Skip to main content

Microbial Biosurfactants as Cleaning and Washing Agents

  • Chapter
  • First Online:
Microbial Biosurfactants

Abstract

Surfactants derived from microbes belong to the diverse group of surface-active metabolites which are secreted during their growth on hydrophobic substrates. The use of chemical surfactants as a detergent in different industries such as leather, petroleum, paper, dairy, cosmeceuticals, and pharmaceuticals is limited due to their hazardous effects on the aqueous and territorial ecosystem. This found the basis for the use of biosurfactants as a detergent for industrial and household applications. In recent years, the use of biosurfactants in the cleaning of storage tanks in petroleum industries, cleaning of membranes during ultrafiltration, and remediation of leather dust from the leather industry is increased. Different companies are manufacturing biosurfactant-based dish-washing agents. Some patents are also claiming the role of biosurfactants in hair and skin cosmetics. This chapter describes the chemical nature of biosurfactants, media composition required for microbial growth, genetic regulation and biosynthesis of surfactants, and the application of biosurfactants in different fields as cleansing agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abouseoud M, Maachi R, Amrane A, Boudergua S, Nabi A (2008) Evaluation of different carbon and nitrogen sources in production of biosurfactant by Pseudomonas fluorescens. Desalination 223(1–3):143–151

    Article  CAS  Google Scholar 

  • Accorsini FR, Mutton MJ, Lemos EG, Benincasa M (2012) Biosurfactants production by yeasts using soybean oil and glycerol as low cost substrate. Braz J Microbiol 43(1):116–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aghajani M, Rahimpour A, Amani H, Taherzadeh MJ (2018) Rhamnolipid as new bio-agent for cleaning of ultrafiltration membrane fouled by whey. Eng Life Sci 18:272–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alenezi FN, Rekik I, Chenari Bouket A, Luptakova L, Weitz HJ, Rateb ME, Jaspars M, Woodward S, Belbahri L (2017) Increased biological activity of Aneurinibacillus migulanus strains correlates with the production of new gramicidin secondary metabolites. Front Microbiol 8:517

    Article  PubMed  PubMed Central  Google Scholar 

  • Allef P, Hartung C, Schilling M (2014) Aqueous hair and skin cleaning compositions comprising biosurfactants. Patent US 20140349902 A1

    Google Scholar 

  • Andrade RFS, Silva TAL, Ribeaux DR, Rodriguez DM, Souza AF, Lima MAL et al (2018) Promising biosurfactant produced by Cunninghamella echinulata UCP 1299 using renewable resources and its application in cotton fabric cleaning process. Adv Mater Sci Eng 2018:1624573. https://doi.org/10.1155/2018/1624573

    Article  CAS  Google Scholar 

  • Bartal A, Vigneshwari A, Bóka B, Vörös M, Takács I, Kredics L, Manczinger L, Varga M, Vágvölgyi C, Szekeres A (2018) Effects of different cultivation parameters on the production of Surfactin variants by a Bacillus subtilis strain. Molecules 23(10):2675

    Article  PubMed Central  CAS  Google Scholar 

  • Berti AD, Greve NJ, Christensen QH, Thomas MG (2007) Identification of a biosynthetic gene cluster and the six associated lipopeptides involved in swarming motility of Pseudomonas syringae pv. Tomato DC3000. J Bacteriol 189(17):6312–6323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouassida M, Fourati N, Ghazala I, Ellouze-Chaabouni S, Ghribi D (2018) Potential application of Bacillus subtilis SPB1 biosurfactants in laundry detergent formulations: compatibility study with detergent ingredients and washing performance. Eng Life Sci 18:70–77

    Article  CAS  PubMed  Google Scholar 

  • Braun PG, Hildebrand PD, Ells TC, Kobayashi DY (2001) Evidence and characterization of a gene cluster required for the production of viscosin, a lipopeptide biosurfactant, by a strain of Pseudomonas fluorescens. Can J Microbiol 47(4):294–301

    Article  CAS  PubMed  Google Scholar 

  • Chong H, Li Q (2017) Microbial production of rhamnolipids: opportunities, challenges and strategies. Microb Cell Fact 16(1):137

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chooklin CS, Maneerat S, Saimmai A (2014) Utilization of banana peel as a novel substrate for biosurfactant production by Halobacteriaceae archaeon AS65. Appl Biochem Biotechnol 173(2):624–645

