Skip to main content

Beneficial Root Microbiota: Transmogrifiers of Secondary Metabolism in Plants

  • Chapter
  • First Online:
Emerging Trends in Plant Pathology

Abstract

All plants in the ecosystem are found in close association with complex group of microbes both belowground and aboveground surfaces. Reports suggest that the association can be harmful, neutral, or beneficial to the plants depending upon the category of colonizing microbes. It is among them that certain microorganisms bring about modification in the plant metabolome, maneuvering to modifications in the biosynthetic pathway of plant metabolites of known and unknown origin. Plant secondary metabolites are exceptional group of chemicals released as an end product of biosynthetic pathways which have numerous secondary roles in survival and growth of the plants. Among the multifarious roles played by the metabolites, some of the important traits include repulsion of pathogens and attraction of beneficial group of microbes. The present chapter thus summarizes the till-date understanding of the role of root microbiome on the secondary metabolic status of plants, how the remodeling affects the health and defense status of the concerned plants, and finally the knowledge hiatus that needs to be fulfilled for harnessing the full potential of microbes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adesemoye AO, Kloepper JW (2009) Plant–microbes interactions in enhanced fertilizer-use efficiency. Appl Microbiol Biotechnol 85:1–12

    Article  CAS  PubMed  Google Scholar 

  • Albuquerque P, Casadevall A (2012) Quorum sensing in fungi–a review. Med Mycol 50:337–345

    Article  CAS  PubMed  Google Scholar 

  • Ali GS, Norman D, El-Sayed AS (2015) Soluble and volatile metabolites of plant growth-promoting rhizobacteria (PGPRs): role and practical applications in inhibiting pathogens and activating induced systemic resistance (ISR). In: Advances in botanical research, vol 75. Academic Press, pp 241–284

    Google Scholar 

  • Aminov RI (2009) The role of antibiotics and antibiotic resistance in nature. Environ Microbiol 11:2970–2988

    Article  CAS  PubMed  Google Scholar 

  • An JH, Goo E, Kim H, Seo YS, Hwang I (2014) Bacterial quorum sensing and metabolic slowing in a cooperative population. Proc Natl Acad Sci 111:14912–14917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atkinson S, Williams P (2009) Quorum sensing and social networking in the microbial world. J R Soc Interface 6:959–978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Awad V, Kuvalekar A, Harsulkar A (2014) Microbial elicitation in root cultures of Taverniera cuneifolia (Roth) Arn. for elevated glycyrrhizic acid production. Ind Crop Prod 54:13–16

    Article  CAS  Google Scholar 

  • Aznar A, Dellagi A (2015) New insights into the role of siderophores as triggers of plant immunity: what can we learn from animals. J Exp Bot 66:3001–3010

    Article  CAS  PubMed  Google Scholar 

  • Babalola OO (2010) Beneficial bacteria of agricultural importance. Biotechnol Lett 32:1559–1570

    Article  CAS  PubMed  Google Scholar 

  • Badri DV, Weir TL, Van der Lelie D, Vivanco JM (2009) Rhizosphere chemical dialogues: plant–microbe interactions. Curr Opin Biotechnol 20:642–650

    Article  CAS  PubMed  Google Scholar 

  • Bais HP, Walker TS, Schweizer HP, Vivanco JM (2002) Root specific elicitation and antimicrobial activity of rosmarinic acid in hairy root cultures of Ocimum basilicum. Plant Physiol Biochem 40:983–995

    Article  CAS  Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266

    Article  CAS  PubMed  Google Scholar 

  • Ballhorn DJ, Kautz S, Heil M, Hegeman AD (2009) Cyanogenesis of wild lima bean (Phaseolus lunatus L.) is an efficient direct defence in nature. Plant Signal Behav 4:735–745

    Google Scholar 

  • Barea JM, Pozo MJ, Azcon R, Azcon-Aguilar C (2005) Microbial co-operation in the rhizosphere. J Exp Bot 56:1761–1778

    Article  CAS  PubMed  Google Scholar 

  • Bassam BJ, Djordjevic MA, Redmond JW, Batley M, Rolfe BG (1988) Identification of a nodD-dependent locus in the Rhizobium strain NGR234 activated by phenolic factors secreted by soybeans and other legumes. Mol Plant-Microbe Interact 1:161–168

    Article  CAS  PubMed  Google Scholar 

  • Berendsen RL, Pieterse CM, Bakker PA (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17:478–486

    Article  CAS  PubMed  Google Scholar 

  • Berni R, Cantini C, Romi M, Hausman JF, Guerriero G, Cai G (2018) Agrobiotechnology goes wild: Ancient local varieties as sources of bioactives. Int J Mol Sci 19:2248

