Skip to main content

Possible Therapeutic Potential of Flavonoids and Phenolic Acids from Honey in Age-Related Neurodegenerative Diseases Via Targeting NAD+ Degradation

  • Chapter
  • First Online:
Therapeutic Applications of Honey and its Phytochemicals

Abstract

Neurodegenerative disorder is the major age-related problem with no specific cure. The drugs available in the market relieve the severity of the disease and increase the average life span. There is always room for more novel therapeutic strategies for the prevention of neurodegenerative diseases. Honey has been used since ages for various disease prevention, and recently it has been used to combat these diseases too. The flavonoids and the phenolic acids of honey have preventive effects and have been known to exhibit antioxidant, anti-inflammatory, and anti-apoptotic effects. These phytochemicals can prevent the neurodegeneration via NAD pathway where they are responsible for inhibiting CD38, PARP and activating SIRT1 overall by increasing the concentration of NAD in the neurons. With an increase in the amount of NAD, Sirtuins can be activated which protects age-related neurodegenerative diseases. Therefore, honey can be used as “NAD compounds” in clinics but with further mechanistic research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed S, Othman NH (2013) Honey as a potential natural anticancer agent: a review of its mechanisms. Evid Based Complement Alternat Med 2013:829070–829077

    Article  PubMed  PubMed Central  Google Scholar 

  • Ahmed S, Sulaiman SA, Baig AA, Ibrahim M, Liaqat S, Fatima S et al (2018) Honey as a potential natural antioxidant medicine: an insight into its molecular mechanisms of action. Oxidative Med Cell Longev 2018:8367846

    Google Scholar 

  • Akanmu MA, Olowookere TA, Atunwa SA et al (2011) Neuropharmacological effects of Nigerian honey in mice. Afr J Tradit Complement Altern Med 8(3):230–249

    Article  PubMed  PubMed Central  Google Scholar 

  • Ali AT, Chowdhury MN, Al Humayyd MS (1991) Inhibitory effect of natural honey on Helicobacter pylori. Trop Gastroenterol 12:139–143

    CAS  PubMed  Google Scholar 

  • Al-Mamary M, Al-Meeri A, Al-Habori M (2002) Antioxidant activities and total phenolics of different types of honey. Nutr Res 22:1041–1047

    Article  CAS  Google Scholar 

  • Alvarez-Suarez JM, Tulipani S, Romandini S, Bertoli E, Battino M (2010) Contribution of honey in nutrition and human health: a review. Mediterr J Nutr Metab 3:15–23

    Article  Google Scholar 

  • Al-Waili NS (2003a) Intravenous and intrapulmonary administration of honey solution to healthy sheep: effects on blood sugar, renal and liver function tests, bone marrow function, lipid profile and carbon tetrachloride-induced liver injury. J Med Food 6:231–247

    Article  CAS  PubMed  Google Scholar 

  • Al-Waili NS (2003b) Effects of daily consumption of honey solution on hematological indices and blood levels of minerals and enzymes in normal individuals. J Med Food 6:135–140

    Article  CAS  PubMed  Google Scholar 

  • Al-Waili NS (2004) Natural honey lowers plasma glucose, c-reactive protein, homocysteine, and blood lipids in healthy, diabetic, and hyperlipidemic subjects: comparison with dextrose and sucrose. J Med Food 7:100–107

    Article  CAS  PubMed  Google Scholar 

  • Al-Waili NS, Boni NS (2003) Natural honey lowers plasma prostaglandin concentrations in normal individuals. J Med Food 6:129–133

    Article  CAS  PubMed  Google Scholar 

  • Andersen JK (2004) Oxidative stress in neurodegeneration: cause or consequence? Nat Med 10:S18–S25

    Article  PubMed  CAS  Google Scholar 

  • Bai P, Virag L (2012) Role of poly(ADP-ribose) polymerases in the regulation of inflammatory processes. FEBS Lett 586:3771–3777

    Article  CAS  PubMed  Google Scholar 

  • Bai P, Cantó C, Oudart H, Brunyánszki A, Cen Y, Thomas C et al (2011) PARP-1 inhibition increases mitochondrial metabolism through SIRT1 activation. Cell Metab 13:461–468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bai P, Nagy L, Fodor T, Liaudet L, Pacher P (2015) Poly(ADP-ribose)polymerases as modulators of mitochondrial activity. Trends Endocrinol Metab 26:75–83

    Article  CAS  PubMed  Google Scholar 

  • Bansal V, Medhi B, Pandhi P (2005) Honey-A remedy rediscovered and its therapeutic utility. Kathmandu Univ Med J 3:305–309

    CAS  Google Scholar 

  • Beghi E, Logroscino G, Chió A, Hardiman O, Mitchell D, Swingler R et al (2006) The epidemiology of ALS and the role of population-based registries. Biochim Biophys Acta 1762:1150–1157

