Skip to main content
Log in

Effects of Different Amino Acids in Culture Media on Surfactin Variants Produced by Bacillus subtilis TD7

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Surfactin produced by Bacillus subtilis has different variants, which are affected by the composition of substrate available. To demonstrate the effects of amino acids on surfactin variants, B. subtilis TD7 was cultivated under the same conditions but with different amino acids supplied in media, respectively, and the type as well as the proportion of surfactin variants produced was analyzed with electrospray ionization mass spectrometry and gas chromatography–mass spectrometry. The result shows that the addition of different amino acids significantly influences the proportion of surfactin variants with different fatty acids. When Arg, Gln, or Val was added to the culture medium of B. subtilis TD7, the proportion of produced surfactin variants with even β-hydroxy fatty acids significantly increased, while the addition of Cys, His, Ile, Leu, Met, Ser, or Thr enhanced the proportion of surfactin variants with odd β-hydroxy fatty acids markedly. This result may be of some reference value in enhancing the production of specific surfactin variants as well as in the research on the relationship between culture media and the corresponding products of a certain bacterium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Banat, I. M., Makkar, R. S., & Cameotra, S. S. (2000). Applied Microbiology and Biotechnology, 53, 495–508.

    Article  CAS  Google Scholar 

  2. Cameotra, S. S., & Makkar, R. S. (2004). Current Opinion in Microbiology, 7, 262–266.

    Article  CAS  Google Scholar 

  3. Kowall, M., Vater, J., Kluge, B., Stein, T., Franke, P., & Ziessow, D. (1998). Journal of Colloid and Interface Science, 204, 1–8.

    Article  CAS  Google Scholar 

  4. Kim, K. M., Lee, J. Y., Kim, C. K., & Kang, J. S. (2009). Archives of Pharmacal Research, 32(5), 711–715.

    Article  CAS  Google Scholar 

  5. Singh, P., & Cameotra, S. S. (2004). Trends in Biotechnology, 22(3), 142–146.

    Article  CAS  Google Scholar 

  6. Seydlová, G., & Svobodová, J. (2008). Central European Journal of Medicine, 3(2), 123–133.

    Article  Google Scholar 

  7. Mukherjee, A. K. (2007). Letters in Applied Microbiology, 45(3), 330–335.

    Article  CAS  Google Scholar 

  8. Heerklotz, H., & Seelig, J. (2001). Biophysical Journal, 81, 1547–1554.

    Article  CAS  Google Scholar 

  9. Bonmatin, J. M., Labbé, H., Grangemard, I., Peypoux, F., Maget-Dana, R., Ptak, M., et al. (1995). Letters in Peptide Science, 2, 41–47.

    Article  CAS  Google Scholar 

  10. Razafindralambo, H., Popineau, Y., Deleu, M., Hbid, C., Thonart, P., & Paquot, M. (1998). Journal of Agricultural and Food Chemistry, 46, 911–916.

    Article  CAS  Google Scholar 

  11. Deleu, M., Bouffioux, O., Razafindralambo, H., Paquot, M., Hbid, C., Thonart, P., et al. (2003). A computational approach. Langmuir, 19, 3377–3385.

    Article  CAS  Google Scholar 

  12. Noha, H. Y., Kathleen, E.-D., & Michael, J. M. (2005). Applied and Environmental Microbiology, 71(12), 7690–7695.

    Article  Google Scholar 

  13. Akpa, E., Jacques, P., Wathelet, B., Paquot, M., Fuchs, R., Buzikiewicz, H., et al. (2001). Applied Biochemistry and Biotechnology, 91–93, 551–561.

    Article  Google Scholar 

  14. Peypoux, F., & Michel, G. (1992). Applied Microbiology and Biotechnology, 36, 515–517.

    Article  CAS  Google Scholar 

  15. Hashizume, H., Igarashi, M., Sawa, R., Adachi, H., Nishimura, Y., & Akamatsu, Y. (2008). Journal of Antibiotics, 61(9), 577–582.

    Article  CAS  Google Scholar 

  16. Hourdou, M. L., Besson, F., Tenoux, I., & Michel, G. (1989). Lipids, 24(11), 940–944.

    Article  CAS  Google Scholar 

  17. Hourdou, M. L., Besson, F., & Michel, G. (1988). Journal of Antibiotics, 41, 207–211.

    Article  CAS  Google Scholar 

  18. Besson, F., & Hourdou, M. L. (1987). Journal of Antibiotics, 40(2), 221–223.

    Article  CAS  Google Scholar 

  19. He, F. Y., Zhang, J. L., Li, T. C., Dai, H. J., & Hou, D.-Y. (2006). Food Science and Technology, 10, 238–240 (In Chinese).

    Google Scholar 

  20. Namir, I. A. H., Wang, J., & Mu, B. Z. (2008). Journal of Industrial Microbiology and Biotechnology, 35, 1597–1604.

    Article  Google Scholar 

  21. Kim, K. M., Lee, J. Y., Kim, C. K., & Kang, J. S. (2009). Archives of Pharmacal Research, 32(5), 711–715.

    Article  CAS  Google Scholar 

  22. Li, Y. M., Haddad, N. I. A., Yang, S. Z., & Mu, B. Z. (2008). International Journal of Peptide Research and Therapeutics, 14(3), 229–235.

    Article  CAS  Google Scholar 

  23. Kaneda, T. (1977). Bacteriological Reviews, 41, 391–418.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Science and Technology of China (2009AA063503) and the National Natural Science Foundation of China (41073055).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo-Zhong Mu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, JF., Yang, J., Yang, SZ. et al. Effects of Different Amino Acids in Culture Media on Surfactin Variants Produced by Bacillus subtilis TD7. Appl Biochem Biotechnol 166, 2091–2100 (2012). https://doi.org/10.1007/s12010-012-9636-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9636-5

Keywords

Navigation