    Article  CAS  PubMed  Google Scholar 

  • Cirigliano MC, Carman GM (1985) Purification and characterization of Liposan, a bioemulsifier from Candida lipolytica. Appl Environ Microbiol 50(4):846–850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooper DG, Paddock DA (1984) Production of a biosurfactant from Torulopsis bombicola. Appl Environ Microbiol 47:173–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das P, Mukherjee S, Sen R (2008) Genetic regulations of the biosynthesis of microbial surfactants: an overview. Biotechnol Genet Eng Rev 25:165–185

    Article  CAS  PubMed  Google Scholar 

  • de Bruijn I, de Kock MJ, de Waard P, van Beek TA, Raaijmakers JM (2008) Massetolide A biosynthesis in Pseudomonas fluorescens. J Bacteriol 190(8):2777–2789

    Article  PubMed  CAS  Google Scholar 

  • de Cássia FSSR, Almeida DG, Rufino RD, Luna JM, Santos VA, Sarubbo LA (2014) Applications of biosurfactants in the petroleum industry and the remediation of oil spills. Int J Mol Sci 15(7):12523–12542

    Article  CAS  Google Scholar 

  • de Gusmão CAB, Rufino RD, Sarubbo LA (2010) Laboratory production and characterization of a new biosurfactant from Candida glabrata UCP1002 cultivated in vegetable fat waste applied to the removal of hydrophobic contaminant. World J Microbiol Biotechnol 26:1683–1692

    Article  CAS  Google Scholar 

  • Desai AJ, Patel RM, Desai JD (1994) Advances in production of biosurfactant and their commercial applications. J Sci Ind Res 53:619–629

    CAS  Google Scholar 

  • Develter DWG, Lauryssen LML (2010) Properties and industrial applications of sophorolipids. Eur J Lipid Sci Technol 112(6):628–638. https://doi.org/10.1002/ejlt.200900153

    Article  CAS  Google Scholar 

  • Déziel E, Lépine F, Milot S, Villemur R (2003) rhlA is required for the production of a novel biosurfactant promoting swarming motility in Pseudomonas aeruginosa: 3- (3-hydroxyalkanoyloxy)alkanoic acids (HAAs), the precursors of rhamnolipids. Microbiology 149:2005–2013

    Article  PubMed  CAS  Google Scholar 

  • Diab A, Din GE (2013) Application of the biosurfactants produced by Bacillus sp. (SH 20 and SH 26) and P. aeruginosa SH 29 isolated from the rhizosphere soil of an Egyptian salt marsh plant for the cleaning of oil-contaminated vessels and enhancing the biodegradation. Afr J Environ Sci Technol 7:671–679

    CAS  Google Scholar 

  • Dobler L, Vilela LF, Almeida RV, Neves BC (2016) Rhamnolipids in perspective: gene regulatory pathways, metabolic engineering, production and technological forecasting. N Biotechnol 33(1):123–135

    Article  CAS  PubMed  Google Scholar 

  • Dubeau D, Déziel E, Woods DE, Lépine F (2009) Burkholderia thailandensis harbors two identical rhl gene clusters responsible for the biosynthesis of rhamnolipids. BMC Microbiol 9:263

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Duitman EH, Hamoen LW, Rembold M, Venema G, Seitz H, Saenger W et al (1999) The mycosubtilin synthetase of Bacillus subtilis ATCC6633: a multifunctional hybrid between a peptide synthetase, an amino transferase, and a fatty acid synthase. Proc Natl Acad Sci U S A 96(23):13294–13299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elazzazy AM, Abdelmoneim TS, Almaghrabi OA (2015) Isolation and characterization of biosurfactant production under extreme environmental conditions by alkali-halo-thermophilic bacteria from Saudi Arabia. Saudi J Biol Sci 22(4):466–475

    Article  CAS  PubMed  Google Scholar 

  • Elshafie AE, Joshi SJ, Al-Wahaibi YM, Al-Bemani AS, Al-Bahry SN, Al-Maqbali D, Banat IM (2015) Sophorolipids production by Candida bombicola ATCC 22214 and its potential application in microbial enhanced oil recovery. Front Microbiol 6:1324