    Article  CAS  PubMed  Google Scholar 

  • Bender DA (1983) Biochemistry of tryptophan in health and disease. Mol Asp Med 6:101–197

    Article  CAS  Google Scholar 

  • Beretta G, Orioli M, Facino RM (2007) Antioxidant and radical scavenging activity of honey in endothelial cell cultures (EA.hy926). Planta Med 73(11):1182–1189

    Article  CAS  PubMed  Google Scholar 

  • Bheda P, Jing H, Wolberger C et al (2016) The substrate specificity of Sirtuins. Annu Rev Biochem 85:405–429

    Article  CAS  PubMed  Google Scholar 

  • Bilsel Y, Bugra D, Yamaner S, Bulut T, Cevikbas U, Turkoglu U (2002) Could honey have a place in colitis therapy? Effects of honey, prednisolone and disulfiram on inflammation, nitric oxide, and free radical formation. Dig Surg 19:306–311

    Article  CAS  PubMed  Google Scholar 

  • Bishop NA, Lu T, Yankner BA (2010) Neural mechanisms of ageing and cognitive decline. Nature 464:529–535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blander G, Guarente L (2004) The Sir2 family of protein deacetylases. Annu Rev Biochem 73:417–435

    Article  CAS  PubMed  Google Scholar 

  • Bogan KL, Brenner C (2008) Nicotinic acid, nicotinamide, and nicotinamide riboside: a molecular evaluation of NAD+ precursor vitamins in human nutrition. Annu Rev Nutr 28:115–130

    Article  CAS  PubMed  Google Scholar 

  • Braak H, Del Tredici K, Rub U, de Vos RA, Jansen Steur EN et al (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24:197–211

    Article  PubMed  Google Scholar 

  • Braak H, Bohl JR, Muller CM, Rub U, de Vos RA et al (2006) Stanley Fahn lecture 2005: the staging procedure for the inclusion body pathology associated with sporadic Parkinson’s disease reconsidered. Mov Disord 21:2042–2051

    Article  PubMed  Google Scholar 

  • Bratic A, Larsson NG (2013) The role of mitochondria in aging. J Clin Invest 123(3):951–957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai M, Shin BY, Kim DH et al (2011) Neuroprotective effects of a traditional herbal prescription on transient cerebral global ischemia in gerbils. J Ethnopharmacol 138(3):723–730

    Article  PubMed  Google Scholar 

  • Camacho-Pereira J, Tarrago MG, Chini CCS, Nin V, Escande C, Warner GM, Puranik AS, Schoon RA, Reid JM, Galina A et al (2016) CD38 dictates age-related NAD decline and mitochondrial dysfunction through an SIRT3-dependent mechanism. Cell Metab 23:1127–1139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Candiracci M, Piatti E, Dominguez-Barragán M et al (2012) Anti-inflammatory activity of a honey flavonoid extract on lipopolysaccharide-activated N13 microglial cells. J Agric Food Chem 60(50):12304–12311

    Article  CAS  PubMed  Google Scholar 

  • Cantarelli MA, Pellerano RG, Marchevsky EJ, Camina JM (2008) Quality of honey from Argentina: study of chemical composition and trace elements. J Argent Chem Soc 96(2):33–41

    CAS  Google Scholar 

  • Chini CCS, Tarragó MG, Chini EN (2017) NAD and the aging process: role in life, death and everything in between. Mol Cell Endocrinol 455:62–74

    Article  CAS  PubMed  Google Scholar 

  • Clarke JR, Lyra ESNM, Figueiredo CP, Frozza RL, Ledo JH, Beckman D et al (2015) Alzheimer-associated abeta oligomers impact the central nervous system to induce peripheral metabolic deregulation. EMBO Mol Med 7(2):190–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costa RM, Drew C, Silva AJ (2005) Notch to remember. Trends Neurosci 28(8):429–435

    Article  CAS  PubMed  Google Scholar 

  • D’Antona G, Ragni M, Cardile A, Tedesco L, Dossena M, Bruttini F, Caliaro F, Corsetti G, Bottinelli R, Carruba MO, Valerio A, Nisoli E (2010) Branched-chain amino acid supplementation promotes survival and supports cardiac and skeletal muscle mitochondrial biogenesis in middle-aged mice. Cell Metab 12(4):362–372

    Article  PubMed  CAS  Google Scholar 

  • Davis JM, Murphy EA, Carmichael MD, Davis B (2009) Quercetin increases brain and muscle mitochondrial biogenesis and exercise tolerance. Am J Phys Regul Integr Comp Phys 296(4):R1071–R1077

    CAS  Google Scholar 

  • De Flora A, Zocchi E, Guida L et al (2004) Autocrine and paracrine calcium signaling by the CD38/NAD+/cyclic ADP-ribose system. Ann N Y Acad Sci 1028:176–191

    PubMed  Google Scholar 

  • Dellinger RW, Santos SR, Morris M, Evans M, Alminana D, Guarente L, Marcotulli E (2017) Repeat dose NRPT (nicotinamide riboside and pterostilbene) increases NAD(+) levels in humans safely and sustainably: a randomized, double-blind, placebo-controlled study. NPJ Aging Mech Dis 3:17

