Skip to main content

Mitophagy and Reverse Warburg Effect: Metabolic Compartmentalization of Tumor Microenvironment

  • Chapter
  • First Online:
Autophagy in tumor and tumor microenvironment

Abstract

‘The Warburg effect’ is one of the aberrant glucose metabolism pathways in cancer cells that generate malignant phenotypes and promotes cancer progression. However, in the year 2009, a novel model called ‘two-compartment metabolic coupling’ model or ‘the reverse Warburg effect’ was proposed where the tumor stromal plays a crucial role in the process of tumor progression. Based on this new model, the present review summarizes the autophagic stroma model of cancer and multiple compartment model of tumor metabolism. Cancer-associated fibroblast cells in tumor microenvironment undergo aerobic glycolysis (the reverse Warburg effect) just like the cancer cells. Such a phenomenon is possible only due to the forced activation of glycolysis by decreasing the mitochondrial mass and/or generating dysfunctional mitochondria. The tumor stroma is often found with autophagic and mitophagic activities as evidenced by the higher expression of autophagic and mitophagic signature molecules. Moreover, caveolin-1 and hypoxia-inducible factor-1α play a fundamental role in governing the mitophagy-mediated occurrence of ‘reverse Warburg effect’. To the surprise, cancer stem cell also follows the same strategy to exploit the tumor stroma in order to derive high energy fuels for its survival and proliferation. Such parasitic energy-coupling between the cancer cell and cancer-associated fibroblasts makes the fibroblasts a metabolic slave. The metabolic coupling is the result of the paracrine regulation where oxidative stress generated in adjacent fibroblasts by the reactive oxygen species (ROS) produced by cancer cells along with the up-regulation of the oncometabolite transport process through various transporters. This review also discusses the paradigm shift from ‘the Warburg effect’ to ‘the reverse Warburg effect’. It also describes the pivotal role of mitophagy in triggering the ‘the reverse Warburg effect’.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andersen S, Solstad Ø, Moi L et al (2015) Organized metabolic crime in prostate cancer: the coexpression of MCT1 in tumor and MCT4 in stroma is an independent prognosticator for biochemical failure. Urol Oncol 33:338.e9–338.e3.38E17. https://doi.org/10.1016/j.urolonc.2015.05.013

    Article  CAS  Google Scholar 

  • Astuti D, Latif F, Dallol A, Dahia PL, Douglas F, George E, Sköldberg F, Husebye ES, Eng C, Maher ER (2001) Gene mutations in the succinate dehydrogenase subunit SDHB cause susceptibility to familial pheochromocytoma and to familial paraganglioma. Am J Hum Genet 69:49–54

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Avagliano A, Granato G, Ruocco MR, Romano V, Belviso I, Carfora A, Montagnani S, Arcucci A (2018) Metabolic Reprogramming of Cancer Associated Fibroblasts: The Slavery of Stromal Fibroblasts. Biomed Res Int 2018:6075403

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Azuma M, Shi M, Danenberg KD, Gardner H, Barrett C, Jacques CJ, Sherod A, Iqbal S, El-Khoueiry A, Yang D (2007) Serum lactate dehydrogenase levels and glycolysis significantly correlate with tumor VEGFA and VEGFR expression in metastatic CRC patients. Pharmacogenomics 8:1705–1713

    Article  PubMed  CAS  Google Scholar 

  • Bagordakis E, Sawazaki-Calone I, Macedo CC, Carnielli CM, de Oliveira CE, Rodrigues PC, Rangel AL, Dos Santos JN, Risteli J, Graner E, Salo T, Paes Leme AF, Coletta RD (2016) Secretome profiling of oral squamous cell carcinoma-associated fibroblasts reveals organization and disassembly of extracellular matrix and collagen metabolic process signatures. Tumour Biol 37:9045–9057

    Article  PubMed  CAS  Google Scholar 

  • Bartrons R, Caro J (2007) Hypoxia, glucose metabolism and the Warburg’s effect. J Bioenerg Biomembr 39:223–229

    Article  PubMed  CAS  Google Scholar 

  • Baysal BE, Ferrell RE, Willett-Brozick JE, Lawrence EC, Myssiorek D, Bosch A, van der Mey A, Taschner PE, Rubinstein WS, Myers EN (2000) Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma. Science 287:848–851

    Article  PubMed  CAS  Google Scholar 

  • Bensaad K, Tsuruta A, Selak MA, Vidal MNC, Nakano K, Bartrons R, Gottlieb E, Vousden KH (2006) TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell 126:107–120

