporter HvYS1 in rice increases Fe uptake, translocation and seed loading and excludes heavy metals by selective Fe transport. Plant Biotechnol J 15:423–432

    Article  PubMed  CAS  Google Scholar 

  • Baxter I., Muthukumar B., Park H. C., Buchner P., Lahner B., Danku J., et al. (2008). Variation in molybdenum content across broadly distributed populations of Arabidopsis thaliana is controlled by a mitochondrial molybdenum transporter (MOT1). PLoS Genet 4:e1000004 https://doi.org/10.1371/journal.pgen.1000004

  • Beasley JT, Bonneau JP, Sanchez-Palacios JT, Moreno-Moyano LT, Callahan DL, Tako E et al (2019) Metabolic engineering of bread wheat improves grain iron concentration and bioavailability. Plant Biotechnol J doi. https://doi.org/10.1111/pbi.13074

  • Bell RW, Dell B (2008) Micronutrients for sustainable food, feed, fibre and bioenergy production. International Fertilizer Industry Association, Paris

    Google Scholar 

  • Bhati KK, Alok A, Kumar A, Kaur J, Tiwari S, Pandey AK (2016) Silencing of ABCC13 transporter in wheat reveals its involvement in grain development, phytic acid accumulation and lateral root formation. J Exp Bot 67:4379–4389

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bilski J, Jacob D, Soumaila F, Kraft C, Farnsworth A (2012) Agronomic biofortification of cereal crop plants with Fe, Z, and Se, by the utilization of coal fly ash as plant growth media. Adv Biores 3:130–136

    PubMed  PubMed Central  CAS  Google Scholar 

  • Bogaard A, Fraser F, Heaton THE et al (2013) Crop manuring and intensive land management by Europe’s first farmers. Proc Natl Acad Sci U S A 110(31):12589–12594

    Article  PubMed  PubMed Central  Google Scholar 

  • Boonyaves K, Gruissem W, Bhullar NK (2016) NOD promoter-controlled AtIRT1 expression functions synergistically with NAS and FERRITIN genes to increase iron in rice grains. Plant Mol Biol 90:207–215

    Article  PubMed  CAS  Google Scholar 

  • Bouis H, Saltzman A (2011) Improving nutrition through biofortification: A review of evidence from HarvestPlus. Glob Food Sec 12:49–58

    Article  Google Scholar 

  • Bouis H (2003) Micronutrient fortification of plants through plant breeding: can it improve nutrition in man at low cost? Proc Nutr Soc 62(2):403–411

    Article  PubMed  Google Scholar 

  • Broadley MR, White PJ, Hammond JP, Zelko I, Lux A (2007) Zinc in plants. New Phytol 173:677–702. https://doi.org/10.1111/j.1469-8137.2007.01996.x

    Article  PubMed  CAS  Google Scholar 

  • Buchner P, Takahashi H, Hawkesford MJ (2004) Plant sulphate transporters: co-ordination of uptake, intracellular and long-distance transport. J Exp Bot 55:1765–1773. https://doi.org/10.1093/jxb/erh206

    Article  PubMed  CAS  Google Scholar 

  • Businelli D, D'Amato R, Onofri A, Tedeschini E, Tei F (2015) Se-enrichment of cucumber (Cucumis sativus L.), lettuce (Lactuca sativa L.) and tomato (Solanum lycopersicum L. Karst) through fortification in pre-transplanting. Sci Horticul 197:697–704

    Article  CAS  Google Scholar 

  • Chatrath R, Tiwari VS, Gupta V, Kumar S, Singh SK, Mishra CN, Venkatesh K, Saharan MS, Singh G, Tyagi BS, Tiwari R, Sharma I, Parkash O, Singh GP (2018) WB 2: A high yielding bread wheat variety for irrigated timely sown conditions of North Western Plains Zone of India. Wheat Barley Res 101:40–44

    Google Scholar 

  • Chavez AL, Sanchez T, Jaramillo G, Bedoya JM, Echeverry J, Bolanos EA et al (2005) Variation of quality traits in cassava roots evaluated in landraces and improved clones. Euphytica 143(1–2):125–133. https://doi.org/10.1007/s10681-005-3057-2