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Diplock AT, Rice-Evans CA, Burdon RH (1994) Is there a significant role for lipid peroxidation in the causation of malignancy and for antioxidants in cancer prevention? Cancer Res 54(7):1952–1956

    Google Scholar 

  • Dunn L, Allen GF, Mamais A, Ling H, Li A, Duberley KE et al (2014) Dysregulation of glucose metabolism is an early event in sporadic Parkinson’s disease. Neurobiol Aging 35(5):1111–1115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erejuwa OO, Sulaiman SA, Wahab MS, Sirajudeen KN, Salleh MS, Gurtu S (2010) Antioxidant protection of Malaysian tualang honey in pancreas of normal and streptozotocin-induced diabetic rats. Ann Endocrinol 71(4):291–296. https://doi.org/10.1016/j.ando.2010.03.003

    Article  CAS  Google Scholar 

  • Erejuwa OO, Sulaiman SA, Ab Wahab MS (2012) Honey: a novel antioxidant. Molecules 17(4):4400–4423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eteraf-Oskouei T, Najafi M (2013) Traditional and modern uses of natural honey in human diseases: a review. Iran J Basic Med Sci 16(6):731–742

    PubMed  PubMed Central  Google Scholar 

  • Escande C, Nin V, Price NL, Capellini V, Gomes AP, Barbosa MT et al (2013) Flavonoid apigenin is an inhibitor of the NAD+ase CD38: implications for cellular NAD+ metabolism, protein acetylation, and treatment of metabolic syndrome. Diabetes 62:1084–1093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Essuman K, Summers DW, Sasaki Y, Mao X, DiAntonio A, Milbrandt J (2017) The SARM1 toll/Interleukin-1 receptor domain possesses intrinsic NAD+ cleavage activity that promotes pathological axonal degeneration. Neuron 93(6):1334–1343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ezz El-Arab AM, Girgis SM, Hegazy ME, Abd El-Khalek AB (2006) Effect of dietary honey on intestinal microflora and toxicity of mycotoxins in mice. BMC Complement Altern Med 6:1–13

    Article  CAS  Google Scholar 

  • Fearnley JM, Lees AJ (1991) Ageing and Parkinson’s disease: substantia nigra regional selectivity. Brain 114(Pt 5):2283–2301

    Article  PubMed  Google Scholar 

  • Ford E, Voit R, Liszt G et al (2006) Mammalian Sir2 homolog SIRT7 is an activator of RNA polymerase I transcription. Genes Dev 20(9):1075–1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frye RA (1999) Characterization of five human cDNAs with homology to the yeast SIR2 gene: Sir2-like proteins (sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity. Biochem Biophys Res Commun 260(1):273–279

    Article  CAS  PubMed  Google Scholar 

  • Gao R, Wang Y, Pan Q, Huang G, Li N, Mou J, Wang D (2015) Fuzhisan, a Chinese herbal medicine, suppresses beta-secretase gene transcription via upregulation of SIRT1 expression in N2a-APP695 cells. Int J Clin Exp Med 8(5):7231–7240

    PubMed  PubMed Central  Google Scholar 

  • Geraets L, Moonen HJ, Brauers K, Wouters EF, Bast A, Hageman GJ (2007) Dietary flavones and flavonoles are inhibitors of poly(ADP-ribose)polymerase-1 in pulmonary epithelial cells. J Nutr 137:2190–2195

    Article  CAS  PubMed  Google Scholar 

  • Gibson BA, Kraus WL (2012) New insights into the molecular and cellular functions of poly(ADP-ribose) and PARPs. Nat Rev Mol Cell Biol 13:411–424

    Article  CAS  PubMed  Google Scholar 

  • Godoy JA, Zolezzi JM, Braidy N, Inestrosa NC (2014) Role of Sirt1 during the ageing process: relevance to protection of synapses in the brain. Mol Neurobiol 50(3):744–756

    Article  CAS  PubMed  Google Scholar 

  • Greco SJ, Hamzelou A, Johnston JM, Smith MA, Ashford JW, Tezapsidis N (2011) Leptin boosts cellular metabolism by activating AMPK and the sirtuins to reduce tau phosphorylation and β-amyloid in neurons. Biochem Biophys Res Commun 414(1):170–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grozio A, Sociali G, Sturla L et al (2013) CD73 protein as a source of extracellular precursors for sustained NAD+ biosynthesis in FK866-treated tumor cells. J Biol Chem 288(36):25938–25949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haigis MC, Sinclair DA (2010) Mammalian sirtuins: biological insights and disease relevance. Annu Rev Pathol 5:253–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halliday GM, McCann H (2010) The progression of pathology in Parkinson’s disease. Ann N Y Acad Sci 1184:188–195