    Article  PubMed  CAS  Google Scholar 

  • Bonuccelli G, Tsirigos A, Whitaker-Menezes D, Pavlides S, Pestell RG, Chiavarina B, Frank PG, Flomenberg N, Howell A, Martinez-Outschoorn UE, Sotgia F, Lisanti MP (2010) Ketones and lactate “fuel” tumor growth and metastasis: Evidence that epithelial cancer cells use oxidative mitochondrial metabolism. Cell Cycle 9:3506–3514

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Capparelli C, Guido C, Whitaker-Menezes D, Bonuccelli G, Balliet R, Pestell TG, Goldberg AF, Pestell RG, Howell A, Sneddon S (2012) Autophagy and senescence in cancer-associated fibroblasts metabolically supports tumor growth and metastasis, via glycolysis and ketone production. Cell Cycle 11:2285–2302

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chae YC, Kim JH (2018) Cancer stem cell metabolism: target for cancer therapy. BMB Rep 51(7):319–326

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chang C-H, Qiu J, O’Sullivan D, Buck MD, Noguchi T, Curtis JD, Chen Q, Gindin M, Gubin MM, Van Der Windt GJ (2015) Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell 162:1229–1241

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chiavarina B, Whitaker-Menezes D, Martinez-Outschoorn UE, Witkiewicz AK, Birbe R, Howell A, Pestell RG, Smith J, Daniel R, Sotgia F, Lisanti MP (2011) Pyruvate kinase expression (PKM1 and PKM2) in cancer-associated fibroblasts drives stromal nutrient production and tumor growth. Cancer Biol Ther 12:1101–1113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Choi J, Kim DH, Jung WH, Koo JS (2013) Metabolic interaction between cancer cells and stromal cells according to breast cancer molecular subtype. Breast Cancer Res 15:R78

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cirri P, Chiarugi P (2012) Cancer-associated-fibroblasts and tumour cells: a diabolic liaison driving cancer progression. Cancer Metastasis Rev 31:195–208

    Article  PubMed  Google Scholar 

  • Curry JM, Tuluc M, Whitaker-Menezes D, Ames JA, Anantharaman A, Butera A, Leiby B, Cognetti DM, Sotgia F, Lisanti MP, Martinez-Outschoorn UE (2013) Cancer metabolism, stemness and tumor recurrence: MCT1 and MCT4 are functional biomarkers of metabolic symbiosis in head and neck cancer. Cell Cycle 12:1371–1384

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Curry JM, Sprandio J, Cognetti D, Luginbuhl A, Bar-ad V, Pribitkin E, Tuluc M (2014) Tumor microenvironment in head and neck squamous cell carcinoma. Semin Oncol 41:217–234

    Article  PubMed  CAS  Google Scholar 

  • Dang CV, J-w K, Gao P, Yustein J (2008) The interplay between MYC and HIF in cancer. Nat Rev Cancer 8:51–56

    Article  PubMed  CAS  Google Scholar 

  • Dang L, White DW, Gross S, Bennett BD, Bittinger MA, Driggers EM, Fantin VR, Jang HG, Jin S, Keenan MC (2009) Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 462:739–744

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Saedeleer C, Copetti T, Porporato P, Verrax J, Feron O (2012) Lactate activates HIF-1 in oxidative but not in Warburg-phenotype human. PLoS One 7:e46571

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • DeBerardinis RJ, Mancuso A, Daikhin E, Nissim I, Yudkoff M, Wehrli S, Thompson CB (2007) Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci 104:19345–19350

    Article  PubMed  PubMed Central  Google Scholar 

  • Egeblad M, Nakasone ES, Werb Z (2010) Tumors as organs: complex tissues tha interface with the entire organism. Dev Cell 18:884–901

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fantin VR, St-Pierre J, Leder P (2006) Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell 9:425–434

    Article  PubMed  CAS  Google Scholar 

  • Feron O (2009) Pyruvate into lactate and back: from the Warburg effect to symbiotic energy fuel exchange in cancer cells. Radiother Oncol 92:329–333

    Article  PubMed  CAS  Google Scholar 

  • Fiaschi T, Marini A, Giannoni E, Taddei ML, Gandellini P, De Donatis A, Lanciotti M, Serni S, Cirri P, Chiarugi P (2012) Reciprocal metabolic reprogramming through lactate shuttle coordinately influences tumor-stroma interplay. Cancer Res 72:5130–5140

    Article  PubMed  CAS  Google Scholar 

  • Friedl P, Alexander S (2011) Cancer invasion and the microenvironment: plasticity and reciprocity. Cell 147:992–1009

    Article  PubMed  CAS  Google Scholar 

  • Galluzzi L, Kepp O, Kroemer G (2012) Reverse Warburg: straight to cancer. Cell Cycle 11:1059