    Article  PubMed  PubMed Central  Google Scholar 

  • Feng JQ, Gang HZ, Li DS, Liu JF, Yang SZ, Mu BZ (2019) Characterization of biosurfactant lipopeptide and its performance evaluation for oil-spill remediation. RSC Adv 9:9629–9632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fenibo EO, Ijoma GN, Selvarajan R, Chikere CB (2019) Microbial surfactants: the next generation multifunctional biomolecules for applications in the petroleum industry and its associated environmental remediation. Microorganisms 7(11):581

    Article  CAS  PubMed Central  Google Scholar 

  • Ferraz C, De Araújo AA, Pastore GM (2002) The influence of vegetable oils on biosurfactant production by Serratia marcescens. Appl Biochem Biotechnol 98–100:841–847

    Article  PubMed  Google Scholar 

  • Fonseca RR, Silva AJ, De França FP, Cardoso VL, Sérvulo EF (2007) Optimizing carbon/nitrogen ratio for biosurfactant production by a Bacillus subtilis strain. Appl Biochem Biotechnol 137–140(1–12):471–486. https://doi.org/10.1007/s12010-007-9073-z

    Article  PubMed  Google Scholar 

  • Fontes GC, Amaral PF, Nele M, Coelho MA (2010) Factorial design to optimize biosurfactant production by Yarrowia lipolytica. J Biomed Biotechnol 2010:821306

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Furuta T, Hirata Y, Igarashi K (2004) Low-foaming detergent compositions. US Patent 20040171512 A1

    Google Scholar 

  • Ghribi D, Ellouze-Chaabouni S (2011) Enhancement of Bacillus subtilis lipopeptide biosurfactants production through optimization of medium composition and adequate control of aeration. Biotechnol Res Int 2011:653654. https://doi.org/10.4061/2011/653654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greenwell M, Sarker M, Rahman P (2016) Biosurfactant production and biodegradation of leather dust from tannery. Open Biotechnol J 10(Suppl-2, M4):312–325

    Article  CAS  Google Scholar 

  • Gudiña EJ, Fernandes EC, Rodrigues AI, Teixeira JA, Rodrigues LR (2015) Biosurfactant production by Bacillus subtilis using corn steep liquor as culture medium. Front Microbiol 6:59

    PubMed  PubMed Central  Google Scholar 

  • Havasi R (2011) Microbial biosurfactants: from an environmental application point of view. J Bioremed Biodegr 2:104e

    Google Scholar 

  • Heryani H, Putra MD (2017) Kinetic study and modeling of biosurfactant production using Bacillus sp. Electron J Biotechnol 27:49–54

    Article  CAS  Google Scholar 

  • Hewald S, Linne U, Scherer M, Marahiel MA, Kämper J, Bölker M (2006) Identification of a gene cluster for biosynthesis of mannosylerythritol lipids in the basidiomycetous fungus Ustilago maydis. Appl Environ Microbiol 72(8):5469–5477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu X, Wang C, Wang P (2015) Optimization and characterization of biosurfactant production from marine Vibrio sp. strain 3B-2. Front Microbiol 6:976

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang W-C, Tang I-C (2007) Bacterial and yeast cultures—process characteristics, products, and applications. In: Bioprocessing for value-added products from renewable research, pp 185–223

    Chapter  Google Scholar 

  • Huang X, Liu J, Wang Y, Liu J, Lu L (2015) The positive effects of Mn2+ on nitrogen use and surfactin production by Bacillus subtilis ATCC 21332. Biotechnol Biotechnol Equip 29(2):381–389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jadhav JV, Anbu P, Yadav S, Pratap AP, Kale SB (2019) Sunflower acid oil-based production of rhamnolipid using Pseudomonas aeruginosa and its application in liquid detergents. J Surfactant Deterg 21(1):113–125. https://doi.org/10.1002/jsde.12255

    Article  CAS  Google Scholar 

  • Joshi-Navare K, Khanvilkar P, Prabhune A (2013) Jatropha oil derived sophorolipids: production and characterization as laundry detergent additive. Biochem Res Int 2013:169797

    Article  PubMed  PubMed Central  Google Scholar 

  • Kamal M, Höög JO, Kaiser R, Shafqat J, Razzaki T, Zaidi ZH, Jörnvall H (1995) Isolation, characterization and structure of subtilisin from a thermostable Bacillus subtilis isolate. FEBS Lett 374(3):363–366