    Article  Google Scholar 

  • Colmenero-Flores JM, Martinez G, Gamba G, Vizquez N, Iglesias DJ, Brumós J, Talón M (2007) Identification and functional characterization of cation-chloride cotransporters in plants. Plant J 50:27

    Article  CAS  Google Scholar 

  • Dai JL, Zhang M, Hu QH, Huang YZ, Wang RQ, Zhu YG (2009) Adsorption and desorption of iodine by various Chinese soils: II Iodide and iodate. Geoderma 153:130–135

    Article  CAS  Google Scholar 

  • Darai R, Sarker A, Pandey MP, Dhakal KH, Kumar S, Sah RP (2020) Genetic Variability and Genotype X Environment Interactions Effect on Grain Iron (Fe) and Zinc (Zn) Concentration in Lentils and Their Characterization under Terai Environments of Nepal. Adv Nutr Food Sci 5(1):1–12

    Google Scholar 

  • de Valença A, Bake A, Brouwer I, Giller K (2017) Agronomic biofortification of crops to fight hidden hunger in sub-Saharan Africa. Glob Food Sec 12:8–14

    Article  Google Scholar 

  • Distelfeld A, Cakmak I, Peleg Z, Ozturk L, Yazici AM, Budak H, Saranga Y, Fahima T (2007) Multiple QTL-effects of wheat Gpc-B1 locus on grain protein and micronutrient concentrations. Physiol Plant 129:635–643

    Article  CAS  Google Scholar 

  • DiDonato RJ Jr, Roberts LA, Sanderson T, Eisley RB, Walker EL (2004) Arabidopsis Yellow Stripe-Like2 (YSL2): a metal-regulated gene encoding a plasma membrane transporter of nicotianamine-metal complexes. Plant J 39:403–414

    Article  PubMed  CAS  Google Scholar 

  • Dudev T, Lim C (2004) Oxyanion selectivity in sulfate and molybdate transport proteins: An ab initio/CDM study. J Am Chem Soc 126:10296–10305

    Article  PubMed  CAS  Google Scholar 

  • Farooq M, Wahid A, Siddique KHM (2012) Micronutrient application through seed treatments–A review. J Soil Sci Plant Nutr 2(1):125–142

    Article  Google Scholar 

  • Garg M, Sharma N, Sharma S, Kapoor P, Kumar A, Chunduri V, Arora P (2018) Biofortified Crops Generated by Breeding, Agronomy, and Transgenic Approaches Are Improving Lives of Millions of People around the World. Front Nutr 5:12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gasber A, Klaumann S, Trentmann O, Trampczynska A, Clemens S, Schneider S et al (2011) Identification of an Arabidopsis solute carrier critical for intracellular transport and inter-organ allocation of molybdate. Plant Biol 13(5):710–718. https://doi.org/10.1111/j.1438-8677.2011.00448.x

    Article  PubMed  CAS  Google Scholar 

  • Ghislain M, Muzhingi T, Low JW (2019) Zinc and iron fortifcation in cassava. Nat Biotechnol 37:130–132

    Article  PubMed  CAS  Google Scholar 

  • Ghosh A, Hasim Reja M, Nalia A, Kanthal S, Maji S, Venugopalan VK, Nath R (2019) Micronutrient Biofortification in Pulses: An Agricultural Approach. Curr J Appl Sci Technol 35:1–12

    Google Scholar 

  • Gopalakrishnan S, Vadlamudi S, Samineni S, Sameer Kumar CV (2016) Plant growth-promotion and biofortification of chickpea and pigeonpea through inoculation of biocontrol potential bacteria, isolated from organic soils. Springerplus 5(1):1882

    Article  PubMed  PubMed Central  Google Scholar 

  • Govindaraj M, Rai KN, Cherian B, Pfeiffer WH, Kanatti A, Shivade H (2019) Breeding Biofortified Pearl Millet Varieties and Hybrids to Enhance Millet Markets for Human Nutrition. Agriculture 2019(9):106–117

    Article  CAS  Google Scholar 

  • Graham RD, Senadhira D, Beebe S, Iglesias C, Monasterio I (1999) Breeding for micronutrient density in edible portions of staple food crops. Conventional approaches. Field Crops Res 60:57–80