    Article  PubMed  CAS  Google Scholar 

  • Gao P, Tchernyshyov I, Chang T-C, Lee Y-S, Kita K, Ochi T, Zeller KI, De Marzo AM, Van Eyk JE, Mendell JT (2009) c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature 458:762–765

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Giannoni E, Taddei ML, Morandi A, Comito G, Calvani M, Bianchini F, Richichi B, Raugei G, Wong N, Tang D (2015) Targeting stromal-induced pyruvate kinase M2 nuclear translocation impairs oxphos and prostate cancer metastatic spread. Oncotarget 6:24061

    Article  PubMed  PubMed Central  Google Scholar 

  • Gogvadze V, Zhivotovsky B, Orrenius S (2010) The Warburg effect and mitochondrial stability in cancer cells. Mol Asp Med 31:60–74

    Article  CAS  Google Scholar 

  • Gohil VM, Sheth SA, Nilsson R, Wojtovich AP, Lee JH, Perocchi F, Chen W, Clish CB, Ayata C, Brookes PS (2010) Nutrient-sensitized screening for drugs that shift energy metabolism from mitochondrial respiration to glycolysis. Nat Biotechnol 28:249–255

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guido C, Whitaker-Menezes D, Lin Z, Pestell RG, Howell A, Zimmers TA, Casimiro MC, Aquila S, Ando S, Martinez-Outschoorn UE, Sotgia F, Lisanti MP (2012) Mitochondrial fission induces glycolytic reprogramming in cancer-associated myofibroblasts, driving stromal lactate production, and early tumor growth. Oncotarget 3:798–810

    Article  PubMed  PubMed Central  Google Scholar 

  • Hanahan D, Coussens LM (2012) Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 21:309–322

    Article  PubMed  CAS  Google Scholar 

  • Hitosugi T, Kang S, Vander Heiden MG, Chung TW, Elf S, Lythgoe K, Dong S, Lonial S, Wang X, Chen GZ, Xie J, Gu TL, Polakiewicz RD, Roesel JL, Boggon TJ, Khuri FR, Gilliland DG, Cantley LC, Kaufman J, Chen J (2009) Tyrosine phosphorylation inhibits PKM2 to promote the Warburg effect and tumor growth. Sci Signal 2:ra73

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Høyer-Hansen M, Jäättelä M (2007) AMP-activated protein kinase: a universal regulator of autophagy? Autophagy 3:381–383

    Article  PubMed  Google Scholar 

  • Jiang E, Xu Z, Wang M, Yan T, Huang C, Zhou X, Liu Q, Wang L, Chen Y, Wang H, Liu K, Shao Z, Shang Z (2019) Tumoral microvesicle-activated glycometabolic reprogramming in fibroblasts promotes the progression of oral squamous cell carcinoma. FASEB J 33:5690–5703

    Article  PubMed  CAS  Google Scholar 

  • Johnson JM, Cotzia P, Fratamico R, Mikkilineni L, Chen J, Colombo D, Mollaee M, Whitaker-Menezes D, Domingo-Vidal M, Lin Z (2017) MCT1 in invasive ductal carcinoma: monocarboxylate metabolism and aggressive breast cancer. Front Cell Dev Biol 5:27

    Article  PubMed  PubMed Central  Google Scholar 

  • Jose C, Bellance N, Rossignol R (2011) Choosing between glycolysis and oxidative phosphorylation: a tumor’s dilemma? Biochim Biophys Acta Bioenerg 1807:552–561

    Article  CAS  Google Scholar 

  • Kihira Y, Yamano N, Izawa-Ishizawa Y, Ishizawa K, Ikeda Y, Tsuchiya K, Tamaki T, Tomita S (2011) Basic fibroblast growth factor regulates glucose metabolism through glucose transporter 1 induced by hypoxia-inducible factor-1α in adipocytes. Int J Biochem Cell Biol 43:1602–1611

    Article  PubMed  CAS  Google Scholar 

  • Kishton RJ, Rathmell JC (2015) Novel therapeutic targets of tumor metabolism. Cancer J 21:62–69

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ko YH, Lin Z, Flomenberg N, Pestell RG, Howell A, Sotgia F, Lisanti MP, Martinez-Outschoorn UE (2011) Glutamine fuels a vicious cycle of autophagy in the tumor stroma and oxidative mitochondrial metabolism in epithelial cancer cells: implications for preventing chemotherapy resistance. Cancer Biol Ther 12:1085–1097

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Le Floch R, Chiche J, Marchiq I, Naiken T, Ilc K, Murray CM, Critchlow SE, Roux D, Simon M-P, Pouysségur J (2011) CD147 subunit of lactate/H+ symporters MCT1 and hypoxia-inducible MCT4 is critical for energetics and growth of glycolytic tumors. Proc Natl Acad Sci 108:16663–16668

