Skip to main content

Advertisement

Log in

Metabolic Effects of Blocking Lactate Transport in Brain Cortical Tissue Slices Using an Inhibitor Specific to MCT1 and MCT2

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

A novel inhibitor of lactate transport, AR-C122982, was used to study the effect of inhibiting the monocarboxylate transporters MCT1 and MCT2 on cortical brain slice metabolism. We studied metabolism of l-[3-13C]lactate, and d-[1-13C]glucose under a range of conditions. Experiments using l-[3-13C]lactate showed that the inhibitor AR-C122982 altered exchange of lactate. Under depolarizing conditions, net flux of label from d-[1-13C]glucose was barely altered by 10 or 100 nM AR-C122982. In the presence of AMPA or glutamate there were increases in net flux of label and metabolic pool sizes. These data suggest lactate may supply compartments in the brain not usually directly accessed by glucose. In general, it would appear that movement of lactate between cell types is not essential for metabolic activity, with the heavy metabolic workloads imposed being unaffected by inhibition of MCT1 and MCT2. Further experiments investigating the mechanism of operation of AR-C122982 are necessary to corroborate this finding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Brunet JF, Grollimund L, Chatton JY et al (2004) Early acquisition of typical metabolic features upon differentiation of mouse neural stem cells into astrocytes. Glia 46:8–17. doi:10.1002/glia.10348

    Article  PubMed  CAS  Google Scholar 

  2. Pellerin L, Magistretti PJ (1994) Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci USA 91:10625–10629. doi:10.1073/pnas.91.22.10625

    Article  PubMed  CAS  Google Scholar 

  3. Voutsinos-Porche B, Knott G, Tanaka K et al (2003) Glial glutamate transporters and maturation of the mouse somatosensory cortex. Cereb Cortex 13:1110–1121. doi:10.1093/cercor/13.10.1110

    Article  PubMed  Google Scholar 

  4. Dienel GA, Cruz NF (2006) Astrocyte activation in working brain: energy supplied by minor substrates. Neurochem Int 48:586–595

    PubMed  CAS  Google Scholar 

  5. McKenna MC, Sonnewald U, Huang X et al (1996) Exogenous glutamate concentration regulates the metabolic fate of glutamate in astrocytes. J Neurochem 66:386–393

    PubMed  CAS  Google Scholar 

  6. Bröer S, Rahman B, Pellegri G et al (1997) Comparison of lactate transport in astroglial cells and transporter 1 (MCT 1) expressing Xenopus laevis oocytes. Expression of two different monocarboxylate transporters in astroglial cells and neurons. J Biol Chem 272:30096–30102. doi:10.1074/jbc.272.48.30096

    Article  PubMed  Google Scholar 

  7. Bröer S, Schneider HP, Bröer A et al (1998) Characterization of the monocarboxylate transporter 1 expressed in Xenopus laevis oocytes by changes in cytosolic pH. Biochem J 333:167–174

    PubMed  Google Scholar 

  8. Broer S, Broer A, Schneider HP et al (1999) Characterization of the high-affinity monocarboxylate transporter MCT2 in Xenopus laevis oocytes. Biochem J 341:529–535. doi:10.1042/0264-6021:3410529

    Article  PubMed  CAS  Google Scholar 

  9. Rafiki A, Boulland JL, Halestrap AP et al (2003) Highly differential expression of the monocarboxylate transporters MCT2 and MCT4 in the developing rat brain. Neuroscience 122:677–688. doi:10.1016/j.neuroscience.2003.08.040

    Article  PubMed  CAS  Google Scholar 

  10. Dimmer KS, Friedrich B, Lang F et al (2000) The low-affinity monocarboxylate transporter MCT4 is adapted to the export of lactate in highly glycolytic cells. Biochem J 350:219–227. doi:10.1042/0264-6021:3500219

    Article  PubMed  CAS  Google Scholar 

  11. Martin PM, Gopal E, Ananth S et al (2006) Identify of SMCT1 (SLC5A8) as a neuron-specific Na+ -coupled transporter for active uptake of l-lactate and ketone bodies in the brain. J Neurochem 98:279–288. doi:10.1111/j.1471-4159.2006.03878.x

    Article  PubMed  CAS  Google Scholar 

  12. Izumi Y, Benz AM, Katsuki H et al (1997) Endogenous monocarboxylates sustain hippocampal synaptic function and morphological integrity during energy deprivation. J Neurosci 17:9448–9457

    PubMed  CAS  Google Scholar 

  13. Schurr A, Payne RS, Miller JJ et al (1997) Brain lactate is an obligatory aerobic substrate for functional recovery after hypoxia: further in vitro validation. J Neurochem 69:423–426