    Article  CAS  PubMed  Google Scholar 

  • Kanna R, Gummadi SN, Kumar GS (2014) Production and characterization of biosurfactant by Pseudomonas putida MTCC 2467. Aust J Biol Sci 14:436–445

    Article  CAS  Google Scholar 

  • Kesting W, Tummuscheit M, Schacht H, Schollmeyer E (1996) Ecological washing of textiles with microbial surfactants. In: Jacobasch HJ (ed) Interfaces, surfactants and colloids in engineering. Progress in colloid & polymer science, vol 101. Steinkopff, Dresden

    Google Scholar 

  • Khademolhosseini R, Jafari A, Mousavi SM, Hajfarajollah H, Noghabi KA, Manteghian M (2019) Physicochemical characterization and optimization of glycolipid biosurfactant production by a native strain of Pseudomonas aeruginosa HAK01 and its performance evaluation for the MEOR process. RSC Adv 9(14):7932–7947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khaje BM, Fazaelipoor MH (2012) Application of rhamnolipid in the formulation of a detergent. J Surfactant Deterg 15:679–684

    Article  CAS  Google Scholar 

  • Kim HS, Jeon JW, Kim BH, Ahn CY, Oh HM, Yoon BD (2006) Extracellular production of a glycolipid biosurfactant, mannosylerythritol lipid, by Candida sp. SY16 using fed-batch fermentation. Appl Microbiol Biotechnol 70(4):391–396

    Article  CAS  PubMed  Google Scholar 

  • Kim LH, Jung Y, Kim SJ, Kim CM, Yu HW, Park HD et al (2015) Use of rhamnolipid biosurfactant for membrane biofouling prevention and cleaning. Biofouling 31(2):211–220

    Article  CAS  PubMed  Google Scholar 

  • Kogawa AC, Cernic BG, do Couto LGD, Salgado HRN (2017) Synthetic detergents: 100 years of history. Saudi Pharm J 25(6):934–938

    Article  PubMed  PubMed Central  Google Scholar 

  • Koglin A, Walsh CT (2009) Review structural insights into nonribosomal peptide enzymatic assembly lines. Nat Prod Rep 26(8):987–1000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Konz D, Doekel S, Marahiel MA (1999) Molecular and biochemical characterization of the protein template controlling biosynthesis of the lipopeptide lichenysin. J Bacteriol 181(1):133–140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar AP, Janardhan A, Viswanath B, Monika K, Jung JY, Narasimha G (2016) Evaluation of orange peel for biosurfactant production by Bacillus licheniformis and their ability to degrade naphthalene and crude oil. 3 Biotech 6(1):43

    Article  PubMed  PubMed Central  Google Scholar 

  • Lan G, Fan Q, Liu Y, Chen C, Li G, Liu Y, Yin X (2015) Rhamnolipid production from waste cooking oil using Pseudomonas SWP-4. Biochem Eng J 101:44–54

    Article  CAS  Google Scholar 

  • Li Q, Elimelech M (2004) Organic fouling and chemical cleaning of nanofiltration membranes: measurements and mechanisms. Environ Sci Technol 38:4683–4693

    Article  CAS  PubMed  Google Scholar 

  • Li J, Jensen SE (2008) Nonribosomal biosynthesis of fusaricidins by Paenibacillus polymyxa PKB1 involves direct activation of a D-amino acid. Chem Biol 15(2):118–127

    Article  PubMed  CAS  Google Scholar 

  • Liu JF, Yang J, Yang SZ, Ye RQ, Mu BZ (2012) Effects of different amino acids in culture media on surfactin variants produced by Bacillus subtilis TD7. Appl Biochem Biotechnol 166(8):2091–2100

    Article  CAS  PubMed  Google Scholar 

  • Liu JF, Mbadinga SM, Yang SZ, Gu JD, Mu BZ (2015) Chemical structure, property and potential applications of biosurfactants produced by Bacillus subtilis in petroleum recovery and spill mitigation. Int J Mol Sci 16(3):4814–4837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo C, Liu X, Zhou H, Wang X, Chen Z (2014) Nonribosomal peptide synthase gene clusters for lipopeptide biosynthesis in Bacillus subtilis 916 and their phenotypic functions. Appl Environ Microbiol 81(1):422–431