    Article  PubMed  Google Scholar 

  • Harden A, Young WJ (1906) The alcoholic ferment of yeast-juice. Proc R Soc B Biol Sci 78:369–375

    Google Scholar 

  • Harman D (1981) The aging process. Proc Natl Acad Sci U S A 78(11):7124–7128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hindle JV (2010) Ageing, neurodegeneration and Parkinson’s disease. Age Ageing 39:156–161

    Article  PubMed  Google Scholar 

  • Houtkooper RH, Canto C, Wanders RJ, Auwerx J (2010) The secret life of NAD+: an old metabolite controlling new metabolic signaling pathways. Endocr Rev 31:194–223

    Article  CAS  PubMed  Google Scholar 

  • https://www.who.int/gho/publications/world_health_statistics/2015/en/

  • https://www.who.int/whr/2006/whr06_en.pdf

  • Hung CW, Chen YC, Hsieh WL, Chiou SH, Kao CL (2010) Ageing and neurodegenerative diseases. Ageing Res Rev 1:S36–S46

    Article  Google Scholar 

  • Imai S, Guarente L (2014) NAD+ and sirtuins in aging and disease. Trends Cell Biol 24(8):464–471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imai S, Yoshino J (2013) The importance of NAMPT/NAD/SIRT1 in the systemic regulation of metabolism and ageing. Diabetes Obes Metab 15(3):26–33

    Article  CAS  PubMed  Google Scholar 

  • Ishrat T, Hoda MN, Khan MB, Yousuf S, Ahmad M, Khan MM et al (2009) Amelioration of cognitive deficits and neurodegeneration by curcumin in rat model of sporadic dementia of Alzheimer’s type (SDAT). Eur Neuropsychopharmacol 19:636–647

    Article  CAS  PubMed  Google Scholar 

  • Jaganathan SK, Mandal M (2009) Honey constituents and their apoptotic effect in colon cancer cells. J ApiProd ApiMed Sci 1(2):29–36

    Article  Google Scholar 

  • Javed H, Khan MM, Ahmad A, Vaibhav K, Ahmad ME, Khan A et al (2012) Rutin prevents cognitive impairments by ameliorating oxidative stress and neuroinflammation in rat model of sporadic dementia of Alzheimer type. Neuroscience 210:340–352

    Article  CAS  PubMed  Google Scholar 

  • Jeffrey AE, Echazarreta CM (1996) Medical uses of honey. Rev Biomed 7:43–49

    Google Scholar 

  • Jimenez-Del-Rio M, Guzman-Martinez C, Velez-Pardo C (2010) The effects of polyphenols on survival and locomotor activity in drosophila melanogaster exposed to iron and paraquat. Neurochem Res 35(2):227–238

    Article  CAS  PubMed  Google Scholar 

  • Johnson S, Imai SI (2018) NAD+ biosynthesis, aging, and disease. F1000Res 7:132

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Johnston JE, Sepe HA, Miano CL, Brannan RG, Alderton AL (2005) Honey inhibits lipid oxidation in ready-to-eat ground beef patties. Meat Sci 70:627–631

    Article  CAS  PubMed  Google Scholar 

  • Karbowski M, Neutzner A (2012) Neurodegeneration as a consequence of failed mitochondrial maintenance. Acta Neuropathol 123(2):157–171

    Article  CAS  PubMed  Google Scholar 

  • Kauppinen TM, Suh SW, Higashi Y, Berman AE, Escartin C, Won SJ et al (2011) Poly(ADP-ribose) polymerase-1 modulates microglial responses to amyloid beta. J Neuroinflammation 8:152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kennedy MA, Moffat TC, Gable K, Ganesan S, Niewola-Staszkowska K, Johnston A et al (2016) A signaling lipid associated with Alzheimer’s disease promotes mitochondrial dysfunction. Sci Rep 6:19332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kerr JS et al (2017) Mitophagy and Alzheimer’s disease: cellular and molecular mechanisms. Trends Neurosci 40:151–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khalil MI, Sulaiman SA (2010) The potential role of honey and its polyphenols in preventing heart diseases: a review. Afr J Tradit Complement Altern Med 7:315–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan A, Vaibhav K, Javed H, Khan MM, Tabassum R, Ahmed ME et al (2012) Attenuation of Aβ-induced neurotoxicity by thymoquinone via inhibition of mitochondrial dysfunction and oxidative stress. Mol Cell Biochem 369(1–2):55–65

    Article  CAS  PubMed  Google Scholar 

  • Kilicoglu B, Gencay C, Kismet K, Serin Kilicoglu S, Erguder I, Erel S et al (2008) The ultrastructural research of liver in experimental obstructive jaundice and effect of honey. Am J Surg 195(2):249–256

    Article  PubMed  Google Scholar 

  • Kim SM, Park YJ, Shin MS, Kim HR, Kim MJ, Lee SH, Yun SP, Kwon SH (2017) Acacetin inhibits neuronal cell death induced by 6-hydroxydopamine in cellular Parkinson’s disease model. Bioorg Med Chem Lett 27(23):5207–5212

