Skip to main content

Soil Microbiomes for Healthy Nutrient Recycling

  • Chapter
  • First Online:
Current Trends in Microbial Biotechnology for Sustainable Agriculture

Abstract

Nutrient cycling is a vital process in the ecosystem by which movement and exchange of nutrients in available forms from the environment into living organisms and then subsequently are recycled back into the atmosphere. Chemical elements such as C, O, H, S, N, and P are necessary to live. These elements must be recycled for organisms to live and to sustain plant growth and yield. In this context, microbes in the soil play a dynamic role. They help to release mineral nutrients through matter organic decomposition and mineral recycling. These mineralized nutrients are then absorbed by plant roots with water and used to make new organic material. They are also crucial to maintain soil structure and soil quality for sustainable plant growth. Currently, most of the world’s soils are distinguished deficient in these nutrients, and there would be high demand for chemical fertilizers to meet the deficiency of nutrients. Synthetic chemical fertilizers are undoubtedly necessary for the healthy growth of plants. But, their injudicious application is also harmful to the environment and living beings. However, the entire range of microbes associated with plants and their potential to replace synthetic farm inputs has only recently started. Accordingly, there is a need to explore the potent soil microbes for efficient nutrient recycling and identify alternative eco-friendly options for reducing chemical fertilizer’s use and its adverse impacts. In this scenario, maintaining soil fertility and crop productivity using natural microbial diversity could be the best approach for enhancing the bioavailability of nutrients and improving soil health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aislabie J, Deslippe JR, Dymond J (2013) Soil microbes and their contribution to soil services. In: Ecosystem services in New Zealand—conditions and trends. Manaaki Whenua Press, Lincoln, New Zealand, pp 143–161

    Google Scholar 

  • Aneja M, Sharma S, Schloter M, Munch JC (2006) Microbial degradation of beech litter—the influence of soil type, litter quality on the structure and function of microbial populations 15 involved in the turnover process. Microb Ecol 52:127–135

    Article  PubMed  Google Scholar 

  • Bargaz A, Lyamlouli K, Chtouki M, Zeroual Y, Dhiba D (2018) Soil microbial resources for improving fertilizer efficiency in an integrated plant nutrient management system. Front Microbiol 9:1606–1606. https://doi.org/10.3389/fmicb.2018.01606

    Article  PubMed  PubMed Central  Google Scholar 

  • Bloem J, De Ruiter PC, Bouwman LA (1997) Soil food webs and nutrient cycling in agroecosystems. In: van Elsas JD (ed) Modern soil microbiology. Marcel Dekker, Inc., New York, pp 245–278

    Google Scholar 

  • Carter MR, Gregorich EG, Anderson JW, Doran JW, Janzen HH, Pierce FJ (1997) Concepts of soil quality and significance. In: Gregorich EG, Carter MR (eds) Soil quality crop production ecosystem health. Elsevier, Amsterdam, pp 1–19

    Google Scholar 

  • Chaer GM, Resende AS, Campello EFC, de Faria SM, Boddey RM (2011) Nitrogen-fixing legume tree species for the reclamation of severely degraded lands in Brazil. Tree Physiol 31(2):139–149

    Article  PubMed  Google Scholar 

  • Doran JW, Parkin TB (1994) Defining and assessing soil quality. In: Doran JW, Coleman DC, Bezdicek DF, Stewart BA (eds) Defining soil quality for a sustainable environment. SSSA, Madison, pp 3–21

    Chapter  Google Scholar 

  • Doran JW, Parkin TB (1996) Quantitative indicators of soil quality: a minimum data set. In: Doran JW, Jones AJ (eds) Methods for assessing soil quality. SSSA, Inc., Madison, WI

    Google Scholar 

  • Dubey RK (2016) Exploring rhizospheric interactions for agricultural sustainability, the need of integrative research on multi-trophic interactions. J Clean Prod 115:362–365

    Article  CAS  Google Scholar 

  • Elferink M, Schierhorn F (2016) Global demand for food is rising. Can we meet it? Harv Bus Rev 7:2016

    Google Scholar 

  • FAO (2015) Food and Agriculture Organization (FAO), Healthy soils are the basis for healthy food production. http://www.fao.org/soils-2015/news/news-detail/en/c/277682/

