Skip to main content

Advertisement

Log in

Secretome profiling of oral squamous cell carcinoma-associated fibroblasts reveals organization and disassembly of extracellular matrix and collagen metabolic process signatures

  • Original Article
  • Published:
Tumor Biology

Abstract

An important role has been attributed to cancer-associated fibroblasts (CAFs) in the tumorigenesis of oral squamous cell carcinoma (OSCC), the most common tumor of the oral cavity. Previous studies demonstrated that CAF-secreted molecules promote the proliferation and invasion of OSCC cells, inducing a more aggressive phenotype. In this study, we searched for differences in the secretome of CAFs and normal oral fibroblasts (NOF) using mass spectrometry-based proteomics and biological network analysis. Comparison of the secretome profiles revealed that upregulated proteins involved mainly in extracellular matrix organization and disassembly and collagen metabolism. Among the upregulated proteins were fibronectin type III domain-containing 1 (FNDC1), serpin peptidase inhibitor type 1 (SERPINE1), and stanniocalcin 2 (STC2), the upregulation of which was validated by quantitative PCR and ELISA in an independent set of CAF cell lines. The transition of transforming growth factor beta 1 (TGF-β1)-mediating NOFs into CAFs was accompanied by significant upregulation of FNDC1, SERPINE1, and STC2, confirming the participation of these proteins in the CAF-derived secretome. Type I collagen, the main constituent of the connective tissue, was also associated with several upregulated biological processes. The immunoexpression of type I collagen N-terminal propeptide (PINP) was significantly correlated in vivo with CAFs in the tumor front and was associated with significantly shortened survival of OSCC patients. Presence of CAFs in the tumor stroma was also an independent prognostic factor for OSCC disease-free survival. These results demonstrate the value of secretome profiling for evaluating the role of CAFs in the tumor microenvironment and identify potential novel therapeutic targets such as FNDC1, SERPINE1, and STC2. Furthermore, type I collagen expression by CAFs, represented by PINP levels, may be a prognostic marker of OSCC outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136:E359–86.

    Article  CAS  PubMed  Google Scholar 

  2. Warnakulasuriya S. Living with oral cancer: epidemiology with particular reference to prevalence and life-style changes that influence survival. Oral Oncol. 2010;46:407–10.

    Article  PubMed  Google Scholar 

  3. Shah FD, Begum R, Vajaria BN, Patel KR, Patel JB, Shukla SN, et al. A review on salivary genomics and proteomics biomarkers in oral cancer. Indian J Clin Biochem. 2011;26:326–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hanahan D, Coussens LM. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell. 2012;21:309–22.

    Article  CAS  PubMed  Google Scholar 

  5. Koontongkaew S. The tumor microenvironment contribution to development, growth, invasion and metastasis of head and neck squamous cell carcinomas. J Cancer. 2013;4:66–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Curry JM, Sprandio J, Cognetti D, Luginbuhl A, Bar-ad V, Pribitkin E, et al. Tumor microenvironment in head and neck squamous cell carcinoma. Semin Oncol. 2014;41:217–34.

    Article  CAS  PubMed  Google Scholar 

  7. Gandellini P, Andriani F, Merlino G, D’Aiuto F, Roz L, Callari M. Complexity in the tumour microenvironment: cancer associated fibroblast gene expression patterns identify both common and unique features of tumour-stroma crosstalk across cancer types. Semin Cancer Biol. 2015.

  8. Sobral LM, Bufalino A, Lopes MA, Graner E, Salo T, Coletta RD. Myofibroblasts in the stroma of oral cancer promote tumorigenesis via secretion of activin A. Oral Oncol. 2011;47:840–6.

    Article  CAS  PubMed  Google Scholar 

  9. Hinsley EE, Kumar S, Hunter KD, Whawell SA, Lambert DW. Endothelin-1 stimulates oral fibroblasts to promote oral cancer invasion. Life Sci. 2012;91:557–61.

    Article  CAS  PubMed  Google Scholar 

  10. Tommelein J, Verset L, Boterberg T, Demetter P, Bracke M, De Wever O. Cancer-associated fibroblasts connect metastasis-promoting communication in colorectal cancer. Front Oncol. 2015;5:63.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kellermann MG, Sobral LM, da Silva SD, Zecchin KG, Graner E, Lopes MA, et al. Myofibroblasts in the stroma of oral squamous cell carcinoma are associated with poor prognosis. Histopathology. 2007;51:849–53.

    Article  CAS  PubMed  Google Scholar 

  12. Kawashiri S, Tanaka A, Noguchi N, Hase T, Nakaya H, Ohara T, et al. Significance of stromal desmoplasia and myofibroblast appearance at the invasive front in squamous cell carcinoma of the oral cavity. Head Neck. 2009;31:1346–53.