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Madaeni SS, Rostami E, Rahimpour A (2010) Surfactant cleaning of ultrafiltration membranes fouled by whey. Int J Dairy Technol 63:273–283

    Article  Google Scholar 

  • Mahanti P, Kumar S, Patra JK (2017) Biosurfactants: an agent to keep environment clean. In: Patra J, Vishnuprasad C, Das G (eds) Microbial biotechnology. Springer, Singapore

    Google Scholar 

  • Makkar RS, Cameotra SS (2002) Effects of various nutritional supplements on biosurfactant production by a strain of Bacillus subtilis at 45°C. J Surfactant Deterg 5:11–17

    Article  CAS  Google Scholar 

  • Makkar RS, Cameotra SS, Banat IM (2011) Advances in utilization of renewable substrates for biosurfactant production. AMB Expr 1:5

    Article  CAS  Google Scholar 

  • Marchant R, Banat IM (2012) Microbial biosurfactants: challenges and opportunities for future exploitation. Trends Biotechnol 30(11):558–565. https://doi.org/10.1016/j.tibtech.2012.07.003

    Article  CAS  PubMed  Google Scholar 

  • Massi J, Neto DC, Rezende MI (2014) Production of biossurfactants using soybean meal andrice husk with Bacillus amyloliquefaciens mo-04b bysolid state fermentation (ssf). BMC Proc 8(Suppl 4):223

    Article  Google Scholar 

  • Matsui T, Namihira T, Mitsuta T, Saeki H (2012) Removal of oil tank bottom sludge by novel biosurfactant, JE1058BS. J Jpn Pet Inst 55:138–141

    Article  CAS  Google Scholar 

  • Matsuyama T, Tanikawa T, Nakagawa Y (2011) Serrawettins and other surfactants produced by Serratia. In: Soberón-Chávez G (ed) Biosurfactants. Microbiology monographs, vol 20. Springer, Berlin

    Google Scholar 

  • Md Badrul Hisham NH, Ibrahim MF, Ramli N, Abd-Aziz S (2019) Production of biosurfactant produced from used cooking oil by Bacillus sp. HIP3 for heavy metals removal. Molecules 24(14):2617

    Article  PubMed Central  CAS  Google Scholar 

  • Meng Q, Zhang G (2012) Application of rhamnolipid as biological cleaning agent. Chinese Patent CN 102399644

    Google Scholar 

  • Morita T, Fukuoka T, Imura T, Kitamoto D (2016) Glycolipid biosurfactants. In: Reference module in chemistry, molecular sciences and chemical engineering. https://doi.org/10.1016/b978-0-12-409547-2.11565-3

    Chapter  Google Scholar 

  • Moyne AL, Cleveland TE, Tuzun S (2004) Molecular characterization and analysis of the operon encoding the antifungal lipopeptide bacillomycin D. FEMS Microbiol Lett 234(1):43–49

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee AK (2007) Potential application of cyclic lipopeptide biosurfactants produced by Bacillus subtilis strains in laundry detergent formulations. Lett Appl Microbiol 45(3):330–335

    Article  CAS  PubMed  Google Scholar 

  • Müller MM, Hausmann R (2011) Regulatory and metabolic network of rhamnolipid biosynthesis: traditional and advanced engineering towards biotechnological production. Appl Microbiol Biotechnol 91(2):251–264

    Article  PubMed  CAS  Google Scholar 

  • Nakama Y (2017) Surfactants. In: Cosmetic science and technology. Elsevier, Amsterdam, pp 231–244. https://doi.org/10.1016/b978-0-12-802005-0.00015-x

    Chapter  Google Scholar 

  • Nakar D, Gutnick DL (2001) Analysis of the wee gene cluster responsible for the biosynthesis of the polymeric bioemulsifier from the oil-degrading strain Acinetobacter lwoffii RAG-1. Microbiology 147(Pt 7):1937–1946

    Article  CAS  PubMed  Google Scholar 

  • Nayarisseri A, Singh P, Singh SK (2018) Screening, isolation and characterization of biosurfactant producing Bacillus subtilis strain ANSKLAB03. Bioinformation 14(6):304–314