  • Fortuna A (2012) The soil biota. Nat Educ Knowl 3(10):1

    Google Scholar 

  • Gougoulias C, Clark JM, Shaw LJ (2014) The role of soil microbes in the global C-cycle: tracking the below-ground microbial processing of plant-derived C for manipulating carbon dynamics in agricultural systems. J Sci Food Agric 94(12):2362–2371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta VSSR, Germida JJ (1988) Distribution of microbial biomass and its activity in different soil aggregate size calluses affected by cultivation. Soil Biol Biochem 2(6):777–786

    Article  Google Scholar 

  • Hue NV, Vega S, Silva J (2014) Manganese toxicity in a Hawaiian Oxisol affected by soil pH and organic amendments. Soil Sci Soc Am J 65(1):153–160

    Article  Google Scholar 

  • Johnston AM, Bruulsema TW (2014) 4R nutrient stewardship for improved nutrient use efficiency. Procedia Eng 83:365–370

    Article  Google Scholar 

  • Kaur T, Devi R, Rana KL, Kour D, Yadav AN (2019) Microbes with multifarious plant growth promoting attributes for sustainable agriculture. EU Voice 5:11–13

    Google Scholar 

  • Kaur T, Rana KL, Kour D, Sheikh I, Yadav N, Yadav AN et al (2020) Microbe-mediated biofortification for micronutrients: present status and future challenges. In: Rastegari AA, Yadav AN, Yadav N (eds) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: perspectives for human health. Elsevier, Amsterdam, pp 1–17. https://doi.org/10.1016/B978-0-12-820528-0.00002-8

  • Kour D, Rana KL, Yadav AN (2018) Drought stress in plants and their mitigation by soil microbiomes. EU Voice 4:29–30

    Google Scholar 

  • Kour D, Rana KL, Yadav AN, Sheikh I, Kumar V, Dhaliwal HS et al (2020a) Amelioration of drought stress in Foxtail millet (Setaria italica L.) by P-solubilizing drought-tolerant microbes with multifarious plant growth promoting attributes. Environ Sustain 3:23–34. https://doi.org/10.1007/s42398-020-00094-1

    Article  Google Scholar 

  • Kour D, Rana KL, Yadav AN, Yadav N, Kumar M, Kumar V et al (2020b) Microbial biofertilizers: bioresources and eco-friendly technologies for agricultural and environmental sustainability. Biocatal Agric Biotechnol 23:101487. https://doi.org/10.1016/j.bcab.2019.101487

    Article  Google Scholar 

  • Kour D, Rana KL, Yadav N, Yadav AN, Kumar A, Meena VS et al (2019) Rhizospheric microbiomes: biodiversity, mechanisms of plant growth promotion, and biotechnological applications for sustainable agriculture. In: Kumar A, Meena VS (eds) Plant growth promoting Rhizobacteria for agricultural sustainability: from theory to practices. Springer Singapore, Singapore, pp 19–65. https://doi.org/10.1007/978-981-13-7553-8_2

    Chapter  Google Scholar 

  • Kumar A, Chaturvedi AK, Yadav K, Arunkumar KP, Malyan SK, Raja P et al (2019a) Fungal phytoremediation of heavy metal-contaminated resources: current scenario and future prospects. In: Yadav AN, Singh S, Mishra S, Gupta A (eds) Recent advancement in white biotechnology through fungi, Perspective for sustainable environments, vol 3. Springer International Publishing, Cham, pp 437–461. https://doi.org/10.1007/978-3-030-25506-0_18

    Chapter  Google Scholar 

  • Kumar A, Maurya BR, Raghuwanshi R, Meena VS, Islam MT (2017) Co-inoculation with Enterobacter and Rhizobacteria on yield and nutrient uptake by wheat in the alluvial soil under Indo-Gangetic plain of India. J Plant Growth Regul 36(3):608–617

    Article  CAS  Google Scholar 

  • Kumar M, Kour D, Yadav AN, Saxena R, Rai PK, Jyoti A et al (2019b) Biodiversity of methylotrophic microbial communities and their potential role in mitigation of abiotic stresses in plants. Biologia 74:287–308. https://doi.org/10.2478/s11756-019-00190-6