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee M, Yoon JH (2015) Metabolic interplay between glycolysis and mitochondrial oxidation: the reverse Warburg effect and its therapeutic implication. World J Biol Chem 6:148–161

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee DC, Sohn HA, Park Z-Y, Oh S, Kang YK, Lee K-m, Kang M, Jang YJ, Yang S-J, Hong YK (2015) A lactate-induced response to hypoxia. Cell 161:595–609

    Article  PubMed  CAS  Google Scholar 

  • Lisanti MP, Martinez-Outschoorn UE, Chiavarina B, Pavlides S, Whitaker-Menezes D, Tsirigos A, Witkiewicz AK, Lin Z, Balliet RM, Howell A, Sotgia F (2010) Understanding the “lethal” drivers of tumor-stroma co-evolution: emerging role(s) for hypoxia, oxidative stress and autophagy/mitophagy in the tumor micro-environment. Cancer Biol Ther 10:537–542

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu K, Shi Y, Guo XH, Ouyang YB, Wang SS, Liu DJ, Wang AN, Li N, Chen DX (2014) Phosphorylated AKT inhibits the apoptosis induced by DRAM-mediated mitophagy in hepatocellular carcinoma by preventing the translocation of DRAM to mitochondria. Cell Death Dis 5:e1078

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lopes-Coelho F, Andre S, Felix A, Serpa J (2018) Breast cancer metabolic cross-talk: fibroblasts are hubs and breast cancer cells are gatherers of lipids. Mol Cell Endocrinol 462:93–106

    Article  PubMed  CAS  Google Scholar 

  • Maddocks OD, Vousden KH (2011) Metabolic regulation by p53. J Mol Med 89:237–245

    Article  PubMed  CAS  Google Scholar 

  • Marroquin LD, Hynes J, Dykens JA, Jamieson JD, Will Y (2007) Circumventing the Crabtree effect: replacing media glucose with galactose increases susceptibility of HepG2 cells to mitochondrial toxicants. Toxicol Sci 97:539–547

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Outschoorn UE, Balliet RM, Rivadeneira DB, Chiavarina B, Pavlides S, Wang C, Whitaker-Menezes D, Daumer KM, Lin Z, Witkiewicz AK, Flomenberg N, Howell A, Pestell RG, Knudsen ES, Sotgia F, Lisanti MP (2010a) Oxidative stress in cancer associated fibroblasts drives tumor-stroma co-evolution: a new paradigm for understanding tumor metabolism, the field effect and genomic instability in cancer cells. Cell Cycle 9:3256–3276

    PubMed  PubMed Central  CAS  Google Scholar 

  • Martinez-Outschoorn UE, Pavlides S, Whitaker-Menezes D, Daumer KM, Milliman JN, Chiavarina B, Migneco G, Witkiewicz AK, Martinez-Cantarin MP, Flomenberg N, Howell A, Pestell RG, Lisanti MP, Sotgia F (2010b) Tumor cells induce the cancer associated fibroblast phenotype via caveolin-1 degradation: implications for breast cancer and DCIS therapy with autophagy inhibitors. Cell Cycle 9:2423–2433

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Outschoorn UE, Trimmer C, Lin Z, Whitaker-Menezes D, Chiavarina B, Zhou J, Wang C, Pavlides S, Martinez-Cantarin MP, Capozza F, Witkiewicz AK, Flomenberg N, Howell A, Pestell RG, Caro J, Lisanti MP, Sotgia F (2010c) Autophagy in cancer associated fibroblasts promotes tumor cell survival: role of hypoxia, HIF1 induction and NFkappaB activation in the tumor stromal microenvironment. Cell Cycle 9:3515–3533

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martinez-Outschoorn UE, Whitaker-Menezes D, Pavlides S, Chiavarina B, Bonuccelli G, Casey T, Tsirigos A, Migneco G, Witkiewicz A, Balliet R, Mercier I, Wang C, Flomenberg N, Howell A, Lin Z, Caro J, Pestell RG, Sotgia F, Lisanti MP (2010d) The autophagic tumor stroma model of cancer or “battery-operated tumor growth”: a simple solution to the autophagy paradox. Cell Cycle 9:4297–4306

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martinez-Outschoorn UE, Lin Z, Trimmer C, Flomenberg N, Wang C, Pavlides S, Pestell RG, Howell A, Sotgia F, Lisanti MP (2011a) Cancer cells metabolically “fertilize” the tumor microenvironment with hydrogen peroxide, driving the Warburg effect: implications for PET imaging of human tumors. Cell Cycle 10:2504–2520