    Article  PubMed  PubMed Central  Google Scholar 

  • Neu TR, Härtner T, Poralla K (1990) Surface active properties of viscosin: a peptidolipid antibiotic. Appl Microbiol Biotechnol 32:518–520. https://doi.org/10.1007/BF00173720

    Article  CAS  Google Scholar 

  • Nielsen TH, Nybroe O, Koch B, Hansen M, Sørensen J (2005) Genes involved in cyclic lipopeptide production are important for seed and straw colonization by Pseudomonas sp. strain DSS73. Appl Environ Microbiol 71(7):4112–4116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nitsch C, Heitland H-J, Marsen H, Schlüssler H-J (2003) Cleansing agents. In: Ullmann’s encyclopedia of industrial chemistry. https://doi.org/10.1002/14356007.a07_137

    Chapter  Google Scholar 

  • Niu Y, Wu J, Wang W, Chen Q (2019) Production and characterization of a new glycolipid, mannosylerythritol lipid, from waste cooking oil biotransformation by Pseudozyma aphidis ZJUDM34. Food Sci Nutr 7(3):937–948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nurfarahin AH, Mohamed MS, Phang LY (2018) Culture medium development for microbial-derived surfactants production—an overview. Molecules 23(5):1049

    Article  PubMed Central  CAS  Google Scholar 

  • Olorunleke FE, Kieu NP, De Waele E, Timmerman M, Ongena M, Höfte M (2017) Coregulation of the cyclic lipopeptides orfamide and sessilin in the biocontrol strain Pseudomonas sp. CMR12a. Microbiologyopen 6(5):e00499. https://doi.org/10.1002/mbo3.499

    Article  CAS  PubMed Central  Google Scholar 

  • Patel S, Homaei A, Patil S, Daverey A (2019) Microbial biosurfactants for oil spill remediation: pitfalls and potentials. Appl Microbiol Biotechnol 103(1):27–37

    Article  CAS  PubMed  Google Scholar 

  • Persson A, Molin G (1987) Capacity for biosurfactant production of environmental Pseudomonas and Vibrionaceae growing on carbohydrates. Appl Microbiol Biotechnol 26:439–442

    Article  CAS  Google Scholar 

  • Qazi MA, Malik ZA, Qureshi GD, Hameed A, Ahmed S (2013) Yeast extract as the most preferable substrate for optimized biosurfactant production by rhlB gene positive Pseudomonas putida SOL-10 isolate. Bioremediat Biodegrad 4:1–10

    CAS  Google Scholar 

  • Rainey PB, Brodey CL, Johnstone K (1993) Identification of a gene cluster encoding three high-molecular-weight proteins, which is required for synthesis of tolaasin by the mushroom pathogen Pseudomonas tolaasii. Mol Microbiol 8(4):643–652

    Article  CAS  PubMed  Google Scholar 

  • Rashedi H, Jamshidi E, Mazaheri AM, Bonakdarpour B (2006) Biosurfactant production with glucose as a carbon source. Chem Biochem Eng Q 20(1):99–106

    CAS  Google Scholar 

  • Raza ZA, Rehman A, Khan MS, Khalid ZM (2007) Improved production of biosurfactant by a Pseudomonas aeruginosa mutant using vegetable oil refinery wastes. Biodegradation 18(1):115–121

    Article  CAS  PubMed  Google Scholar 

  • Reis CBLD, Morandini LMB, Bevilacqua CB et al (2018) First report of the production of a potent biosurfactant with α,β-trehalose by Fusarium fujikuroi under optimized conditions of submerged fermentation. Braz J Microbiol 49(Suppl 1):185–192

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Roongsawang N, Hase KI, Haruki M, Imanaka T, Morikawa M, Kanaya S (2003) Cloning and characterization of the gene cluster encoding arthrofactin synthetase from Pseudomonas sp. MIS38. Chem Biol 10(9):869–880

    Article  CAS  PubMed  Google Scholar 

  • Roongsawang N, Washio K, Morikawa M (2010) Diversity of nonribosomal peptide synthetases involved in the biosynthesis of lipopeptide biosurfactants. Int J Mol Sci 12(1):141–172