    Article  CAS  Google Scholar 

  • Kumar V, Joshi S, Pant NC, Sangwan P, Yadav AN, Saxena A et al (2019c) Molecular approaches for combating multiple abiotic stresses in crops of arid and semi-arid region. In: Singh SP, Upadhyay SK, Pandey A, Kumar S (eds) Molecular approaches in plant biology and environmental challenges. Springer, Singapore, pp 149–170. https://doi.org/10.1007/978-981-15-0690-1_8

    Chapter  Google Scholar 

  • Kumar V, Yadav AN, Saxena A, Sangwan P, Dhaliwal HS (2016) Unravelling rhizospheric diversity and potential of phytase producing microbes. SM J Biol 2:1009

    Google Scholar 

  • Leong J (1986) Siderophores: their biochemistry and possible role in the biocontrol of plant pathogens. Annu Rev Phytopathol 24:187–209

    Article  CAS  Google Scholar 

  • Lombard N, Prestat E, Elsas JD, Simonet P (2011) Soil-specific limitations for access and analysis of soil microbial communities by metagenomics. FEMS Microbiol Ecol 78(1):31–49

    Article  CAS  PubMed  Google Scholar 

  • Madsen EL (2005) Identifying microorganisms responsible for ecologically critical biogeochemical processes. Nat Rev Microbiol 3(5):439

    Article  CAS  PubMed  Google Scholar 

  • Madsen EL (2008) Microbial biogeochemistry: a grand synthesis in environmental microbiology: from genomes to biogeochemistry. Blackwell Publishing, Malden, MA, pp 281–299

    Google Scholar 

  • Maier RM, Pepper IL, Gerba CP (2009) Environmental microbiology, vol 397. Academic Press, Burlington, MA

    Google Scholar 

  • Malav LC, Khan SA, Gupta N (2015) Impacts of biogas slurry application on soil environment, yield and nutritional quality of baby corn. Soc Plant Res, 74

    Google Scholar 

  • Malyan SK, Kumar A, Baram S, Kumar J, Singh S, Kumar SS et al (2019) Role of fungi in climate change abatement through carbon sequestration. In: Yadav AN, Singh S, Mishra S, Gupta A (eds) Recent advancement in white biotechnology through fungi, Perspective for sustainable environments, vol 3. Springer International Publishing, Cham, pp 283–295. https://doi.org/10.1007/978-3-030-25506-0_11

    Chapter  Google Scholar 

  • Monier J-M, Demanèche S, Delmont TO, Mathieu A, Vogel TM, Simonet P (2011) Metagenomic exploration of antibiotic resistance in soil. Curr Opin Microbiol 14:229–235. https://doi.org/10.1016/j.mib.2011.04.010

    Article  CAS  PubMed  Google Scholar 

  • Neiland JB (1995) Siderophore: structure and function of microbial iron transport compounds. J Biol Chem 270:26723–26726

    Article  Google Scholar 

  • Neiland JB, Nakamura K (1997) Detection, determination, isolation, characterization, and regulation of microbial iron chelates. In: Winkelmann G (ed) Handbook of microbial iron chelates. CRC Press, Boca Raton, pp 1–14

    Google Scholar 

  • Odum EP (1989) Ecology and our endangered life support systems. Sinauer Associates, Inc., Sunderland, MA

    Google Scholar 

  • Pankhurst CE, Doube BM (1997) Biological indicators of soil health: a synthesis. In: Pankhurst CE, Doube BM, Gupta VVSR (eds) Biological indicators of soil health. CAB International, Wallingford, pp 419–435

    Google Scholar 

  • Pathak H, Bhatia A, Prasad S, Singh S, Kumar S, Jain MC, Singh P (2003) Effect of DCD, FYM, and moisture regime on nitrous oxide emission from an Alluvial soil in rice-wheat cropping system. J Indian Soc Soil Sci 51(2):139–145

    CAS  Google Scholar 

  • Patten CL, Glick BR (1996) Bacterial biosynthesis of indole-3-acetic acid. Can J Microbiol 42:207–220