    Article  CAS  PubMed  Google Scholar 

  • Knight AL, Yan X, Hamamichi S, Ajjuri RR, Mazzulli JR, Zhang MW et al (2014) The glycolytic enzyme, GPI, is a functionally conserved modifier of dopaminergic neurodegeneration in Parkinson’s models. Cell Metab 20(1):145–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Körner S, Böselt S, Thau N, Rath KJ, Dengler R, Petri S (2013) Differential sirtuin expression patterns in amyotrophic lateral sclerosis (ALS) postmortem tissue: neuroprotective or neurotoxic properties of sirtuins in ALS? Neurodegener Dis 11(3):141–152

    Article  PubMed  CAS  Google Scholar 

  • Kudo Y, Boyd CA (2000) Human placental indoleamine 2,3-dioxygenase: cellular localization and characterization of an enzyme preventing fetal rejection. Biochim Biophys Acta 1500:119–124

    Article  CAS  PubMed  Google Scholar 

  • Kupis W, Palyga J, Tomal E, Niewiadomska E (2016) The role of sirtuins in cellular homeostasis. J Physiol Biochem 72:371–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leyton L, Hott M, Acuña F, Caroca J, Nuñez M, Martin C, Zambrano A, Concha MI, Otth C (2015) Nutraceutical activators of AMPK/Sirt1 axis inhibit viral production and protect neurons from neurodegenerative events triggered during HSV-1 infection. Virus Res 205:63–72

    Article  CAS  PubMed  Google Scholar 

  • Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443(7113):787–795. https://doi.org/10.1038/nature05292

    Article  CAS  PubMed  Google Scholar 

  • Malavasi F, Deaglio S, Funaro A et al (2008) Evolution and function of the ADP ribosyl cyclase/CD38 gene family in physiology and pathology. Physiol Rev 88:841–886

    Article  CAS  PubMed  Google Scholar 

  • Mariani E, Polidori MC, Cherubini A, Mecocci P (2005) Oxidative stress in brain aging, neurodegenerative and vascular diseases: an overview. J Chromatogr B Anal Technol Biomed Life Sci 827(1):65–75

    Article  CAS  Google Scholar 

  • Martire S, Fuso A, Rotili D, Tempera I, Giordano C, De Zottis I et al (2013) PARP-1 modulates amyloid beta peptide-induced neuronal damage. PLoS One 8:e72169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meda A, Lamien EC, Millogo J, Romito M, Nacoulma OG (2004) Ethnopharmacological communication therapeutic uses of honey and honeybee larvae in Central Burkina Faso. J Ethnopharmacol 95:103–107

    Article  PubMed  Google Scholar 

  • Medhi B, Prakash A, Avti PK, Saikia UN, Pandhi P, Khanduja KL (2008) Effect of Manuka honey and sulfasalazine in combination to promote antioxidant defense system in experimentally induced ulcerative colitis model in rats. Indian J Exp Biol 46(8):583–590

    CAS  PubMed  Google Scholar 

  • Mijanur Rahman M, Gan SH, Khalil MI (2014) Neurological effects of honey: current and future prospects. Evid Based Complement Alternat Med 2014:958721

    Article  PubMed  PubMed Central  Google Scholar 

  • Molan P (2001) Manuka Honey as a medicine, Global Bioactives Summit, Hamilton

    Google Scholar 

  • Morales J, Li L, Fattah FJ et al (2014) Review of poly (ADP-ribose) polymerase (PARP) mechanisms of action and rationale for targeting in cancer and other diseases. Crit Rev Eukaryot Gene Expr 24(1):15–28

    Article  PubMed  PubMed Central  Google Scholar 

  • Mostoslavsky R, Chua KF, Lombard DB et al (2006) Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell 124(2):315–329

    Article  CAS  PubMed  Google Scholar 

  • Mouchiroud L, Houtkooper RH, Moullan N et al (2013) The NAD+/Sirtuin pathway modulates longevity through activation of mitochondrial UPR and FOXO signaling. Cell 154(2):430–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murtaza G, Karim S, Akram MR et al (2014) Caffeic acid phenethyl ester and therapeutic potentials. Biomed Res Int 2014:145342–145349

    PubMed  PubMed Central  Google Scholar 

  • Nagai T, Sakai M, Inoue R, Inoue H, Suzuki N (2001) Antioxidative activities of some commercially honeys, royal jelly, and propolis. Food Chem 75(2):237–240

    Article  CAS  Google Scholar 

  • Nikiforov A, Kulikova V, Ziegler M (2015) The human NAD metabolome: functions, metabolism and compartmentalization. Crit Rev Biochem Mol Biol 50:284–297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olaitan PB, Adeleke OE, Ola IO (2007) Honey: a reservoir for microorganisms and an inhibitory agent for microbes. Afr Health Sci 7(3):159–165