    Article  PubMed Central  Google Scholar 

  • Biswas JC, Ladha JK, Dazzo FB, Yanni YG, Rolfe BG (2000) Rhizobial inoculation influences seedling vigor and yield of rice. Agron J 92:880–886

    Article  Google Scholar 

  • Bohlmann J, Keeling CI (2008) Terpenoid biomaterials. Plant J 54:656–669

    Article  CAS  PubMed  Google Scholar 

  • Bonkowski M (2004) Protozoa and plant growth: the microbial loop in soil revisited. New Phytol 162:617–631

    Article  PubMed  Google Scholar 

  • Bonkowski M, Villenave C, Griffiths B (2009) Rhizosphere fauna: the functional and structural diversity of intimate interactions of soil fauna with plant roots. Plant Soil 321:213–233

    Article  CAS  Google Scholar 

  • Brazelton JN, Pfeufer EE, Sweat TA, Gardener BBM, Coenen C (2008) 2, 4-Diacetylphloroglucinol alters plant root development. Mol Plant-Microbe Interact 21:1349–1358

    Article  CAS  PubMed  Google Scholar 

  • Broeckling CD, Broz AK, Bergelson J, Manter DK, Vivanco JM (2008) Root exudates regulate soil fungal community composition and diversity. Appl Environ Microbiol 74:738–744

    Article  CAS  PubMed  Google Scholar 

  • Brooks CJ, Watson DG, Freer IM (1986) Elicitation of capsidiol accumulation in suspended callus cultures of Capsicum annuum. Phytochemistry 25:1089–1092

    Article  CAS  Google Scholar 

  • Bulgarelli D, Schlaeppi K, Spaepen S, Van Themaat EVL, Schulze-Lefert P (2013) Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64:807–838

    Article  CAS  PubMed  Google Scholar 

  • Buyer JS, Roberts DP, Russek-Cohen E (2002) Soil and plant effects on microbial community structure. Can J Microbiol 48:955–964

    Article  CAS  PubMed  Google Scholar 

  • Chaparro JM, Sheflin AM, Manter DK, Vivanco JM (2012) Manipulating the soil microbiome to increase soil health and plant fertility. Biol Fertil Soils 48:489–499

    Article  Google Scholar 

  • Chen H, Fink GR (2006) Feedback control of morphogenesis in fungi by aromatic alcohols. Genes Dev 20:1150–1161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen XH, Koumoutsi A, Scholz R, Eisenreich A, Schneider K, Heinemeyer I, Junge H (2007) Comparative analysis of the complete genome sequence of the plant growth–promoting bacterium Bacillus amyloliquefaciens FZB42. Nat Biotechnol 25:1007

    Article  CAS  PubMed  Google Scholar 

  • Chodisetti B, Rao K, Gandi S, Giri A (2013) Improved gymnemic acid production in the suspension cultures of Gymnema sylvestre through biotic elicitation. Plant Biotechnol Rep 7:519–525

    Article  Google Scholar 

  • Chu W, Jiang Y, Yongwang L, Zhu W. (2011) Role of the quorum-sensing system in biofilm formation and virulence of Aeromonas hydrophila. Afr J Microbiol Res 5: 5819–5825

    Google Scholar 

  • Coronado C, Zuanazzi JS, Sallaud C, Quirion JC, Esnault R, Husson HP, Ratet P (1995) Alfalfa root flavonoid production is nitrogen regulated. Plant Physiol 108:533–542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costacurta A, Vanderleyden J (1995) Synthesis of phytohormones by plant-associated bacteria. Crit Rev Microbiol 21:1–18

    Article  PubMed  Google Scholar 

  • Crozier A, Jaganath IB, Clifford MN (2006) In: Crozier A, Clifford MN, Ashihara H (eds) Plant secondary metabolites: occurrence, structure and role in the human diet. Blackwell Publishing Limited. ISBN-13: 978-1-4051-2509-3

    Google Scholar 

  • Davidson IA, Robson MJ (1986) Effect of contrasting patterns of nitrate application on the nitrate uptake, N2-fixation, nodulation and growth of white clover. Ann Bot 57:331–338

    Article  Google Scholar 

  • Del Carmen Orozco-Mosqueda M, del Carmen Rocha-Granados M, Glick BR, Santoyo G (2018) Microbiome engineering to improve biocontrol and plant growth-promoting mechanisms. Microbiol Res 208:25–31