    Article  Google Scholar 

  • Gregorio GB, Senadhira D, Htut H, Graham RD (2000) Breeding for Trace Mineral Density in Rice. Food Nutri Bull 21(4):382–385

    Article  Google Scholar 

  • Grotz N, Guerinot M (2006) Molecular aspects of Cu, Fe and Zn homeostasis in plants. Biochimica et Biophysica Acta (BBA) – Mole. Cell Res 1763(7):595–608

    CAS  Google Scholar 

  • Haslett B (2001) Zinc Mobility in Wheat: Uptake and Distribution of Zinc Applied to Leaves or Roots. Ann Bot 87(3):379–386. https://doi.org/10.1006/anbo.2000.1349

    Article  CAS  Google Scholar 

  • Haynes KG, Yencho GC, Clough ME, Henninger MR, Sterrett SB (2012) Genetic variation for potato tuber micronutrient content and implications for biofortification of potatoes to reduce micronutrient malnutrition. Am J Pot Res 89:192–198

    Article  CAS  Google Scholar 

  • Hazra G (2016) Different types of eco-friendly fertilizers: An overview. Sustainability in Environment 1(1):54–70

    Article  Google Scholar 

  • ICAR (2016) Best Practices for sorghum cultivation and importance of value addition 123–138

    Google Scholar 

  • ICRISAT, HarvestPlus (2016) ICRISAT, In-house Happening newsletter no. 1716

    Google Scholar 

  • Ishimaru Y, Suzuki M, Kobayashi T, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2005) OsZIP4, a novel zinc-regulated zinc transporter in rice. J Exp Bot 56:3207–3214

    Article  PubMed  CAS  Google Scholar 

  • Ismail AM, Heuer S, Thomson JT, Wissuwa M (2007) Genetic and genomic approaches to develop rice germplasm for problem soils. Plant Mole Biol 65:547–570

    Article  CAS  Google Scholar 

  • Jha AB, Warkentin TD (2020) Biofortification of Pulse Crops: Status and Future Perspectives. Plan Theory 9:73. https://doi.org/10.3390/plants9010073

    Article  CAS  Google Scholar 

  • Johnson AAT, Kyriacou B, Callahan DL, Carruthers L, Stangoulis J, Lombi E, Tester M (2011) Constitutive overexpression of the OsNAS gene family reveals single gene strategies for effective iron- and zinc-biofortification of rice endosperm. PLoS One 6:e24476

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jones C, Jacobsen J (2009) Micronutrients: Cycling, testing and fertilizer recommendations. Nutrient Management Module 7:1–16

    Google Scholar 

  • Kappara S, Neelamraju S, Ramanan R (2018) Down regulation of a heavy metal transporter gene influences several domestication traits and grain Fe-Zn content in rice. Plant Sci 276:208–219

    Article  PubMed  CAS  Google Scholar 

  • Kato Y, Miwa K, Takano J, Wada M, Fujiwara T (2009) Highly boron deficiency-tolerant plants generated by enhanced expression of NIP5;1, a boric acid channel. Plant Cell Physiol 50:58–66

    Article  PubMed  CAS  Google Scholar 

  • Khalid E., Salah E.H., , Eslam A.S., Abdallah E., Mukhtar Ahmed (2015). Impacts of fertigation via surface and subsurface drip irrigation on growth rate, yield and flower quality of Zinnia elegans. Bragantia, 75(1), 96–107

    Article  Google Scholar 

  • Kizos T, Veikontis G, Marin-Guirao JI (2010) Comparison of organic and integrated farming systems: The case of Sultana table grapes in Korinthos, Greece. J Sus Agri 35(1):7–47

    Google Scholar 

  • Kramer U, Cotter-Howells JD, Charnock JM, Baker AJM, Smith JAC (1996) Free histidine as a metal chelator in plants that accumulate nickel. Nature 379:635–638

    Article  CAS  Google Scholar 

  • Lambert JJ, Dahlgren RA, Battany M, McElrone A, Wolpert JA (2008) Impact of Soil Properties on Nutrient Availability and Fruit and Wine Characteristics in a Paso Robles Vineyard. In: Proceedings of the 2nd Annual National Viticulture Research Conference • July 9–11