    PubMed  PubMed Central  Google Scholar 

  • Ortega-Arellano HF, Jimenez-del-Rio M, Velez-Pardo C (2011) Life span and locomotor activity modification by glucose and polyphenols in Drosophila melanogaster chronically exposed to oxidative stress-stimuli: implications in Parkinson’s disease. Neurochem Res 36(6):1073–1086

    Article  CAS  PubMed  Google Scholar 

  • Osborne B, Bentley NL, Montgomery MK, Turner N (2016) The role of mitochondrial sirtuins in health and disease. Free Radic Biol Med 100:164–174

    Article  CAS  PubMed  Google Scholar 

  • Othman NH (2012a) Does honey have the characteristics of natural cancer vaccine? J Tradit Complement Med 2(4):276–283

    Article  PubMed  PubMed Central  Google Scholar 

  • Othman NH (2012b) Honey and cancer: sustainable inverse relationship particularly for developing nations—a review. Evid Based Complement Alternat Med 2012:410406

    Article  PubMed  PubMed Central  Google Scholar 

  • Oyekunle OA, Akanmu MA, Ogundeji TP (2010) Evaluation of anxiolytic and novelty induced behaviours following bee-honey consumption in rats. J Neurosci Behav Health 2(4):38–43

    Google Scholar 

  • Pappolla MA, Omar RA, Kim KS, Robakis NK (1992) Immunohistochemical evidence of oxidative [corrected] stress in Alzheimer’s disease. Am J Pathol 140(3):621–628

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pasupuleti VR, Sammugam L, Ramesh N, Gan SH (2017) Honey, Propolis, and Royal Jelly: a comprehensive review of their biological actions and health benefits. Oxidative Med Cell Longev 2017:1259510

    Article  CAS  Google Scholar 

  • Pearce RK, Owen A, Daniel S, Jenner P, Marsden CD (1997) Alterations in the distribution of glutathione in the substantia nigra in Parkinson’s disease. J Neural Transm (Vienna) 1997104(6–7):661–677

    Article  Google Scholar 

  • Pehar M, Harlan BA, Killoy KM, Vargas MR (2018) Nicotinamide adenine dinucleotide metabolism and neurodegeneration. Antioxid Redox Signal 28(18):1652–1668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perry TL, Yong VW (1986) Idiopathic Parkinson’s disease, progressive supranuclear palsy and glutathione metabolism in the substantia nigra of patients. Neurosci Lett 67(3):269–274

    Article  CAS  PubMed  Google Scholar 

  • Perry TL, Godin DV, Hansen S (1982) Parkinson’s disease: a disorder due to nigral glutathione deficiency? Neurosci Lett 33(3):305–310

    Article  CAS  PubMed  Google Scholar 

  • Pirinen E, Cantó C, Jo YS, Morato L, Zhang H, Menzies KJ et al (2014) Pharmacological inhibition of poly(ADP-ribose) polymerases improves fitness and mitochondrial function in skeletal muscle. Cell Metab 19:1034–1041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Preugschat F, Carter LH, Boros EE et al (2014) A pre-steady state and steady state kinetic analysis of the N-ribosyl hydrolase activity of hCD157. Arch Biochem Biophys 564:156–163

    Article  CAS  PubMed  Google Scholar 

  • Procaccini C, Santopaolo M, Faicchia D, Colamatteo A, Formisano L, de Candia P et al (2016) Role of metabolism in neurodegenerative disorders. Metabolism 65(9):1376–1390

    Article  CAS  PubMed  Google Scholar 

  • Rahman MM, Gan SH, Khalil MI (2014) Neurological effects of honey: current and future prospects. Evid Based Complement Alternat Med 2014:958721

    Article  Google Scholar 

  • Rakha MK, Nabil ZI, Hussein AA (2008) Cardioactive and vasoactive effects of natural wild honey against cardiac malperformance induced by hyperadrenergic activity. J Med Food 11:91–98

    Article  CAS  PubMed  Google Scholar 

  • Ramsey KM, Mills KF, Satoh A et al (2008) Age-associated loss of Sirt1-mediated enhancement of glucose-stimulated insulin secretion in beta cell-specific Sirt1-overexpressing (BESTO) mice. Aging Cell 7(1):78–88

    Article  CAS  PubMed  Google Scholar 

  • Reeve A, Simcox E, Turnbull D (2014) Ageing and Parkinson’s disease: why is advancing age the biggest risk factor? Ageing Res Rev 14:19–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reitz C, Brayne C, Mayeux R (2011) Epidemiology of Alzheimer disease. Nat Rev Neurol 7:137–152

    Article  PubMed  PubMed Central  Google Scholar 

  • Renton AE, Chiò A, Traynor BJ (2014) State of play in amyotrophic lateral sclerosis genetics. Nat Neurosci 17:17–23

    Article  CAS  PubMed  Google Scholar 

  • Revollo JR, Grimm AA, Imai S (2004) The NAD biosynthesis pathway mediated by nicotinamide phosphoribosyltransferase regulates Sir2 activity in mammalian cells. J Biol Chem 279(49):50754–50763