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martinez-Outschoorn UE, Pavlides S, Howell A, Pestell RG, Tanowitz HB, Sotgia F, Lisanti MP (2011b) Stromal–epithelial metabolic coupling in cancer: integrating autophagy and metabolism in the tumor microenvironment. Int J Biochem Cell Biol 43:1045–1051

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martinez-Outschoorn UE, Balliet RM, Lin Z, Whitaker-Menezes D, Howell A, Sotgia F, Lisanti MP (2012) Hereditary ovarian cancer and two-compartment tumor metabolism: epithelial loss of BRCA1 induces hydrogen peroxide production, driving oxidative stress and NFκB activation in the tumor stroma. Cell Cycle 11:4152–4166

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martinez-Outschoorn UE, Curry JM, Ko YH, Lin Z, Tuluc M, Cognetti D, Birbe RC, Pribitkin E, Bombonati A, Pestell RG, Howell A, Sotgia F, Lisanti MP (2013) Oncogenes and inflammation rewire host energy metabolism in the tumor microenvironment: RAS and NFkappaB target stromal MCT4. Cell Cycle 12:2580–2597

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Matoba S, Kang J-G, Patino WD, Wragg A, Boehm M, Gavrilova O, Hurley PJ, Bunz F, Hwang PM (2006) p53 regulates mitochondrial respiration. Science 312:1650–1653

    Article  PubMed  CAS  Google Scholar 

  • Muda M (2011) DUSPs strike again: Comment on: Kozarova A, et al. Cell Cycle 2011; 10: 1669–78. Cell Cycle 10:2827–2835

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Naik PP, Birbrair A, Bhutia SK (2019) Mitophagy-driven metabolic switch reprograms stem cell fate. Cell Mol Life Sci 76:27–43

    Article  PubMed  CAS  Google Scholar 

  • Nilsson LM, Forshell TZP, Rimpi S, Kreutzer C, Pretsch W, Bornkamm GW, Nilsson JA (2012) Mouse genetics suggests cell-context dependency for Myc-regulated metabolic enzymes during tumorigenesis. PLoS Genet 8:e1002573

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Obre E, Rossignol R (2015) Emerging concepts in bioenergetics and cancer research: metabolic flexibility, coupling, symbiosis, switch, oxidative tumors, metabolic remodeling, signaling and bioenergetic therapy. Int J Biochem Cell Biol 59:167–181

    Article  PubMed  CAS  Google Scholar 

  • Osthus RC, Shim H, Kim S, Li Q, Reddy R, Mukherjee M, Xu Y, Wonsey D, Lee LA, Dang CV (2000) Deregulation of glucose transporter 1 and glycolytic gene expression by c-Myc. J Biol Chem 275:21797–21800

    Article  PubMed  CAS  Google Scholar 

  • Palaskas N, Larson SM, Schultz N, Komisopoulou E, Wong J, Rohle D, Campos C, Yannuzzi N, Osborne JR, Linkov I (2011) 18F-fluorodeoxy-glucose positron emission tomography marks MYC-overexpressing human basal-like breast cancers. Cancer Res 71:5164–5174

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pavlides S, Whitaker-Menezes D, Castello-Cros R, Flomenberg N, Witkiewicz AK, Frank PG, Casimiro MC, Wang C, Fortina P, Addya S, Pestell RG, Martinez-Outschoorn UE, Sotgia F, Lisanti MP (2009) The reverse Warburg effect: aerobic glycolysis in cancer associated fibroblasts and the tumor stroma. Cell Cycle 8:3984–4001

    Article  PubMed  CAS  Google Scholar 

  • Pavlides S, Tsirigos A, Migneco G, Whitaker-Menezes D, Chiavarina B, Flomenberg N, Frank PG, Casimiro MC, Wang C, Pestell RG (2010) The autophagic tumor stroma model of cancer: Role of oxidative stress and ketone production in fueling tumor cell metabolism. Cell Cycle 9:3485–3505

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pavlides S, Vera I, Gandara R, Sneddon S, Pestell RG, Mercier I, Martinez-Outschoorn UE, Whitaker-Menezes D, Howell A, Sotgia F (2012) Warburg meets autophagy: cancer-associated fibroblasts accelerate tumor growth and metastasis via oxidative stress, mitophagy, and aerobic glycolysis. Antioxid Redox Signal 16:1264–1284

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pfeiffer T, Schuster S, Bonhoeffer S (2001) Cooperation and competition in the evolution of ATP-producing pathways. Science 292:504–507