    Article  CAS  Google Scholar 

  • Di Benedetto NA, Corbo MR, Campaniello D, Cataldi MP, Bevilacqua A, Sinigaglia M, Flagella Z. (2017) The role of plant growth promoting bacteria in improving nitrogen use efficiency for sustainable crop production: a focus on wheat, 3: 413–434

    Google Scholar 

  • Dobbelaere S, Vanderleyden J, Okon Y (2003) Plant growth-promoting effects of diazotrophs in the rhizosphere. Crit Rev Plant Sci 22:107–149

    Article  CAS  Google Scholar 

  • Druzhinina IS, Seidl-Seiboth V, Herrera-Estrella A, Horwitz BA, Kenerley CM, Monte E, Kubicek CP (2011) Trichoderma: the genomics of opportunistic success. Nat Rev Microbiol 9:749

    Article  CAS  PubMed  Google Scholar 

  • Duffy B, Keel C, Défago G (2004) Potential role of pathogen signaling in multitrophic plant-microbe interactions involved in disease protection. Appl Environ Microbiol 70:1836–1842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engelberth J, Koch T, Schüler G, Bachmann N, Rechtenbach J, Boland W (2001) Ion channel-forming alamethicin is a potent elicitor of volatile biosynthesis and tendril coiling. Cross talk between jasmonate and salicylate signaling in lima bean. Plant Physiol 125:369–377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Enjalbert B, Whiteway M (2005) Release from quorum-sensing molecules triggers hyphal formation during Candida albicans resumption of growth. Eukaryot Cell 4:1203–1210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Etalo DW, Jeon JS, Raaijmakers JM (2018) Modulation of plant chemistry by beneficial root microbiota. Nat Prod Rep 35:398–409

    Article  CAS  PubMed  Google Scholar 

  • Ferguson BJ, Mathesius U (2014) Phytohormone regulation of legume-rhizobia interactions. J Chem Ecol 40:770–790

    Article  CAS  PubMed  Google Scholar 

  • Firmin JL, Wilson KE, Rossen L, Johnston AWB (1986) Flavonoid activation of nodulation genes in Rhizobium reversed by other compounds present in plants. Nature 324:90

    Article  CAS  Google Scholar 

  • Fitzpatrick CR, Copeland J et al (2018) Assembly and ecological function of the root microbiome across angiosperm plant species. Proc Natl Acad Sci 115:E1157–E1165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuqua WC, Winans SC, Greenberg EP (1994) Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J Bacteriol 176:269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghorbanpour M, Hosseini NM, Rezazadeh S, Omidi M, Khavazi K, Etminn A (2010) Hyoscyamine and scopolamine production of black henbane (Hyoscyamus niger) infected with Pseudomonas putida and Pseudomonas. fluorescens strains under water deficit stress. Planta Med 76:P167

    Article  Google Scholar 

  • Giri BF (2005) In: Varma A (ed) Microorganisms in soils: roles in genesis and functions (pp. 139–153). Springer, Germany

    Google Scholar 

  • Goldberg G (2003) Plants: diet and health. The report of a British nutrition foundation task force, vol 347. Blackwell Publishing Limited, Oxford, U.K.

    Book  Google Scholar 

  • Gopalakrishnan S, Vadlamudi S, Bandikinda P, Sathya A, Vijayabharathi R, Rupela O, Varshney RK (2014) Evaluation of Streptomyces strains isolated from herbal vermicompost for their plant growth-promotion traits in rice. Microbiol Res 169:40–48

    Article  CAS  PubMed  Google Scholar 

  • Gopalakrishnan S, Srinivas V, Alekhya G, Prakash B, Kudapa H, Varshney RK (2015) Evaluation of Streptomyces sp. obtained from herbal vermicompost for broad spectrum of plant growth-promoting activities in chickpea. Org Agric 5:123–133

    Article  Google Scholar 

  • Grayson DH. (1998) Monoterpenoids. Natl Prod Rep. 5:497–521

    Google Scholar 

  • Grynkiewicz G, Gadzikowska M (2008) Tropane alkaloids as medicinally useful natural products and their synthetic derivatives as new drugs. Pharmacol Rep 60:439

    CAS  PubMed  Google Scholar 

  • Hacquard S, Garrido-Oter R, González A, Spaepen S, Ackermann G, Lebeis S, Schulze-Lefert P (2015) Microbiota and host nutrition across plant and animal kingdoms. Cell Host Microbe 17:603–616

    Article  CAS  PubMed  Google Scholar 

  • Hanuš LO, Řezanka T, Spížek J, Dembitsky VM (2005) Substances isolated from Mandragora species. Phytochemistry 66:2408–2417