    Article  CAS  PubMed  Google Scholar 

  • Rom S, Zuluaga-Ramirez V, Dykstra H, Reichenbach NL, Ramirez SH, Persidsky Y (2015) Poly(ADP-ribose) polymerase −1 inhibition in brain endothelium protects the blood–brain barrier under physiologic and neuroinflammatory conditions. J Cereb Blood Flow Metab 35:28–36

    Article  CAS  PubMed  Google Scholar 

  • Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P, Hentati A, Donaldson D et al (1993) Mutations in cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362:59–62

    Article  CAS  PubMed  Google Scholar 

  • Rotermund C, Machetanz G, Fitzgerald JC (2018) The therapeutic potential of metformin in neurodegenerative diseases. Front Endocrinol (Lausanne) 19(9):400

    Article  Google Scholar 

  • Sahin E, Depinho RA (2010) Linking functional decline of telomeres, mitochondria and stem cells during ageing. Nature 464:520–528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salminen A, Kaarniranta K (2012) AMP-activated protein kinase (AMPK) controls the aging process via an integrated signaling network. Ageing Res Rev 11(2):230–241

    Article  CAS  PubMed  Google Scholar 

  • Samii A, Nutt JG, Ransom BR (2004) Parkinson’s disease. Lancet 363:1783–1793

    Article  CAS  PubMed  Google Scholar 

  • Sasaki Y, Vohra BP, Baloh RH, Milbrandt J (2009) Transgenic mice expressing the Nmnat1 protein manifest robust delay in axonal degeneration in vivo. J Neurosci 29(20):6526–6534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Satoh A, Stein L, Imai S (2011) The role of mammalian sirtuins in the regulation of metabolism, aging, and longevity. Handb Exp Pharmacol 206:125–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmitt-Schillig S, Schaffer S, Weber CC, Eckert GP, Muller WE (2005) Flavonoids and the aging brain. J Physiol Pharmacol 56(1):23–36

    PubMed  Google Scholar 

  • Smith MA, Zhu X, Tabaton M, Liu G, McKeel DW Jr, Cohen ML et al (2010) Increased iron and free radical generation in preclinical Alzheimer disease and mild cognitive impairment. J Alzheimers Dis 19(1):363–372

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stein LR, Imai S (2014) Specific ablation of Nampt in adult neural stem cells recapitulates their functional defects during aging. EMBO J 33(12):1321–1340

    CAS  PubMed  PubMed Central  Google Scholar 

  • Strosznajder JB, Czapski GA, Adamczyk A, Strosznajder RP (2012) Poly(ADP-ribose) polymerase-1 in amyloid beta toxicity and Alzheimer’s disease. Mol Neurobiol 46:78–84

    Article  CAS  PubMed  Google Scholar 

  • Subrahmanyam M (1998) A prospective randomised clinical and histological study of superficial burn wound healing with honey and silver sulfadiazine. Burns 24(2):157–161

    Article  CAS  PubMed  Google Scholar 

  • Summers DW, DiAntonio A, Milbrandt J (2014) Mitochondrial dysfunction induces Sarm1-dependent cell death in sensory neurons. J Neurosci 34(28):9338–9350

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sun N, Youle RJ, Finkel T (2016) The mitochondrial basis of aging. Mol Cell 61(5):654–666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanno M, Sakamoto J, Miura T et al (2007) Nucleocytoplasmic shuttling of the NAD+-dependent histone deacetylase SIRT1. J Biol Chem 282(9):6823–6832

    Article  CAS  PubMed  Google Scholar 

  • Tonks AJ, Cooper RA, Jones KP, Blair S, Parton J, Tonks A (2003) Honey stimulates inflammatory cytokine production from monocytes. Cytokine 21:242–247

    Article  CAS  PubMed  Google Scholar 

  • Tonks AJ, Dudley E, Porter NG et al (2007) A 5.8-kDa component of manuka honey stimulates immune cells via TLR4. J Leukoc Biol 82(5):1147–1155

    Article  CAS  PubMed  Google Scholar 

  • Tsilioni I, Taliou A, Francis K, Theoharides TC (2015) Children with autism spectrum disorders, who improved with a luteolin-containing dietary formulation, show reduced serum levels of TNF and IL-6. Transl Psychiatry 5(9):e647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turkmen N, Sari F, Poyrazoglu ES, Velioglu YS (2006) Effects of prolonged heating on antioxidant activity and colour of honey. Food Chem 95:653–657

    Article  CAS  Google Scholar 

  • UN (2019) United Nations. World population ageing 2019. United Nations. Department of Economic and Social Affairs Population Division

    Google Scholar 

  • Uttara B, Singh AV, Zamboni P, Mahajan RT (2009) Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol 7(1):65–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Ham TJ, Breitling R, Swertz MA, Nollen EA (2009) Neurodegenerative diseases: lessons from genome-wide screens in small model organisms. EMBO Mol Med 1:360–370