    Article  PubMed  Google Scholar 

  13. Vered M, Dobriyan A, Dayan D, Yahalom R, Talmi YP, Bedrin L, et al. Tumor-host histopathologic variables, stromal myofibroblasts and risk score, are significantly associated with recurrent disease in tongue cancer. Cancer Sci. 2010;101:274–80.

    Article  CAS  PubMed  Google Scholar 

  14. Bello IO, Vered M, Dayan D, Dobriyan A, Yahalom R, Alanen K, et al. Cancer-associated fibroblasts, a parameter of the tumor microenvironment, overcomes carcinoma-associated parameters in the prognosis of patients with mobile tongue cancer. Oral Oncol. 2011;47:33–8.

    Article  CAS  PubMed  Google Scholar 

  15. Marsh D, Suchak K, Moutasim KA, Vallath S, Hopper C, Jerjes W, et al. Stromal features are predictive of disease mortality in oral cancer patients. J Pathol. 2011;223:470–81.

    Article  CAS  PubMed  Google Scholar 

  16. Fujii N, Shomori K, Shiomi T, Nakabayashi M, Takeda C, Ryoke K, et al. Cancer-associated fibroblasts and CD163-positive macrophages in oral squamous cell carcinoma: their clinicopathological and prognostic significance. J Oral Pathol Med. 2012;41:444–51.

    Article  PubMed  Google Scholar 

  17. Ding L, Zhang Z, Shang D, Cheng J, Yuan H, Wu Y, et al. α-Smooth muscle actin-positive myofibroblasts, in association with epithelial-mesenchymal transition and lymphogenesis, is a critical prognostic parameter in patients with oral tongue squamous cell carcinoma. J Oral Pathol Med. 2014;43:335–43.

    Article  CAS  PubMed  Google Scholar 

  18. De Boeck A, Hendrix A, Maynard D, Van Bockstal M, Daniëls A, Pauwels P, et al. Differential secretome analysis of cancer-associated fibroblasts and bone marrow-derived precursors to identify microenvironmental regulators of colon cancer progression. Proteomics. 2013;13:379–88.

    Article  PubMed  Google Scholar 

  19. Chen SX, Xu XE, Wang XQ, Cui SJ, Xu LL, Jiang YH, et al. Identification of colonic fibroblast secretomes reveals secretory factors regulating colon cancer cell proliferation. J Proteomics. 2014;110:155–71.

    Article  CAS  PubMed  Google Scholar 

  20. Rasanen K, Sriswasdi S, Valiga A, Tang HY, Zhang G, Perego M, et al. Comparative secretome analysis of epithelial and mesenchymal subpopulations of head and neck squamous cell carcinoma identifies S100A4 as a potential therapeutic target. Mol Cell Proteomics. 2013;12:3778–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ge S, Mao Y, Yi Y, Xie D, Chen Z, Xiao Z. Comparative proteomic analysis of secreted proteins from nasopharyngeal carcinoma-associated stromal fibroblasts and normal fibroblasts. Exp Ther Med. 2012;3:857–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Salo S, Bitu C, Merkku K, Nyberg P, Bello IO, Vuoristo J, et al. Human bone marrow mesenchymal stem cells induce collagen production and tongue cancer invasion. PLoS One. 2013;8:e77692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sobral LM, Zecchin KG, de Nascimento Aquino S, Lopes MA, Graner E, Coletta RD. Isolation and characterization of myofibroblast cell lines from oral squamous cell carcinoma. Oncol Rep. 2011;25:1013–20.

    CAS  PubMed  Google Scholar 

  24. Sobral LM, Montan PF, Zecchin KG, Martelli-Junior H, Vargas PA, Graner E, et al. Smad7 blocks transforming growth factor-β1-induced gingival fibroblast-myofibroblast transition via inhibitory regulation of Smad2 and connective tissue growth factor. J Periodontol. 2011;82:642–51.

    Article  CAS  PubMed  Google Scholar 

  25. Sawazaki-Calone I, Rangel A, Bueno AG, Morais CF, Nagai HM, Kunz RP, et al. The prognostic value of histopathological grading systems in oral squamous cell carcinomas. Oral Dis. 2015;21:755–61.

    Article  CAS  PubMed  Google Scholar 

  26. Risteli L, Risteli J. Biochemical markers of bone metabolism. Ann Med. 1993;25:385–93.

    Article  CAS  PubMed  Google Scholar 

  27. Kellermann MG, Sobral LM, da Silva SD, Zecchin KG, Graner E, Lopes MA, et al. Mutual paracrine effects of oral squamous cell carcinoma cells and normal oral fibroblasts: induction of fibroblast to myofibroblast transdifferentiation and modulation of tumor cell proliferation. Oral Oncol. 2008;44:509–17.