    Article  PubMed  CAS  Google Scholar 

  • Hartwig UA, Maxwell CA, Joseph CM, Phillips DA (1990) Chrysoeriol and luteolin released from alfalfa seeds induce nod genes in Rhizobium meliloti. Plant Physiol 92:116–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hegnauer R (1988) Biochemistry, distribution and taxonomic relevance of higher plant alkaloids. Phytochemistry 27:2423–2427

    Article  CAS  Google Scholar 

  • Hermosa R, Viterbo A, Chet I, Monte E (2012) Plant-beneficial effects of Trichoderma and of its genes. Microbiology 158:17–25

    Article  CAS  PubMed  Google Scholar 

  • Hesse M (2002) Alkaloids: Nature’s Curse or Blessing? Wiley- VCH, New York

    Google Scholar 

  • Hiltner LT (1904) Uber nevere Erfahrungen und Probleme auf dem Gebiet der Boden Bakteriologie und unter besonderer Beurchsichtigung der Grundungung und Broche. Arbeit Deut Landw Ges Berlin 98:59–78

    Google Scholar 

  • Hütsch BW, Augustin J, Merbach W (2002) Plant rhizodeposition—an important source for carbon turnover in soils. J Plant Nutr Soil Sci 165:397–407

    Article  Google Scholar 

  • Jaleel CA, Gopi R, Gomathinayagam M, Panneerselvam R (2009) Traditional and non-traditional plant growth regulators alters phytochemical constituents in Catharanthus roseus. Process Biochem 44:205–209

    Article  CAS  Google Scholar 

  • Jousset A, Rochat L, Scheu S, Bonkowski M, Keel C (2010) Predator-prey chemical warfare determines the expression of biocontrol genes by rhizosphere-associated Pseudomonas fluorescens. Appl Environ Microbiol 76:5263–5268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung HY, Kang SM, Kang YM, Kang MJ, Yun DJ, Bahk JD, Choi MS (2003) Enhanced production of scopolamine by bacterial elicitors in adventitious hairy root cultures of Scopolia parviflora. Enzyme Microb Tech 33:987–990

    Article  CAS  Google Scholar 

  • Kiers ET, Duhamel M, Beesetty Y, Mensah JA, Franken O, Verbruggen E, Palmer TM (2011) Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science 333:880–882

    Article  CAS  PubMed  Google Scholar 

  • Kim YC, Leveau J, Gardener BBM, Pierson EA, Pierson LS, Ryu CM (2011) The multifactorial basis for plant health promotion by plant-associated bacteria. Appl Environ Microbiol 77:1548–1555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kloepper JW, Schroth MN (1987) Plant growth-promoting rhizobacteria on radishes. Proc 4th Int Conf Plant Path Bact Angers:879–882

    Google Scholar 

  • Knudson L (1920) The secretion of invertase by plant roots. Am J Bot 7:371–379

    Article  CAS  Google Scholar 

  • Komaraiah P, Amrutha RN, Kishor PK, Ramakrishna SV (2002) Elicitor enhanced production of plumbagin in suspension cultures of Plumbagorosea L. Enzyme MicrobTechnol 31:634–639

    Article  CAS  Google Scholar 

  • Kosslak RM, Bookland R, Barkei J, Paaren HE, Appelbaum ER (1987) Induction of Bradyrhizobium japonicum common nod genes by isoflavones isolated from Glycine max. Proc Natl Acad Sci 84:7428–7432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kowalchuk GA, Buma DS, de Boer W, Klinkhamer PG, van Veen JA (2002) Effects of above-ground plant species composition and diversity on the diversity of soil-borne microorganisms. Antonie Van Leeuwenhoek 81:509

    Article  PubMed  Google Scholar 

  • Krome K, Rosenberg K, Dickler C, Kreuzer K, Ludwig-Müller J, Ullrich-Eberius C, Bonkowski M (2010) Soil bacteria and protozoa affect root branching via effects on the auxin and cytokinin balance in plants. Plant Soil 328:191–201

    Article  CAS  Google Scholar 

  • Kusari S, Lamshöft M, Zühlke S, Spiteller M (2008) An endophytic fungus from Hypericum perforatum that produces hypericin. J Nat Prod 71:159–162

    Article  CAS  PubMed  Google Scholar 

  • Kusari S, Zühlke S, Kosuth J, Cellarova E, Spiteller M (2009) Light-independent metabolomics of endophytic Thielavia subthermophila provides insight into microbial hypericin biosynthesis. J Nat Prod 72:1825–1835

    Article  CAS  PubMed  Google Scholar 

  • Lau JA, Lennon JT (2011) Evolutionary ecology of plant–microbe interactions: soil microbial structure alters selection on plant traits. New Phytol 192:215–224