    Google Scholar 

  • Lawson PG, Daum D, Czauderna R, Meuser H, Hartling JW (2015) Soil versus foliar iodine fertilization as a biofortification strategy for field-grown vegetables. Fron Plant Sci 6:450

    Google Scholar 

  • Lee S, An G (2009) Over-expression of OsIRT1 leads to increased iron and zinc accumulations in rice. Plant Cell Environ 32:408–416

    Article  PubMed  CAS  Google Scholar 

  • Li B, Wei M, Shen A, Xu J, Zhang H, Hao F (2009) Changes of yields, soil properties and micronutrients as affected by 17-yr fertilization treatments. J Food, Agri Environ 7(3–4):408–413

    CAS  Google Scholar 

  • Mallikarjuna Swamy BP, Rahman MA, Inabangan-Asilo MA, Amparado A, Manito C, Mohanty PC, Reinke R, Slamet-Loedin IH (2016) Advances in breeding for high grain Zinc in Rice. Rice 9:49

    Article  Google Scholar 

  • Mao H, Wang J, Wang Z, Zan Y, Lyons G, Zou C (2014) Using agronomic biofortification to boost zinc, selenium, and iodine concentrations of food crops grown on the loess plateau in China. J Soil Sci Plant Nutr 14(2):459–470

    Google Scholar 

  • Marmagne A, Vinauger-Douard M, Monachello D, de Longevialle AF, Charon C, Allot M, Rappaport F, Wollman FA, Barbier-Brygoo H, Ephritikhine G (2007) Two members of the Arabidopsis CLC (chloride channel) family, AtCLCe and AtCLCf, are associated with thylakoid and Golgi membranes, respectively. J Exp Bot 58:3385–3393

    Article  PubMed  CAS  Google Scholar 

  • Masuda H, Suzuki M, Morikawa KC, Kobayashi T, Nakanishi H, Takahashi M, Saigusa M, Mori S, Nishizawa NK (2008) Increase in iron and zinc concentrations in rice grains via the introduction of barley genes involved in phytosiderophore synthesis. Rice 1:100–108

    Article  Google Scholar 

  • Masuda H, Ishimaru Y, Aung MS, Kobayashi T, Kakei Y, Takahashi M, Higuchi K, Nakanishi H, Nishizawa NK (2012) Iron biofortification in rice by the introduction of multiple genes involved in iron nutrition. Sci Rep 2:543

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maziya-Dixon B, Kling JG, Menkir A, Dixon A (2000) Genetic variation in total carotene, iron, and zinc contents of maize and cassava genotypes. Food Nutrit Bull 21(4):419–422

    Article  Google Scholar 

  • Melash AA, Mengistu DK, Aberra DA (2016) Linking agriculture with health through genetic and agronomic biofortification. Agri Sci 7:295–307

    CAS  Google Scholar 

  • Milner MJ, Kochian LV (2008) Investigating Heavy-metal Hyperaccumulation using Thlaspi caerulescens as a Model System. Ann Bot 102(1):3–13. https://doi.org/10.1093/aob/mcn063

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Morgan JB, Connolly EL (2013) Plant-Soil Interactions: Nutrient Uptake. Nature Education Knowledge 4(8):2

    Google Scholar 

  • Mortvedt JJ (1985) Micronutrient fertilizers and fertilization practices. In: Vlek PLG (ed) Micronutrients in Tropical Foods. Springer, Dordrecht, pp 221–235

    Chapter  Google Scholar 

  • Mukherjee I, Campbell NH, Ash JS, Connolly EL (2006) Expression profiling of the Arabidopsis ferric chelate reductase (FRO) gene family reveals differential regulation by iron and copper. Planta 223:1178–1190. https://doi.org/10.1007/s00425-005-0165-0

    Article  PubMed  CAS  Google Scholar 

  • Muramatsu Y, Yoshida S, Bannai T (1995) Tracer experiments on the behaviour of radioiodine in the soil-plant-atmosphere system. J Radioanal Nucl Chem 194:303