    Article  CAS  PubMed  Google Scholar 

  28. Han Y, Zhang Y, Jia T, Sun Y. Molecular mechanism underlying the tumor-promoting functions of carcinoma-associated fibroblasts. Tumour Biol. 2015;36:1385–94.

    Article  CAS  PubMed  Google Scholar 

  29. Erickson HP. Irisin and FNDC5 in retrospect: an exercise hormone or a transmembrane receptor? Adipocyte. 2013;2:289–93.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Fain JN, Company JM, Booth FW, Laughlin MH, Padilla J, Jenkins NT, et al. Exercise training does not increase muscle FNDC5 protein or mRNA expression in pigs. Metabolism. 2013;62:1503–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sung CO, Kim SC, Karnan S, Karube K, Shin HJ, Nam DH, et al. Genomic profiling combined with gene expression profiling in primary central nervous system lymphoma. Blood. 2011;117:1291–300.

    Article  CAS  PubMed  Google Scholar 

  32. Itoh T, Hayashi Y, Kanamaru T, Morita Y, Suzuki S, Wang W, et al. Clinical significance of urokinase-type plasminogen activator activity in hepatocellular carcinoma. J Gastroenterol Hepatol. 2000;15:422–30.

    Article  CAS  PubMed  Google Scholar 

  33. Zheng Q, Tang ZY, Xue Q, Shi DR, Song HY, Tang HB. Invasion and metastasis of hepatocellular carcinoma in relation to urokinase-type plasminogen activator, its receptor and inhibitor. J Cancer Res Clin Oncol. 2000;126:641–6.

    Article  CAS  PubMed  Google Scholar 

  34. Schmitt M, Harbeck N, Brünner N, Jänicke F, Meisner C, Mühlenweg B, et al. Cancer therapy trials employing level-of-evidence-1 disease forecast cancer biomarkers uPA and its inhibitor PAI-1. Expert Rev Mol Diagn. 2011;11:617–34.

    Article  CAS  PubMed  Google Scholar 

  35. Duffy MJ, McGowan PM, Harbeck N, Thomssen C, Schmitt M. uPA and PAI-1 as biomarkers in breast cancer: validated for clinical use in level-of-evidence-1 studies. Breast Cancer Res. 2014;16:428.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Look MP, van Putten WL, Duffy MJ, Harbeck N, Christensen IJ, Thomssen C, et al. Pooled analysis of prognostic impact of urokinase-type plasminogen activator and its inhibitor PAI-1 in 8377 breast cancer patients. J Natl Cancer Inst. 2002;94:116–28.

    Article  CAS  PubMed  Google Scholar 

  37. Harris L, Fritsche H, Mennel R, Norton L, Ravdin P, Taube S, et al. American society of clinical oncology update of recommendations for the use of tumor markers in breast cancer. J Clin Oncol. 2007;25:5287–312.

    Article  CAS  PubMed  Google Scholar 

  38. Roca C, Primo L, Valdembri D, Cividalli A, Declerck P, Carmeliet P, et al. Hyperthermia inhibits angiogenesis by a plasminogen activator inhibitor 1-dependent mechanism. Cancer Res. 2003;63:1500–7.

    CAS  PubMed  Google Scholar 

  39. Bajou K, Masson V, Gerard RD, Schmitt PM, Albert V, Praus M, et al. The plasminogen activator inhibitor PAI-1 controls in vivo tumor vascularization by interaction with proteases, not vitronectin. Implications for antiangiogenic strategies. J Cell Biol. 2001;152:777–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Czekay RP, Loskutoff DJ. Plasminogen activator inhibitors regulate cell adhesion through a uPAR-dependent mechanism. J Cell Physiol. 2009;220:655–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dhanda J, Triantafyllou A, Liloglou T, Kalirai H, Lloyd B, Hanlon R, et al. SERPINE1 and SMA expression at the invasive front predict extracapsular spread and survival in oral squamous cell carcinoma. Br J Cancer. 2014;111:2114–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Pedroza M, Le TT, Lewis K, Karmouty-Quintana H, To S, George AT, et al. STAT-3 contributes to pulmonary fibrosis through epithelial injury and fibroblast-myofibroblast differentiation. FASEB J. 2015 Aug 31.

  43. Na SS, Aldonza MB, Sung HJ, Kim YI, Son YS, Cho S, et al. Stanniocalcin-2 (STC2): a potential lung cancer biomarker promotes lung cancer metastasis and progression. Biochim Biophys Acta. 1854;2015:668–76.

    Google Scholar 

  44. Wang Y, Gao Y, Cheng H, Yang G, Tan W. Stanniocalcin 2 promotes cell proliferation and cisplatin resistance in cervical cancer. Biochem Biophys Res Commun. 2015;466:362–8.