    Article  CAS  PubMed  Google Scholar 

  • Rajendhran J, Gunasekaran P (2008) Strategies for accessing soil metagenome for desired applications. Biotechnol Adv 26(6):576–590

    Article  CAS  PubMed  Google Scholar 

  • Rana KL, Kour D, Kaur T, Devi R, Yadav AN, Yadav N et al (2020a) Endophytic microbes: biodiversity, plant growth-promoting mechanisms and potential applications for agricultural sustainability. Antonie Van Leeuwenhoek. https://doi.org/10.1007/s10482-020-01429-y

  • Rana KL, Kour D, Kaur T, Sheikh I, Yadav AN, Kumar V et al (2020b) Endophytic microbes from diverse wheat genotypes and their potential biotechnological applications in plant growth promotion and nutrient uptake. Proc Natl Acad Sci India B. https://doi.org/10.1007/s40011-020-01168-0

  • Rana KL, Kour D, Sheikh I, Dhiman A, Yadav N, Yadav AN et al (2019) Endophytic fungi: biodiversity, ecological significance and potential industrial applications. In: Yadav AN, Mishra S, Singh S, Gupta A (eds) Recent advancement in white biotechnology through fungi, Diversity and enzymes perspectives, vol 1. Springer, Cham, pp 1–62

    Google Scholar 

  • Rastegari AA, Yadav AN, Yadav N (2020a) New and Future Developments in Microbial Biotechnology and Bioengineering: Trends of Microbial Biotechnology for Sustainable Agriculture and Biomedicine Systems: Diversity and Functional Perspectives. Elsevier, Amsterdam

    Google Scholar 

  • Rastegari AA, Yadav AN, Yadav N (2020b) New and Future Developments in Microbial Biotechnology and Bioengineering: Trends of Microbial Biotechnology for Sustainable Agriculture and Biomedicine Systems: Perspectives for Human Health. Elsevier, Amsterdam

    Google Scholar 

  • RodrĂ­guez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339

    Article  PubMed  Google Scholar 

  • Sahu N, Vasu D, Sahu A, Lal N, Singh SK (2017) Strength of microbes in nutrient cycling: a key to soil health. In: Meena VS, Mishra PK, Bisht JK, Pattanayak A (eds) Agriculturally important microbes for sustainable agriculture, Plant-soil-microbe nexus, vol I. Springer Singapore, Singapore, pp 69–86. https://doi.org/10.1007/978-981-10-5589-8_4

    Chapter  Google Scholar 

  • Santi C, Bogusz D, Franche C (2013) Biological nitrogen fixation in non-legume plants. Ann Bot 111(5):743–767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarkar A, Saha M, Meena VS (2017) Plant beneficial Rhizospheric microbes (PBRMs): prospects for increasing productivity and sustaining the resilience of soil fertility. In: Meena VS, Mishra PK, Bisht JK, Pattanayak A (eds) Agriculturally important microbes for sustainable agriculture, Plant-soil-microbe nexus, vol I. Springer Singapore, Singapore, pp 3–29. https://doi.org/10.1007/978-981-10-5589-8_1

    Chapter  Google Scholar 

  • Schimel JP, Bennett J (2004) Nitrogen mineralization: challenges of a changing paradigm. Ecol 85:591–602

    Article  Google Scholar 

  • Seybold CA, Herrick JE, Brejda JJ (1999) Soil resilience: a fundamental component of soil quality. Soil Sci 164(4):224–234

    Article  CAS  Google Scholar 

  • Sharma S, Mehta R, Gupta R, Schloter M (2012) Improved protocol for the extraction of 5 bacterial mRNA from soils. J Microbiol Methods 91:62–64

    Article  CAS  PubMed  Google Scholar 

  • Sindhu SS, Phour M, Sehrawat A (2016) K-solubilizing microorganisms (KSM) and its effect on plant growth improvement. In: Meenav VS et al (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 171–185

    Chapter  Google Scholar 

  • Singer MJ, Ewing S (2000) Soil quality. In: Sumner ME (ed) Handbook of soil science. CRC Press, Boca Raton, pp G271–G298