    Article  CAS  Google Scholar 

  • Nakagawa Y, Hanaoka H, Kobayashi M, Miyoshi K, Miwa K, Fujiwara T (2007) Cell-type specificity of the expression of Os BOR1, a rice efflux boron transporter gene, is regulated in response to boron availability for efficient boron uptake and xylem loading. Plant Cell 19:2624–2635

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Narwal R, Dahiya R, Malik R, Kala R (2012) Influence of genetic variability on zinc, iron and manganese responses in wheat. J Geochem Explor 121:45–48

    Article  CAS  Google Scholar 

  • Nestel P, Bouis HE, Meenakshi JV, Pfeiffer W (2006) Biofortification of staple food crops. J Nutr 136:1064–1067

    Article  PubMed  CAS  Google Scholar 

  • Ogo Y, Itai RN, Kobayashi T, Aung MS, Nakanishi H, Nishizawa NK (2011) OsIRO2 is responsible for iron utilization in rice and improves growth and yield in calcareous soil. Plant Mol Biol 75:593–605

    Article  PubMed  CAS  Google Scholar 

  • Ohly H, Broadley MR, Joy EJM, Khan MJ, McArdle H, Zaman M, Zia M, Lowe N (2019) The BiZiFED project: Biofortified zinc flour to eliminate deficiency in Pakistan. Nutr Bull 44(1):60–64

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Olivares FL, Aguiar NO, Rosa RCC, Canellas LP (2015) Substrate biofortification in combination with foliar sprays of plant growth promoting bacteria and humic substances boosts production of organic tomatoes. Sci Hortic 183:100–108

    Article  Google Scholar 

  • Oosterhuis DM, Weir BL (2010) Foliar fertilization of cotton. In: Stewart JMD et al (eds) Physiology of Cotton. Springer Science + Business Media B.V, Dordrecht, pp 272–288. https://doi.org/10.1007/978-90-481-3195-2-25

    Chapter  Google Scholar 

  • Ozturk L, Yazici MA, Yucel C, torun, A.A. (2016) Concentration and localization of zinc during seed development and germination in wheat. Physiol Plant 128(1):144–152

    Google Scholar 

  • Pagani, A., Sawyer, J. E., and Mallarino, A. 2013. Site-specific nutrient management- for nutrient management planning to improve crop production, environmental quality, and economic return. Micronutrient Management, Chap. 7. NRCS, Iowa State University

    Google Scholar 

  • Palmgren M, Clemens S, Williams L, Krämer U, Borg S, Schjørring J, Sanders D (2008) Zinc biofortification of cereals: problems and solutions. Trends Plant Sci 13(9):464–473

    Article  PubMed  CAS  Google Scholar 

  • Palanog AD, Calayugan MIC, Descalsota-Empleo GI, Amparado A, Inabangan-Asilo MA, Arocena EC, Sta Cruz PC, Borromeo TH, Lalusin A, Hernandez JE, Acuin C, Reinke R, Mallikarjuna Swamy BP (2019) Zinc and iron nutrition status in the Philippines population and local soils. Front Nutr 6:81

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pandey N, Hossain F, Kumar K, Vishwakarma AK, Muthusamy V, Saha S, Agrawal PK, Guleria SK, Reddy SS, Thirunavukkarasu N, Gupta HS (2016) Molecular characterization of endosperm- and amino acids- modifications among quality protein maize inbreds. Plant Breed 135:47–54

    Article  CAS  Google Scholar 

  • Pankaj SC, Dewangan PK (2016) Biofortification: An alternative for zinc and iron deficiency in cereals—A review. Int J Advan Res 4(5):618–631

    Article  CAS  Google Scholar 

  • Piechota T, Kowalski M, Sawinska Z, Majchrzak L (2014) Assessment of one operation strip tillage and in row liquid organic manure injection in maize. Fragm Agrono 31(1):74–82

    Google Scholar 

  • Pinto E, Ferreira IMPLVO (2015) Cation transporters/channels in plants: Tools for nutrient biofortification. J Plant Physiol 179:64–82