    Article  PubMed  CAS  Google Scholar 

  • Polet F, Feron O (2013) Endothelial cell metabolism and tumour angiogenesis: glucose and glutamine as essential fuels and lactate as the driving force. J Intern Med 273:156–165

    Article  PubMed  CAS  Google Scholar 

  • Porporato PE, Dhup S, Dadhich RK, Copetti T, Sonveaux P (2011) Anticancer targets in the glycolytic metabolism of tumors: a comprehensive review. Front Pharmacol 2:49

    Article  PubMed  PubMed Central  Google Scholar 

  • Potter M, Newport E, Morten KJ (2016) The Warburg effect: 80 years on. Biochem Soc Trans 44:1499–1505

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Qian XL, Pan YH, Huang QY, Shi YB, Huang QY, Hu ZZ, Xiong LX (2019) Caveolin-1: a multifaceted driver of breast cancer progression and its application in clinical treatment. Onco Targets Ther 12:1539–1552

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rae C, Nasrallah FA, Broer S (2009) Metabolic effects of blocking lactate transport in brain cortical tissue slices using an inhibitor specific to MCT1 and MCT2. Neurochem Res 34:1783–1791

    Article  PubMed  CAS  Google Scholar 

  • Robey RB, Hay N (2009) Is Akt the “Warburg kinase”?-Akt-energy metabolism interactions and oncogenesis. Semin Cancer Biol 19:25–31

    Article  PubMed  CAS  Google Scholar 

  • Ross SJ, Critchlow SE (2014) Emerging approaches to target tumor metabolism. Curr Opin Pharmacol 17:22–29

    Article  PubMed  CAS  Google Scholar 

  • Roy A, Bera S (2016) CAF cellular glycolysis: linking cancer cells with the microenvironment. Tumour Biol 37:8503–8514

    Article  PubMed  CAS  Google Scholar 

  • Salem AF, Whitaker-Menezes D, Lin Z, Martinez-Outschoorn UE, Tanowitz HB, Al-Zoubi MS, Howell A, Pestell RG, Sotgia F, Lisanti MP (2012) Twocompartment tumor metabolism: autophagy in the tumor microenvironment and oxidative mitochondrial metabolism (OXPHOS) in cancer cells. Cell Cycle 11:2545–2556

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Salem AF, Al-Zoubi MS, Whitaker-Menezes D, Martinez-Outschoorn UE, Lamb R, Hulit J, Howell A, Gandara R, Sartini M, Galbiati F (2013) Cigarette smoke metabolically promotes cancer, via autophagy and premature aging in the host stromal microenvironment. Cell Cycle 12:818–825

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sandulache VC, Ow TJ, Pickering CR, Frederick MJ, Zhou G, Fokt I, Davis-Malesevich M, Priebe W, Myers JN (2011) Glucose, not glutamine, is the dominant energy source required for proliferation and survival of head and neck squamous carcinoma cells. Cancer 117:2926–2938

    Article  PubMed  CAS  Google Scholar 

  • Sanita P, Capulli M, Teti A, Galatioto GP, Vicentini C, Chiarugi P, Bologna M, Angelucci A (2014) Tumor-stroma metabolic relationship based on lactate shuttle can sustain prostate cancer progression. BMC Cancer 14:154

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sanità P, Capulli M, Teti A, Galatioto GP, Vicentini C, Chiarugi P, Bologna M, Angelucci A (2014) Tumor-stroma metabolic relationship based on lactate shuttle can sustain prostate cancer progression. BMC Cancer 14:154

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Santi A, Caselli A, Ranaldi F, Paoli P, Mugnaioni C, Michelucci E, Cirri P (2015) Cancer associated fibroblasts transfer lipids and proteins to cancer cells through cargo vesicles supporting tumor growth. Biochim Biophys Acta 1853:3211–3223

    Article  PubMed  CAS  Google Scholar 

  • Semenza GL (2010) HIF-1: upstream and downstream of cancer metabolism. Curr Opin Genet Dev 20:51–56

    Article  PubMed  CAS  Google Scholar 

  • Shim H, Dolde C, Lewis BC, Wu C-S, Dang G, Jungmann RA, Dalla-Favera R, Dang CV (1997) c-Myc transactivation of LDH-A: implications for tumor metabolism and growth. Proc Natl Acad Sci 94:6658–6663

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Slavov N, Budnik BA, Schwab D, Airoldi EM, van Oudenaarden A (2014) Constant growth rate can be supported by decreasing energy flux and increasing aerobic glycolysis. Cell Rep 7:705–714

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sonveaux P, Vegran F, Schroeder T, Wergin MC, Verrax J, Rabbani ZN, De Saedeleer CJ, Kennedy KM, Diepart C, Jordan BF, Kelley MJ, Gallez B, Wahl ML, Feron O, Dewhirst MW (2008) Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J Clin Invest 118:3930–3942