    Google Scholar 

  • Singh A, Kumari R, Yadav AN, Mishra S, Sachan A, Sachan SG (2020a) Tiny microbes, big yields: microorganisms for enhancing food crop production sustainable development. In: Rastegari AA, Yadav AN, Yadav N (eds) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: diversity and functional perspectives. Elsevier, Amsterdam, pp 1–16. https://doi.org/10.1016/B978-0-12-820526-6.00001-4

  • Singh B, Boukhris I, Pragya, Kumar V, Yadav AN, Farhat-Khemakhem A et al (2020b) Contribution of microbial phytases in improving plants growth and nutrition: a review. Pedosphere 30:295–313. https://doi.org/10.1016/S1002-0160(20)60010-8

    Article  Google Scholar 

  • Singh J, Yadav AN (2020) Natural bioactive products in sustainable agriculture. Springer, Singapore

    Book  Google Scholar 

  • Singh JS, Kumar A, Rai AN, Singh DP (2016) Cyanobacteria: a precious bioresource in agriculture, ecosystem, and environmental sustainability. Front Microbiol 7:529

    PubMed  PubMed Central  Google Scholar 

  • Singh NP, Singh RK, Meena VS, Meena RK (2015) Can we use maize (Zea mays) rhizobacteria as plant growth promoter? Vegetos 28(1):8699

    Google Scholar 

  • Subrahmanyam G, Kumar A, Sandilya SP, Chutia M, Yadav AN (2020) Diversity, plant growth promoting attributes, and agricultural applications of rhizospheric microbes. In: Yadav AN, Singh J, Rastegari AA, Yadav N (eds) Plant microbiomes for sustainable agriculture. Springer International Publishing, Cham, pp 1–52. https://doi.org/10.1007/978-3-030-38453-1_1

    Chapter  Google Scholar 

  • Suman A, Yadav AN, Verma P (2016) Endophytic microbes in crops: diversity and beneficial impact for sustainable agriculture. In: Singh D, Abhilash P, Prabha R (eds) Microbial inoculants in sustainable agricultural productivity, research perspectives. Springer-Verlag, New Delhi, pp 117–143. https://doi.org/10.1007/978-81-322-2647-5_7

    Chapter  Google Scholar 

  • Sylvia DM, Fuhrmann JJ, Hartel PG, Zuberer DA (2005) Principles and applications of soil microbiology. Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  • Takoutsing B, Weber J, Aynekulu E, MartĂ­n JAR, Shepherd K, Sila A, Tchoundjeu Z, Diby L (2016) Assessment of soil health indicators for sustainable production of maize in smallholder farming systems in the highlands of Cameroon. Geoderma 276:64–73

    Article  CAS  Google Scholar 

  • Tilman D, Hill J, Befort BL (2011) Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci U S A 108(50):20260–20264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Timmusk S, Behers L, Muthoni J, Muraya A, Aronsson AC (2017) Perspectives and challenges of microbial application for crop improvement. Front Plant Sci 8:49

    Article  PubMed  PubMed Central  Google Scholar 

  • Torsvik V, Ovreas L (2002) Microbial diversity and function in soil: from genes to ecosystems. Curr Opin Microbiol 5(3):240–245

    Article  CAS  PubMed  Google Scholar 

  • Totsche KU, Rennert T, Gerzabek MH, Kogel-Knabner I, Smalla K, Spiteller M, Vogel HJ (2010) Biogeochemical interfaces in soil: the interdisciplinary challenge for soil science. J Plant Nutr Soil Sci 173:88–99

    Article  CAS  Google Scholar 

  • Utuk IO, Daniel EE (2015) Land degradation: a threat to food security: a global assessment. J Environ Earth Sci 5(8):13–21

    Google Scholar 

  • Van Elsas JD, Jansson JK, Trevors JT (2007) Modern soil microbiology, 2nd edn. CRC Press, New York, NY

    Google Scholar 

  • Verma P, Yadav AN, Khannam KS, Kumar S, Saxena AK, Suman A (2016) Molecular diversity and multifarious plant growth promoting attributes of Bacilli associated with wheat (Triticum aestivum L.) rhizosphere from six diverse agro-ecological zones of India. J Basic Microbiol 56:44–58