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vaquero A, Scher MB, Lee DH et al (2006) SirT2 is a histone deacetylase with preference for histone H4 Lys 16 during mitosis. Genes Dev 20(10):1256–1261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verdin E (2014) The many faces of sirtuins: coupling of NAD metabolism, sirtuins and lifespan. Nat Med 20(1):25–27

    Article  CAS  PubMed  Google Scholar 

  • Verdin E, Hirschey MD, Finley LW et al (2010) Sirtuin regulation of mitochondria: energy production, apoptosis, and signaling. Trends Biochem Sci 35(12):669–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Virag L, Szabo C (2002) The therapeutic potential of poly(ADP-ribose) polymerase inhibitors. Pharmacol Rev 54:375–429

    Article  CAS  PubMed  Google Scholar 

  • Wang T, Zhang X, Bheda P et al (2006) Structure of Nampt/PBEF/visfatin, a mammalian NAD+ biosynthetic enzyme. Nat Struct Mol Biol 13(7):661–662

    Article  CAS  PubMed  Google Scholar 

  • White JW (1979) Composition of honey. In: Crane E (ed) Honey: a comprehensive survey. Heinemann, London, pp 57–192

    Google Scholar 

  • World Health Organization (2018) Ageing and Health. https://www.who.int/news-room/fact-sheets/detail/ageing-and-health

  • Wu PS, Yen JH, Kou MC, Wu MJ (2015) Luteolin and Apigenin attenuate 4-Hydroxy-2-Nonenal-mediated cell death through modulation of UPR, Nrf2-ARE and MAPK pathways in PC12 cells. PLoS One 10(6):e0130599

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yamazaki F, Kuroiwa T, Takikawa O, Kido R (1985) Human indolylamine 2,3-dioxygenase. Its tissue distribution, and characterization of the placental enzyme. Biochem J 230:635–638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Sauve AA (2016) NAD+ metabolism: bioenergetics, signaling and manipulation for therapy. Biochim Biophys Acta 1864(12):1787–1800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Wu Z, Renier N, Simon DJ, Uryu K, Park DS et al (2015) Pathological axonal death through a MAPK cascade that triggers a local energy deficit. Cell 160(1–2):161–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ying W, Alano CC, Garnier P, Swanson RA (2005) NAD+ as a metabolic link between DNA damage and cell death. J Neurosci Res 79:216–223

    Article  CAS  PubMed  Google Scholar 

  • Yoshino J, Mills KF, Yoon MJ et al (2011) Nicotinamide mononucleotide, a key NAD+ intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice. Cell Metab 14(4):528–536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young SN, Gauthier S (1981) Effect of tryptophan administration on tryptophan, 5-hydroxyindoleacetic acid and indoleacetic acid in human lumbar and cisternal cerebrospinal fluid. J Neurol Neurosurg Psychiatry 44(4):323–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Z’arraga-Galindo N, Vergara-Arag’on P, Rosales-Mel’endez S et al (2011) Effects of bee products on pentylenetetrazole-induced seizures in the rat. Proc West Pharmacol Soc 54:32–39

    Google Scholar 

  • Zemlan FP, Thienhaus OJ, Bosmann HB (1989) Superoxide dismutase activity in Alzheimer’s disease: possible mechanism for paired helical filament formation. Brain Res 476(1):160–162

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Ryu D, Wu Y, Gariani K, Wang X, Luan P, D’Amico D, Ropelle ER, Lutolf MP, Aebersold R, Schoonjans K, Menzies KJ, Auwerx J (2016) NAD+ repletion improves mitochondrial and stem cell function and enhances life span in mice. Science 352(6292):1436–1443

    Article  CAS  PubMed  Google Scholar 

  • Zhiping Y, Yifu G, Jun L, Li L, Zhipeng L (2018) Chrysin attenuates carrageenan-induced pleurisy and lung injury via activation of SIRT1/NRF2 pathway in rats. Eur J Pharmacol 836:83–88

    Article  CAS  Google Scholar 

  • Zhu XH, Lu M, Lee BY, Ugurbil K, Chen W (2015) In vivo NAD assay reveals the intracellular NAD contents and redox state in healthy human brain and their age dependences. Proc Natl Acad Sci U S A 112(9):2876–2881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuo L, Motherwell MS (2013) The impact of reactive oxygen species and genetic mitochondrial mutations in Parkinson’s disease. Gene 532(1):18–23

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khan, A. et al. (2020). Possible Therapeutic Potential of Flavonoids and Phenolic Acids from Honey in Age-Related Neurodegenerative Diseases Via Targeting NAD+ Degradation. In: Rehman, M.U., Majid, S. (eds) Therapeutic Applications of Honey and its Phytochemicals . Springer, Singapore. https://doi.org/10.1007/978-981-15-7305-7_2

Download citation

Publish with us

Policies and ethics