    PubMed  CAS  Google Scholar 

  14. Halestrap AP, Denton RM (1974) Specific inhibition of pyruvate transport in rat liver mitochondria and human erythrocytes by a-cyano-4-hydroxycinnamate. Biochem J 138:313–316

    PubMed  CAS  Google Scholar 

  15. Chih CP, He J, Sly TS et al (2001) Comparison of glucose and lactate as substrates during NMDA-induced activation of hippocampal slices. Brain Res 893:143–154. doi:10.1016/S0006-8993(00)03306-0

    Article  PubMed  CAS  Google Scholar 

  16. McKenna MC, Hopkins IB, Carey A (2001) Alpha-cyano-4-hydroxycinnamate decreases both glucose and lactate metabolism in neurons and astrocytes: implications for lactate as an energy substrate for neurons. J Neurosci Res 66:747–754. doi:10.1002/jnr.10084

    Article  PubMed  CAS  Google Scholar 

  17. Murray CM, Hutchison R, Bantick JR et al (2005) Monocarboxylate transporter MCT1 is a target for immunosuppression. Nat Chem Biol 1:371–376. doi:10.1038/nchembio744

    Article  PubMed  CAS  Google Scholar 

  18. Badar-Goffer R, Bachelard H, Morris P (1990) Cerebral metabolism of acetate and glucose studied by 13C NMR spectroscopy. Biochem J 266:133–139

    PubMed  CAS  Google Scholar 

  19. McIlwain H, Bachelard H (1985) Biochemistry and the central nervous system. Churchill Livingstone, Edinburgh, pp 7–29

    Google Scholar 

  20. Nasrallah F, Garner B, Ball GE et al (2008) Modulation of brain metabolism by very low concentrations of the commonly used drug delivery vehicle dimethyl sulfoxide (DMSO). J Neurosci Res 86:208–214. doi:10.1002/jnr.21477

    Article  PubMed  CAS  Google Scholar 

  21. Badar-Goffer R, Bachelard H, Morris P (1992) Neuronal-glial metabolism under depolarising conditions. Biochem J 282:225–230

    PubMed  CAS  Google Scholar 

  22. Desai MA, Burnett JP, Ornstein PL et al (1995) Cyclothiazide acts at a site on the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor complex that does not recognise competitive and non-competitive AMPA receptor antagonists. J Pharmacol Exp Ther 272:38–43

    PubMed  CAS  Google Scholar 

  23. Rae C, Moussa CE-H, Griffin JL et al (2006) A metabolomic approach to ionotropic glutamate receptor subtype function: a nuclear magnetic resonance in vitro investigation. J Cereb Blood Flow Metab 26:1005–1017. doi:10.1038/sj.jcbfm.9600257

    Article  PubMed  CAS  Google Scholar 

  24. Le Belle JE, Harris NG, Williams SR et al (2002) A comparison of cell and tissue extraction techniques using high-resolution 1H NMR spectroscopy. NMR Biomed 15:37–44. doi:10.1002/nbm.740

    Article  PubMed  CAS  Google Scholar 

  25. Kupce E, Freeman R (1995) Adiabatic pulses for wideband inversion and broadband decoupling. J Magn Reson A 115:273–276. doi:10.1006/jmra.1995.1179

    Article  CAS  Google Scholar 

  26. Skinner TE, Bendall MR (1997) A phase-cycling algorithm for reducing sidebands in adiabatic decoupling. J Magn Reson 124:474–478. doi:10.1006/jmre.1996.1061

    Article  CAS  Google Scholar 

  27. Rae C, Lawrance ML, Dias LS et al (2000) Strategies for studies of potentially neurotoxic mechanisms involving deficient transport of l-glutamate: antisense knockout in rat brain in vivo and changes in the neurotransmitter metabolism following inhibition of glutamate transport in guinea pigs brain slices. Brain Res Bull 53:373–381. doi:10.1016/S0361-9230(00)00372-5

    Article  PubMed  CAS  Google Scholar 

  28. Halestrap AP, Price NT (1999) The proton-linked monocarboxylate transporter (MCT) family: structure, function and regulation. Biochem J 343:281–299. doi:10.1042/0264-6021:3430281

    Article  PubMed  CAS  Google Scholar 

  29. Griffin JL, Keun H, Moskau D et al (2003) Compartmentation of metabolism probed by [2–13C]alanine: improved 13C NMR sensitivity using a CryoProbe detects evidence of a glial metabolon. Neurochem Int 42:93–99. doi:10.1016/S0197-0186(02)00064-5

    Article  PubMed  CAS  Google Scholar 

  30. Griffin JL, Rae C, Dixon RM et al (1998) Excitatory amino acid synthesis in hypoxic brain slices: does alanine act as a substrate for glutamate production in hypoxia? J Neurochem 71:2477–2486