    Article  CAS  PubMed  Google Scholar 

  • Verma P, Yadav AN, Kumar V, Singh DP, Saxena AK (2017) Beneficial plant-microbes interactions: biodiversity of microbes from diverse extreme environments and its impact for crop improvement. In: Singh DP, Singh HB, Prabha R (eds) Plant-microbe interactions in agro-ecological perspectives, Microbial interactions and agro-ecological impacts, vol 2. Springer Singapore, Singapore, pp 543–580. https://doi.org/10.1007/978-981-10-6593-4_22

    Chapter  Google Scholar 

  • Wani FS, Ahmad L, Ali T, Mushtaq A (2015) Role of microorganisms in nutrient mobilization and soil health—a review. J Pure Appl Microbiol 9:1401–1410

    Google Scholar 

  • Xu Z, Yu G, Zhang X, Ge J, He N, Wang Q, Wang D (2015) The variations in soil microbial communities, enzyme activities. Appl Soil Ecol 86:19–29

    Article  Google Scholar 

  • Yadav AN (2020) Plant microbiomes for sustainable agriculture: current research and future challenges. In: Yadav AN, Singh J, Rastegari AA, Yadav N (eds) Plant microbiomes for sustainable agriculture. Springer International Publishing, Cham, pp 475–482. https://doi.org/10.1007/978-3-030-38453-1_16

    Chapter  Google Scholar 

  • Yadav AN, Kumar R, Kumar S, Kumar V, Sugitha T, Singh B et al (2017a) Beneficial microbiomes: biodiversity and potential biotechnological applications for sustainable agriculture and human health. J Appl Biol Biotechnol 5:45–57

    CAS  Google Scholar 

  • Yadav AN, Kumar V, Prasad R, Saxena AK, Dhaliwal HS (2018a) Microbiome in crops: diversity, distribution and potential role in crops improvements. In: Prasad R, Gill SS, Tuteja N (eds) Crop improvement through microbial biotechnology. Elsevier, Los Angeles, pp 305–332

    Google Scholar 

  • Yadav AN, Rastegari AA, Yadav N, Kour D (2020a) Advances in plant microbiome and sustainable agriculture: diversity and biotechnological applications. Springer, Singapore

    Book  Google Scholar 

  • Yadav AN, Rastegari AA, Yadav N, Kour D (2020b) Advances in plant microbiome and sustainable agriculture: functional annotation and future challenges. Springer, Singapore

    Book  Google Scholar 

  • Yadav AN, Sharma D, Gulati S, Singh S, Dey R, Pal KK et al (2015) Haloarchaea endowed with phosphorus solubilization attribute implicated in phosphorus cycle. Sci Rep 5:12293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav AN, Singh J, Rastegari AA, Yadav N (2020c) Plant microbiomes for sustainable agriculture. Springer International Publishing, Cham

    Book  Google Scholar 

  • Yadav AN, Verma P, Kumar S, Kumar V, Kumar M, Singh BP et al. (2018b) Actinobacteria from rhizosphere: molecular diversity, distributions and potential biotechnological applications. In: Singh B, Gupta V, Passari A (eds) New and future developments in microbial biotechnology and bioengineering.Elsevier, Amsterdam, pp. 13–41. https://doi.org/10.1016/B978-0-444-63994-3.00002-3

  • Yadav AN, Verma P, Singh B, Chauhan VS, Suman A, Saxena AK (2017b) Plant growth promoting bacteria: biodiversity and multifunctional attributes for sustainable agriculture. Adv Biotechnol Microbiol 5:1–16

    Google Scholar 

  • Yadav BK, Sidhu AS (2016) Dynamics of K and their bioavailability for plant nutrition. In: Meena VS et al (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 187–201

    Chapter  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the ICAR-Indian Agricultural Research Institute (IARI), New Delhi, and the Indian Council of Agricultural Research for providing facilities and financial support to undertake these investigations. There are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Prasad, S. et al. (2021). Soil Microbiomes for Healthy Nutrient Recycling. In: Yadav, A.N., Singh, J., Singh, C., Yadav, N. (eds) Current Trends in Microbial Biotechnology for Sustainable Agriculture . Environmental and Microbial Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-15-6949-4_1

Download citation

Publish with us

Policies and ethics