    Article  PubMed  CAS  Google Scholar 

  • Puig S, Andrés Colás N, García-Molina A, Peñarrubia L (2007) Copper and iron homeostasis in Arabidopsis: responses to metal deficiencies, interactions and biotechnological applications. Plant, Cell & Environ 30:271–290

    Article  CAS  Google Scholar 

  • Qu LQ, Yoshihara T, Ooyama A, Goto F, Takaiwa F (2005) Iron accumulation does not parallel the high expression level of ferritin in transgenic rice seeds. Planta 222:225–233

    Article  CAS  Google Scholar 

  • Ramesh A, Sharma SK, Sharma MP, Yadav N, Joshi OP (2014) Inoculation of zinc solubilizing Bacillus aryabhattai strains for improved growth, mobilization and biofortification of zinc in soybean and wheat cultivated in Vertisols of central India. Appl Soil Ecol 73:87–96

    Article  Google Scholar 

  • Rana A, Joshi M, Prasanna R, Shivay YS, Nain L (2012) Biofortification of wheat through inoculation of plant growth promoting rhizobacteria and cyanobacteria. Eur J Soil Biol 50:118–126

    Article  CAS  Google Scholar 

  • Rietra RPJJ, Heinen M, Dimpka C, Bindraban PS (2015) Effects of nutrient antagonism and synergism on fertilizer use efficiency. VFRC Report 2015/5. Virtual Fertilizer Research Centre, Washington, DC

    Google Scholar 

  • Roberts SK (2006) Plasma membrane anion channels in higher plants and their putative functions in roots. New Phytol 169:647–666

    Article  PubMed  Google Scholar 

  • Amaya-Gómez CV, Porcel M, Mesa-Garriga L, Gómez-Álvarez MI (2020) A Framework for the Selection of Plant Growth-Promoting Rhizobacteria Based on Bacterial Competence Mechanisms. Appl Environ Microbiol. AEM.00760-20doi. https://doi.org/10.1128/AEM.00760-20

  • Rugeles-Reyes S, Cecílio Filho A, López Aguilar M, Silva P (2019) Foliar application of zinc in the agronomic biofortification of arugula. Food Sci Technol 39(4):1011–1017. https://doi.org/10.1590/fst.12318

    Article  Google Scholar 

  • Saha S, Mandal B, Hazra GC et al (2015) Can agronomic biofortification of zinc be benign for iron in cereals? J Cereal Sci 65:186–191

    Article  CAS  Google Scholar 

  • Saltzman A., Andersson M.S., Asare-Marfo D., Lividini K., De Moura F.F., Moursi M., Oparinde A., Taleon V. Elsevier; (2013). Biofortification Techniques to Improve Food Security. Reference Module in Food Sciences; pp. 1–9. ISBN: 978-0-08-100596-5

    Google Scholar 

  • Senoura T, Sakashita E, Kobayashi T, Takahashi M, Aung MS, Masuda H et al (2017) The iron-chelate transporter OsYSL9 plays a role in iron distribution in developing rice grains. Plant Mol Biol 95:375–387

    Article  PubMed  CAS  Google Scholar 

  • Singh MK, Prasad SK (2014) Agronomic aspects of zinc biofortification in rice (Oryza sativa L). Proceedings of the National Academy of Sciences, India Section B: Biological Sciences 84(3):613–623

    Article  CAS  Google Scholar 

  • Singh, Y.V., Singh, B.B., Masseyand, P., . Singh, P. K (2017). Short duration cowpea varieties for cultivation as a niche crop in various cropping systems for enhanced pulse production. Agric Sci Digest, 37(3): 232–236

    Google Scholar 

  • Smoleń S, Sady W (2012) Influence of iodine form and application method on the effectiveness of iodine biofortification, nitrogen metabolism as well as the content of mineral nutrients and heavy metals in spinach plants (Spinacia oleracea L.). Sci Horticult 143:176–183

    Article  CAS  Google Scholar 

  • Smoleń S, Ledwożyw-Smoleń I, Sady W (2016) The role of exogenous humic and fulvic acids in iodine biofortification in spinach (Spinacia oleracea L.). Plant Soil 402:129–143