    Article  CAS  PubMed  Google Scholar 

  45. Hou J, Wang Z, Xu H, Yang L, Yu X, Yang Z, et al. Stanniocalicin 2 suppresses breast cancer cell migration and invasion via the PKC/claudin-1-mediated signaling. PLoS One. 2015;10:e0122179.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Bouras T, Southey MC, Chang AC, Reddel RR, Willhite D, Glynne R, et al. Stanniocalcin 2 is an estrogen-responsive gene coexpressed with the estrogen receptor in human breast cancer. Cancer Res. 2002;62:1289–95.

    CAS  PubMed  Google Scholar 

  47. Ieta K, Tanaka F, Yokobori T, Kita Y, Haraguchi N, Mimori K, et al. Clinicopathological significance of stanniocalcin 2 gene expression in colorectal cancer. Int J Cancer. 2009;125:926–31.

    Article  CAS  PubMed  Google Scholar 

  48. Tamura K, Furihata M, Chung SY, Uemura M, Yoshioka H, Iiyama T, et al. Stanniocalcin 2 overexpression in castration-resistant prostate cancer and aggressive prostate cancer. Cancer Sci. 2009;100:914–9.

    Article  CAS  PubMed  Google Scholar 

  49. Law AY, Lai KP, Ip CK, Wong AS, Wagner GF, Wong CK. Epigenetic and HIF-1 regulation of stanniocalcin-2 expression in human cancer cells. Exp Cell Res. 2008;314:1823–30.

    Article  CAS  PubMed  Google Scholar 

  50. Law AY, Wong CK. Stanniocalcin-2 is a HIF-1 target gene that promotes cell proliferation in hypoxia. Exp Cell Res. 2010;316:466–76.

    Article  CAS  PubMed  Google Scholar 

  51. Chang AC, Jellinek DA, Reddel RR. Mammalian stanniocalcins and cancer. Endocrinol Relat Cancer. 2003;10:359–73.

    Article  CAS  Google Scholar 

  52. Van Bockstal M, Lambein K, Van Gele M, De Vlieghere E, Limame R, Braems G, et al. Differential regulation of extracellular matrix protein expression in carcinoma-associated fibroblasts by TGF-β1 regulates cancer cell spreading but not adhesion. Oncoscience. 2014;1:634–48.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Kenny HA, Krausz T, Yamada SD, Lengyel E. Use of a novel 3D culture model to elucidate the role of mesothelial cells, fibroblasts and extra-cellular matrices on adhesion and invasion of ovarian cancer cells to the omentum. Int J Cancer. 2007;121:1463–72.

    Article  CAS  PubMed  Google Scholar 

  54. Tang D, Gao J, Wang S, Ye N, Chong Y, Huang Y, et al. Cancer-associated fibroblasts promote angiogenesis in gastric cancer through galectin-1 expression. Tumour Biol. 2015. doi:10.1007/s13277-015-3942-9.

    Google Scholar 

  55. Liu J, Liao S, Diop-Frimpong B, Chen W, Goel S, Naxerova K, et al. TGF-β blockade improves the distribution and efficacy of therapeutics in breast carcinoma by normalizing the tumor stroma. Proc Natl Acad Sci U S A. 2012;109:16618–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from Fundação de Amparo a Pesquisa do Estado de São Paulo-FAPESP, São Paulo, Brazil; Conselho Nacional de Desenvolvimento Científico e Tecnológico-CNPq, Brasília, Brazil, and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-CAPES, Brasília, Brazil (AUXPE-PVES-570/2013).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Adriana Franco Paes Leme or Ricardo D. Coletta.

Ethics declarations

Conflicts of interest

None

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure 1

TGF-β1 induces transdifferentiation of NOFs to CAFs. NOFs were cultured with 10 ng/ml of TGF-β1 in culture media containing 0.1% of calf serum for 2 days. Following treatment, cells were collected and subjected RNA purification and quantitative PCR analysis. The levels of the CAF marker α-SMA were markedly increased after incubation with TGF-β1. (GIF 45 kb)

(TIF 15526 kb)

Supplementary Table 1

Primers used in the quantitative PCR. (DOCX 17 kb)

Supplementary Table 2

Proteins identified in NOF-1 and CAF-1 cell lines by LC-MS/MS. (DOCX 84 kb)

Supplementary Table 3

Overrepresented GO terms for the dataset of differentially expressed proteins between CAF-1 and NOF-1 cell lines. (DOCX 58 kb)

ESM 1

(DOCX 71 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bagordakis, E., Sawazaki-Calone, I., Macedo, C.C.S. et al. Secretome profiling of oral squamous cell carcinoma-associated fibroblasts reveals organization and disassembly of extracellular matrix and collagen metabolic process signatures. Tumor Biol. 37, 9045–9057 (2016). https://doi.org/10.1007/s13277-015-4629-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-4629-y

Keywords

Navigation