    PubMed  PubMed Central  CAS  Google Scholar 

  • Sotgia F, Del Galdo F, Casimiro MC, Bonuccelli G, Mercier I, Whitaker-Menezes D, Daumer KM, Zhou J, Wang C, Katiyar S, Xu H, Bosco E, Quong AA, Aronow B, Witkiewicz AK, Minetti C, Frank PG, Jimenez SA, Knudsen ES, Pestell RG, Lisanti MP (2009) Caveolin-1−/− null mammary stromal fibroblasts share characteristics with human breast cancer-associated fibroblasts. Am J Pathol 174:746–761

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sotgia F, Whitaker-Menezes D, Martinez-Outschoorn UE, Flomenberg N, Birbe RC, Witkiewicz AK, Howell A, Philp NJ, Pestell RG, Lisanti MP (2012) Mitochondrial metabolism in cancer metastasis: visualizing tumor cell mitochondria and the “reverse Warburg effect” in positive lymph node tissue. Cell Cycle 11:1445–1454

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sotgia F, Martinez-Outschoorn UE, Lisanti MP (2013) Cancer metabolism: new validated targets for drug discovery. Oncotarget 4:1309

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun P, Hu J-W, Xiong W-J, Mi J (2014) miR-186 regulates glycolysis through Glut1 during the formation of cancer-associated fibroblasts. Asian Pac J Cancer Prev 15:4245–4250

    Article  PubMed  Google Scholar 

  • Sung JS, Kang S, Lee JH, Mun SG, Kim BG, Cho NH (2018) Integrin beta4-induced mitophagy promotes the lactate production of cancer-associated fibroblasts in breast cancer. In: AACR

    Google Scholar 

  • Sung JS, Kang CW, Kang S, Jang Y, Chae YC, Kim BG, Cho NH (2020) ITGB4-mediated metabolic reprogramming of cancer-associated fibroblasts. Oncogene 39:664–676

    Article  PubMed  CAS  Google Scholar 

  • Thompson DE, Siwicky MD, Moorehead RA (2012) Caveolin-1 expression is elevated in claudin-low mammary tumor cells. Cancer Cell Int 12:6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vadlakonda L, Dash A, Pasupuleti M, Anil Kumar K, Reddanna P (2013) Did we get Pasteur, Warburg, and Crabtree on a right note? Front Oncol 3:186

    PubMed  PubMed Central  Google Scholar 

  • Vander Heiden MG (2011) Targeting cancer metabolism: a therapeutic window opens. Nat Rev Drug Discov 10:671–684

    Article  PubMed  CAS  Google Scholar 

  • Vegran F, Boidot R, Sonveaux P, Feron O (2011) 1004 ORAL lactate influx and efflux through monocarboxylate transporters bridge cancer cell metabolism and angiogenesis. Eur J Cancer 47:S98

    Article  Google Scholar 

  • Villena JA, Kralli A (2008) ERRalpha: a metabolic function for the oldest orphan. Trends Endocrinol Metab 19:269–276

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vincent AS, Phan TT, Mukhopadhyay A, Lim HY, Halliwell B, Wong KP (2008) Human skin keloid fibroblasts display bioenergetics of cancer cells. J Invest Dermatol 128:702–709

    Article  PubMed  CAS  Google Scholar 

  • Warburg O (1925) The metabolism of carcinoma cells. J Cancer Res 9:148–163

    Article  CAS  Google Scholar 

  • Warburg O (1956) On the origin of cancer cells. Science 123:309–314

    Article  PubMed  CAS  Google Scholar 

  • Whitaker-Menezes D, Martinez-Outschoorn UE, Flomenberg N, Birbe R, Witkiewicz AK, Howell A, Pavlides S, Tsirigos A, Ertel A, Pestell RG (2011a) Hyperactivation of oxidative mitochondrial metabolism in epithelial cancer cells in situ: visualizing the therapeutic effects of metformin in tumor tissue. Cell Cycle 10:4047–4064

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Whitaker-Menezes D, Martinez-Outschoorn UE, Lin Z, Ertel A, Flomenberg N, Witkiewicz AK, Birbe RC, Howell A, Pavlides S, Gandara R, Pestell RG, Sotgia F, Philp NJ, Lisanti MP (2011b) Evidence for a stromal-epithelial “lactate shuttle” in human tumors: MCT4 is a marker of oxidative stress in cancer-associated fibroblasts. Cell Cycle 10:1772–1783