    Article  CAS  Google Scholar 

  • Stacey MG, Patel A, McClain WE, Mathieu M, Remley M, Rogers EE, Gassmann W, Blevins DG, Stacey G (2008) The Arabidopsis AtOPT3 protein functions in metal homeostasis and movement of iron to developing seeds. Plant Physiol 146:589–601

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stumm W, Morgan JJ (1996) Aquatic chemistry: chemical equilibria and rates. In: Natural waters, 3rd edn. Wiley, New York, p 1022

    Google Scholar 

  • Suzuki M, Morikawa KC, Nakanishi H, Takahashi M, Saigusa M, Mori S, Nishizawa NK (2008) Transgenic rice lines that include barley genes have increased tolerance to low iron availability in a calcareous paddy soil. Soil Sci Plant Nutr 54:77–85

    Article  CAS  Google Scholar 

  • Takano J, Wada M, Ludewig U, Schaaf G, von Wire’n N, Fujiwara T (2006) The Arabidopsis major intrinsic protein NIP5;1 is essential for efficient boron uptake and plant development under boron limitation. Plant Cell 18:1498–1509

    Google Scholar 

  • Tan S, Han R, Li P, Yang G, Li S, Zhang P, Wang W-B, Zhao W-Z, Yin L-P (2015) Over-expression of the MxIRT1 gene increases iron and zinc content in rice seeds. Transgenic Res 24:109–122

    Article  PubMed  CAS  Google Scholar 

  • Tanaka M, Wallace IS, Takano J, Roberts DM, Fujiwara T (2008) NIP6; 1 is a boric acid channel for preferential transport of boron to growing shoot tissues in Arabidopsis. Plant Cell 20:2860–2875

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tariq M, Hameed S, Malik KA, Hafeez FY (2007) Plant root associated bacteria for zinc mobilization in rice. Pak J Bot 39:245–253

    Google Scholar 

  • Tejada-Jiménez M, Galván A, Fernández E (2011) Algae and humans share a molybdate transporter. PNAS 108(16):6420–6425

    Article  PubMed  PubMed Central  Google Scholar 

  • Tennakoon NA, Bandara SDS (2003) Nutrient content of some locally available organic materials and their potential as alternative sources of nutrients for coconut. Cocos 15:23–30

    Article  Google Scholar 

  • Thavarajah D, Ruszkowski J, Vandenberg A (2008) High potential for selenium biofortification of lentils (Lens culinaris L.). J Agric Food Chem 56(22):10747–10753. https://doi.org/10.1021/jf802307h

    Article  PubMed  CAS  Google Scholar 

  • Tiong J, McDonald G, Genc Y, Shirley N, Langridge P, Huang CY (2015) Increased expression of six ZIP family genes by zinc (Zn) deficiency is associated with enhanced uptake and root-to-shoot translocation of Zn in barley (Hordeum vulgare). New Phytol 207:1097–1109

    Article  PubMed  CAS  Google Scholar 

  • Tomatsu H, Takano J, Takahashi H, Watanabe-Takahashi A, Shibagaki N, Fujiwara T (2007) An Arabidopsis thaliana high-affinity molybdate transporter required for efficient uptake of molybdate from soil. Proceedings of the National Academy of Sciences, USA 104:18807–18812

    Article  Google Scholar 

  • Trijatmiko KR, Dueñas C, Tsakirpaloglou N, Torrizo L, Arines FM, Adeva C, Balindong J, Oliva N, Sapasap MV, Borrero J et al (2016) Biofortified indica rice attains iron and zinc nutrition dietary targets in the field. Sci Rep 6:19792

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Uauy C, Distelfeld A, Fahima T, Blechl A, Dubcovsky J (2006) A NAC gene 15 regulating senescence improves grain protein, zinc, and iron content in wheat. 16. Science 314:1298–1301

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Singh D, Prasanna R (2020) Potential of microbes in the biofortification of Zn and Fe in dietary food grains. A review. Agron Sustain Dev 40:15

    Article  CAS  Google Scholar 

  • Uyanoz R (2007) The effects of different bio-organic, chemical fertilizers and their combination on yield, macro and micro nutrition content of dry bean (Phaseolus vulgaris L.). Int J Agric Res 2(2):115–125