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rosenberg E, Rubinovitz C, Gottlieb A, Rosenhak S, Ron EZ (1988) Production of Biodispersan by Acinetobacter calcoaceticus A2. Appl Environ Microbiol 54(2):317–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rubinovitz C, Gutnick DL, Rosenberg E (1982) Emulsan production by Acinetobacter calcoaceticus in the presence of chloramphenicol. J Bacteriol 152(1):126–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rufino RD, de Luna JM, de Campos Takaki GM, Sarubbo LA (2014) Characterization and properties of the biosurfactant produced by Candida lipolytica UCP 0988. Electron J Biotechnol 17:34–38

    Article  CAS  Google Scholar 

  • Saeki H, Sasaki M, Komatsu K, Miura A, Matsuda H (2009) Oil spill remediation by using the remediation agent JE1058BS that contains a biosurfactant produced by Gordonia sp. strain JE-1058. Bioresour Technol 100(2):572–577

    Article  CAS  PubMed  Google Scholar 

  • Saikia RR, Deka S, Deka M, Sarma H (2012) Optimization of environmental factors for improved production of rhamnolipid biosurfactant by Pseudomonas aeruginosa RS29 on glycerol. J Basic Microbiol 52(4):446–457

    Article  CAS  PubMed  Google Scholar 

  • Santos DKF, Rufino RD, Luna JM, Santos VA, Salgueiro AA, Sarubbo LA (2013) Synthesis and evaluation of biosurfactant produced by Candida lipolytica using animal fat and corn steep liquor. J Petrol Sci Eng 105:43–50

    Article  CAS  Google Scholar 

  • Scholz-Schroeder BK, Soule JD, Lu SE, Grgurina I, Gross DC (2001) A physical map of the syringomycin and syringopeptin gene clusters localized to an approximately 145-kb DNA region of Pseudomonas syringae pv. syringae strain B301D. Mol Plant Microbe Interact 14(12):1426–1435

    Article  CAS  PubMed  Google Scholar 

  • Sen S, Borah SN, Bora A, Deka S (2017) Production, characterization, and antifungal activity of a biosurfactant produced by Rhodotorula babjevae YS3. Microb Cell Fact 16(1):95

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shaheen M, Li J, Ross AC, Vederas JC, Jensen SE (2011) Paenibacillus polymyxa PKB1 produces variants of polymyxin B-type antibiotics. Chem Biol 18(12):1640–1648

    Article  CAS  PubMed  Google Scholar 

  • Sharma D (2016) Applications of biosurfactants in food. In: SpringerBriefs in food, health, and nutrition, pp 43–80

    Google Scholar 

  • Sharma D, Ansari MJ, Gupta S, Al Ghamdi A, Pruthi P, Pruthi V (2015) Structural characterization and antimicrobial activity of a biosurfactant obtained from Bacillus pumilus DSVP18 grown on potato peels. Jundishapur J Microbiol 8(9):e21257

    Article  PubMed  PubMed Central  Google Scholar 

  • Sidkey NM, Al Hadry EA (2014) Biosurfactant production by Bacillus cereus, B7 from lubricant oil waste. Int J Sci Res 3(12):498–509

    Google Scholar 

  • Singh V, Haque S, Niwas R, Srivastava A (2017) Strategies for fermentation medium optimization: an in-depth review. Front Microbiol 7:1–16

    Article  Google Scholar 

  • Stoimenova E, Vasileva-Tonkova E, Sotirova A, Galabova D, Lalchev Z (2009) Evaluation of different carbon sources for growth and biosurfactant production by Pseudomonas fluorescens isolated from wastewaters. Z Naturforsch C J Biosci 64(1–2):96–102

    Article  CAS  PubMed  Google Scholar 

  • Su C, Xiang Z, Liu Y, Zhao X, Sun Y, Li Z et al (2016) Analysis of the genomic sequences and metabolites of Serratia surfactantfaciens sp. nov. YD25T that simultaneously produces prodigiosin and serrawettin W2. BMC Genomics 17(1):865

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Takahashi M, Morita T, Wada K, Hirose N, Fukuoka T, Imura T, Kitamoto D (2011) Production of sophorolipid glycolipid biosurfactants from sugarcane molasses using Starmerella bombicola NBRC 10243. J Oleo Sci 60(5):267–273

    Article  CAS  PubMed  Google Scholar 

  • Tan YN, Li Q (2018) Microbial production of rhamnolipids using sugars as carbon sources. Microb Cell Fact 17(1):89