    Article  PubMed  CAS  Google Scholar 

  31. Fell D (1997) Understanding the control of metabolism. Portland Press, London, pp 15–16

    Google Scholar 

  32. Dienel G, Ball K, Popp D et al (2001) A role for gap junctions in metabolite spreading? J Neurochem 78(Suppl 1):86

    Google Scholar 

  33. Spray DC, Harris AL, Bennett MLV (1981) Gap junctional conductance is a simple and positive function of pH. Science 211:712–715. doi:10.1126/science.6779379

    Article  PubMed  CAS  Google Scholar 

  34. Dienel GA & Cruz NF (2009) Exchange-mediated dilution of brain lactate specific activity: implications for the origin of glutamate dilution and the contributions of glutamine dilution and other pathways. J Neurochem 109(s1):30–37

    Article  PubMed  CAS  Google Scholar 

  35. Raiteri L, Zappettini S, Milanese M et al (2007) Mechanisms of glutamate release elicited in rat cerebrocortical nerve endings by ‘pathologically’ elevated extraterminal K+ concentrations. J Neurochem 103:952–961. doi:10.1111/j.1471-4159.2007.04784.x

    Article  PubMed  CAS  Google Scholar 

  36. Patel AB, Rothman DL, Cline GW et al (2001) Glutamine is the major precursor for GABA synthesis in rat neocortex in vivo following acute GABA-transaminase inhibition. Brain Res 919:207–220. doi:10.1016/S0006-8993(01)03015-3

    Article  PubMed  CAS  Google Scholar 

  37. Peng L, Hertz L, Huang R et al (1993) Utilization of glutamine and of TCA cycle constituents as precursors for transmitter glutamate and GABA. Dev Neurosci 15:367–377. doi:10.1159/000111357

    Article  PubMed  CAS  Google Scholar 

  38. Rae C, Hare N, Bubb WA et al (2003) Inhibition of glutamine transport depletes glutamate and GABA neurotransmitter pools: further evidence for metabolic compartmentation. J Neurochem 85:503–514. doi:10.1046/j.1471-4159.2003.01713.x

    Article  PubMed  CAS  Google Scholar 

  39. Tapia R, González RM (1978) Glutamine and glutamate as precursors of the releasable pool of GABA in brain cortex slices. Neurosci Lett 10:165–169. doi:10.1016/0304-3940(78)90029-0

    Article  PubMed  CAS  Google Scholar 

  40. Bröer A, Albers A, Setiawan I et al (2002) Regulation of the glutamine transporter SN1 by extracellular pH and intracellular sodium ions. J Physiol 539:3–14. doi:10.1113/jphysiol.2001.013303

    Article  PubMed  Google Scholar 

  41. Leegsma-Vogt G, Venema K, Korf J (2003) Evidence for a lactate pool in the rat brain that is not used as an energy supply under normoglycemic conditions. J Cereb Blood Flow Metab 23:933–941. doi:10.1097/01.WCB.0000080650.64357.8F

    Article  PubMed  CAS  Google Scholar 

  42. Bröer S, Bröer A, Hansen JT et al (2007) Alanine metabolism, transport and cycling in the brain. J Neurochem 102:1758–1770. doi:10.1111/j.1471-4159.2007.04654.x

    Article  PubMed  CAS  Google Scholar 

  43. Nasrallah F, Griffin JL, Balcar VJ et al (2007) Understanding your inhibitions. Modulation of brain cortical metabolism by GABA-B receptors. J Cereb Blood Flow Metab 27:1510–1520. doi:10.1038/sj.jcbfm.9600453

    Article  PubMed  CAS  Google Scholar 

  44. Bergersen LH, Magistretti PJ, Pellerin L (2005) Selective postsynaptic co-localisation of MCT2 with AMPA receptor GluR2/3 subunits at excitatory synapses exhibiting AMPA receptor trafficking. Cereb Cortex 15:361–370. doi:10.1093/cercor/bhh138

    Article  PubMed  Google Scholar 

  45. Dienel GA, Hertz L (2001) Glucose and lactate metabolism during brain activation. J Neurosci Res 66:824–838. doi:10.1002/jnr.10079

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the University of New South Wales and NewSouth Global (UNSW) and the Australian National Health and Medical Research Council (grant to CR). The authors are grateful to the staff of the UNSW Analytical Centre for expert technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caroline Rae.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rae, C., Nasrallah, F.A. & Bröer, S. Metabolic Effects of Blocking Lactate Transport in Brain Cortical Tissue Slices Using an Inhibitor Specific to MCT1 and MCT2. Neurochem Res 34, 1783–1791 (2009). https://doi.org/10.1007/s11064-009-9973-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-009-9973-0

Keywords

Navigation