    Article  Google Scholar 

  • Velu G, Singh R, Arun B, Mishra V, Tiwari C, Joshi A et al (2015) Reaching out to farmers with high zinc wheat varieties through public-private partnerships-An experience from Eastern-Gangetic Plains of India. AFTNSOJ 1(3):73–75

    Google Scholar 

  • Verrier PJ, Bird D, Burla B, Dassa E, Forestier C, Geisler M, Klein M, Kolukisaoglu Y, Lee Y, Martinoia E et al (2008) Plant ABC proteins - a unified nomenclature and updated inventory. Trends Plant Sci 13:151–159

    Article  PubMed  CAS  Google Scholar 

  • von Wiren N, Klair S, Bansal S, Briat JF, Khodr H, Shioiri T et al (1999) Nicotianamine chelates both FeIII and FeII: implications for metal transport in plants. Plant Physiol 119:1107–1114

    Article  Google Scholar 

  • Wang F, Wang Z, Kou C, Ma Z, Zhao D (2016) Responses of wheat yield, macro- and micro- nutrients, and heavy metals in soil and wheat following the application of manure compost on the North China Plain. PLoS One 11(1):e0146453

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Watanabe T, Broadley MR, Jansen S, White PJ, Takada J, Satake K, Takamatsu T, Tuah SJ, Osaki M (2007) Evolutionary control of leaf element composition in plants. New Phytol 174:516–523

    Article  PubMed  CAS  Google Scholar 

  • Waters BM, Grusak MA (2008) Whole-plant mineral partitioning throughout the life cycle in Arabidopsis thaliana ecotypes Columbia, Landsberg erecta, Cape Verde Islands, and the mutant line ysl1ysl3. New Phytol 177:389–405. https://doi.org/10.1111/j.1469-8137.2007.02288.x

    Article  PubMed  CAS  Google Scholar 

  • Welch R, Graham R (2002) Breeding crops for enhanced micronutrient content. Plant Soil 245(1):205–214. https://doi.org/10.1023/a:1020668100330

    Article  CAS  Google Scholar 

  • Welch RM (2002) Breeding strategies for biofortified staple plant foods to reduce micronutrient malnutrition globally. J Nutrit 132(3):495S–499S

    PubMed  Google Scholar 

  • White P (2001) Chloride in Soils and its Uptake and Movement within the Plant: A Review. Ann Bot 88(6):967–988. https://doi.org/10.1006/anbo.2001.1540

    Article  CAS  Google Scholar 

  • Wintz H, Fox T, Wu Y-Y, Feng V, Chen W, Chang H-S et al (2003) Expression profiles of Arabidopsis thaliana in mineral deficiencies reveal novel transporters involved in metal homeostasis. J Biol Chem 278:47644–47653. https://doi.org/10.1074/jbc.M309338200

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Cheng Z, Ai C, Jiang X, Bei X, Zhang Y, Clahn RP, Welch RM et al (2010) Nicotinamine, a novel enhancer of rice iron bioavailbility to humans. PLOS ONE 5(4):e101190

    Article  Google Scholar 

  • Zhang YQ, Deng Y, Chen RY et al (2012) The reduction in zinc concentration of wheat grain upon increased phosphorus-fertilization and its mitigation by foliar Zn application. Plant Soil 361:143–152

    Article  CAS  Google Scholar 

  • Zhang C, Shinwari KI, Luo L, Zheng L (2018) OsYSL13 is involved in iron distribution in rice. Int J Mol Sci 19:3537

    Article  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

We are very grateful to The Head, Department of Botany, Banaras Hindu University, Varanasi for providing necessary facilities. The University Grants Commission, New Delhi is thankfully acknowledged for providing financial assistant to Dr. A. Singh as PI [F.30-431/2018(BSR)].

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yadav, P.K., Singh, A., Agrawal, S.B. (2020). An Overview on Management of Micronutrients Deficiency in Plants Through Biofortification: A Solution of Hidden Hunger. In: Mishra, K., Tandon, P.K., Srivastava, S. (eds) Sustainable Solutions for Elemental Deficiency and Excess in Crop Plants. Springer, Singapore. https://doi.org/10.1007/978-981-15-8636-1_8

Download citation

Publish with us

Policies and ethics