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wilde L, Roche M, Domingo-Vidal M, Tanson K, Philp N, Curry J, Martinez-Outschoorn U (2017) Metabolic coupling and the Reverse Warburg Effect in cancer: Implications for novel biomarker and anticancer agent development. Semin Oncol 44:198–203

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Witkiewicz AK, Dasgupta A, Nguyen KH, Liu C, Kovatich AJ, Schwartz GF, Pestell RG, Sotgia F, Rui H, Lisanti MP (2009) Stromal caveolin-1 levels predict early DCIS progression to invasive breast cancer. Cancer Biol Ther 8:1071–1079

    Article  PubMed  CAS  Google Scholar 

  • Witkiewicz AK, Dasgupta A, Sammons S, Er O, Potoczek MB, Guiles F, Sotgia F, Brody JR, Mitchell EP, Lisanti MP (2010) Loss of stromal caveolin-1 expression predicts poor clinical outcome in triple negative and basal-like breast cancers. Cancer Biol Ther 10:135–143

    Article  PubMed  PubMed Central  Google Scholar 

  • Witkiewicz AK, Whitaker-Menezes D, Dasgupta A, Philp NJ, Lin Z, Gandara R, Sneddon S, Martinez-Outschoorn UE, Sotgia F, Lisanti MP (2012) Using the “reverse Warburg effect” to identify high-risk breast cancer patients: stromal MCT4 predicts poor clinical outcome in triple-negative breast cancers. Cell Cycle 11:1108–1117

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yan H, Bigner DD, Velculescu V, Parsons DW (2009) Mutant metabolic enzymes are at the origin of gliomas. Cancer Res 69:9157–9159

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang L, Achreja A, Yeung TL, Mangala LS, Jiang D, Han C, Baddour J, Marini JC, Ni J, Nakahara R, Wahlig S, Chiba L, Kim SH, Morse J, Pradeep S, Nagaraja AS, Haemmerle M, Kyunghee N, Derichsweiler M, Plackemeier T, Mercado-Uribe I, Lopez-Berestein G, Moss T, Ram PT, Liu J, Lu X, Mok SC, Sood AK, Nagrath D (2016a) Targeting stromal glutamine synthetase in tumors disrupts tumor microenvironment-regulated cancer cell growth. Cell Metab 24:685–700

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang X, Xu X, Zhu J, Zhang S, Wu Y, Wu Y, Zhao K, Xing C, Cao J, Zhu H (2016b) miR-31 affects colorectal cancer cells by inhibiting autophagy in cancer-associated fibroblasts. Oncotarget 7:79617

    Article  PubMed  PubMed Central  Google Scholar 

  • Yeung S, Pan J, Lee M-H (2008) Roles of p53, MYC and HIF-1 in regulating glycolysis—the seventh hallmark of cancer. Cell Mol Life Sci 65:3981

    Article  PubMed  CAS  Google Scholar 

  • Yu T, Yang G, Hou Y, Tang X, Wu C, Wu X, Guo L, Zhu Q, Luo H, Du Y (2017) Cytoplasmic GPER translocation in cancer-associated fibroblasts mediates cAMP/PKA/CREB/glycolytic axis to confer tumor cells with multidrug resistance. Oncogene 36:2131–2145

    Article  PubMed  CAS  Google Scholar 

  • Zhang XH-F, Jin X, Malladi S, Zou Y, Wen YH, Brogi E, Smid M, Foekens JA, Massagué J (2013) Selection of bone metastasis seeds by mesenchymal signals in the primary tumor stroma. Cell 154:1060–1073

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang G, Li J, Wang X, Ma Y, Yin X, Wang F, Zheng H, Duan X, Postel GC, Li X-F (2015) The reverse Warburg effect and 18F-FDG uptake in non–small cell lung cancer A549 in mice: a pilot study. J Nucl Med 56:607–612

    Article  PubMed  CAS  Google Scholar 

  • Zheng M, Wang Y-H, Wu X-N, Wu S-Q, Lu B-J, Dong M-Q, Zhang H, Sun P, Lin S-C, Guan K-L (2011) Inactivation of Rheb by PRAK-mediated phosphorylation is essential for energy-depletion-induced suppression of mTORC1. Nat Cell Biol 13:263–272

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zong WX, Rabinowitz JD, White E (2016) Mitochondria and cancer. Mol Cell 61:667–676

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Naik, P.P. (2020). Mitophagy and Reverse Warburg Effect: Metabolic Compartmentalization of Tumor Microenvironment. In: Bhutia, S.K. (eds) Autophagy in tumor and tumor microenvironment . Springer, Singapore. https://doi.org/10.1007/978-981-15-6930-2_6

Download citation

Publish with us

Policies and ethics