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thompson DN, Fox SL, Bala GA (2000) Biosurfactants from potato process effluents. Appl Biochem Biotechnol 84–86:917–930

    Article  PubMed  Google Scholar 

  • Toren A, Orr E, Paitan Y, Ron EZ, Rosenberg E (2002) The active component of the bioemulsifier alasan from Acinetobacter radioresistens KA53 is an OmpA-like protein. J Bacteriol 184(1):165–170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsuge K, Akiyama T, Shoda M (2001) Cloning, sequencing and characterization of the iturin a operon. J Bacteriol 183:6265–6273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vallet-Gely I, Novikov A, Augusto L, Liehl P, Bolbach G, Péchy-Tarr M et al (2010) Association of hemolytic activity of Pseudomonas entomophila, a versatile soil bacterium, with cyclic lipopeptide production. Appl Environ Microbiol 76(3):910–921

    Article  CAS  PubMed  Google Scholar 

  • Van Bogaert IN, Holvoet K, Roelants SL, Li B, Lin YC, Van de Peer Y et al (2013) The biosynthetic gene cluster for sophorolipids: a biotechnological interesting biosurfactant produced by Starmerella bombicola. Mol Microbiol 88(3):501–509

    Article  PubMed  CAS  Google Scholar 

  • Varvaresou A, Iakovou K (2015) Biosurfactants in cosmetics and biopharmaceuticals. Lett Appl Microbiol 61(3):214–223

    Article  CAS  PubMed  Google Scholar 

  • Vijayakumar S, Saravanan V (2015) Biosurfactants—types, sources and applications. Res J Microbiol 10:181–192

    Article  Google Scholar 

  • Volkering F, Breure AM, Rulkens WH (1998) Microbiological aspects of surfactant use for biological soil remediation. Biodegradation 8:401–417

    Article  CAS  Google Scholar 

  • Wei YH, Wang LF, Chang JS (2004) Optimizing iron supplement strategies for enhanced surfactin production with Bacillus subtilis. Biotechnol Prog 20(3):979–983. https://doi.org/10.1021/bp030051a

    Article  CAS  PubMed  Google Scholar 

  • White DA, Hird LC, Ali ST (2013) Production and characterization of a trehalolipid biosurfactant produced by the novel marine bacterium Rhodococcus sp., strain PML026. J Appl Microbiol 115(3):744–755

    Article  CAS  PubMed  Google Scholar 

  • Wu CY, Chen CL, Lee YH, Cheng YC, Wu YC, Shu HY, Götz F, Liu ST (2007) Nonribosomal synthesis of fengycin on an enzyme complex formed by fengycin synthetases. J Biol Chem 282(8):5608–5616

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto S, Fukuoka T, Imura T, Morita T, Yanagidani S, Kitamoto D, Kitagawa M (2013) Production of a novel mannosylerythritol lipid containing a hydroxy fatty acid from castor oil by Pseudozyma tsukubaensis. J Oleo Sci 62(6):381–389

    Article  PubMed  Google Scholar 

  • Yang XE, Wu X, Hao HL, He ZL (2008) Mechanisms and assessment of water eutrophication. J Zhejiang Univ Sci B 9(3):197–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ying GG (2006) Fate, behavior and effects of surfactants and their degradation products in the environment. Environ Int 32(3):417–431

    Article  CAS  PubMed  Google Scholar 

  • Yoneda T (2006) Cosmetic composition comprising A and A lipopeptide. US Patent 0222616

    Google Scholar 

  • Zarinviarsagh M, Ebrahimipour G, Sadeghi H (2017) Lipase and biosurfactant from Ochrobactrum intermedium strain MZV101 isolated by washing powder for detergent application. Lipids Health Dis 16:177

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao F, Shi R, Ma F, Han S, Zhang Y (2018) Oxygen effects on rhamnolipids production by Pseudomonas aeruginosa. Microb Cell Fact 17(1):39

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nadaf, S., Kumbar, V.M., Killedar, S., Torvi, A.I., Hoskeri, J.H., Shettar, A.K. (2021). Microbial Biosurfactants as Cleaning and Washing Agents. In: Inamuddin, Ahamed, M.I., Prasad, R. (eds) Microbial Biosurfactants. Environmental and Microbial Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-15-6607-3_14

Download citation

Publish with us

Policies and ethics