    Article  PubMed  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-Growth-Promoting Rhizobacteria. Annu Rev Microbiol 63:541–556

    Article  CAS  PubMed  Google Scholar 

  • Lyon TL, Wilson JK (1921) Liberation of organic matter by roots of growing plants, vol 40. Cornell University

    Google Scholar 

  • Mañero FJG, Algar E, Gómez MS, Sierra MD, Solano BR (2012) Elicitation of secondary metabolism in Hypericum perforatum by rhizosphere bacteria and derived elicitors in seedlings and shoot cultures. Pharm Biol 50:1201–1209

    Article  PubMed  CAS  Google Scholar 

  • Mazid M, Khan TA, Mohammad F (2011) Role of secondary metabolites in defense mechanisms of plants. Biol Med 3:232–249

    CAS  Google Scholar 

  • Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37:634–663

    Article  CAS  PubMed  Google Scholar 

  • Mercado-Blanco J, Bakker PA (2007) Interactions between plants and beneficial Pseudomonas spp.: exploiting bacterial traits for crop protection. Antonie Van Leeuwenhoek 92:367–389

    Article  PubMed  Google Scholar 

  • Messens E, Geelen D, Van Montagu M, Holsters M (1991) 7, 4-Dihydroxyflavanone is the major Azorhizobium nod gene-inducing factor present in Sesbania rostrata seedling exudate. Mol Plant-Microbe Interact 4:262–267

    Article  CAS  Google Scholar 

  • Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55:165–199

    Article  CAS  PubMed  Google Scholar 

  • Ming Q, Su C, Zheng C, Jia M, Zhang Q, Zhang H, Qin L (2013) Elicitors from the endophytic fungus Trichoderma atroviride promote Salvia miltiorrhiza hairy root growth and tanshinone biosynthesis. J Exp Bot 64:5687–5694

    Article  CAS  PubMed  Google Scholar 

  • Morán-Diez E, Hermosa R, Ambrosino P, Cardoza RE, Gutiérrez S, Lorito M, Monte E (2009) The ThPG1 endopolygalacturonase is required for the Trichoderma harzianum–plant beneficial interaction. Mol Plant-Microbe Interact 22:1021–1103

    Article  PubMed  CAS  Google Scholar 

  • Morgan JAW, Bending GD, White PJ (2005) Biological costs and benefits to plant–microbe interactions in the rhizosphere. J Exp Bot 56:1729–1739

    Article  CAS  PubMed  Google Scholar 

  • Müller MS, Scheu S, Jousset A (2013) Protozoa drive the dynamics of culturable biocontrol bacterial communities. PLoS One 8:e66200

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Müller DB, Vogel C, Bai Y, Vorholt JA (2016) The plant microbiota: systems-level insights and perspectives. Annu Rev Genet 50:211–234

    Article  PubMed  CAS  Google Scholar 

  • Namdeo AG (2004) Investigation on pilot scale bioreactor with reference to the synthesis of bioactive compounds from cell suspension cultures of Catharanthus roseus Linn. Devi Ahilya Vishwavidyalaya, Indore

    Google Scholar 

  • Namdeo A, Patil S, Fulzele DP (2002) Influence of fungal elicitors on production of ajmalicine by cell cultures of Catharanthus roseus. Biotechnol Prog 18:159–116

    Article  CAS  PubMed  Google Scholar 

  • Neal AL, Ahmad S, Gordon-Weeks R, Ton J (2012) Benzoxazinoids in root exudates of maize attract Pseudomonas putida to the rhizosphere. PLoS One 7:e35498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newton AC, Fitt BD, Atkins SD, Walters DR, Daniell TJ (2010) Pathogenesis, parasitism and mutualism in the trophic space of microbe–plant interactions. Trends Microbiol 18:365–373

    Article  CAS  PubMed  Google Scholar 

  • Nguyen C (2003) Rhizodeposition of organic C by plants: Mechanisms and controls. Agronomie 23:375–396

    Article  CAS  Google Scholar 

  • Nicholson RL, Hammerschmidt R (1992) Phenolic compounds and their role in disease resistance. Annu Rev Phytopathol 30:369–389

    Article  CAS  Google Scholar 

  • Ning P, Li S, Li X, Li C (2014) New maize hybrids had larger and deeper post-silking root than old ones. Field Crop Res 166:66–67

    Article  Google Scholar 

  • Ober D, Harms R, Witte L et al (2003) Molecular evolution by change of function. Alkaloid specific homospermidine synthase retained all properties of deoxyhypusine synthase except binding the eIF5A precursor protein. J Biol Chem 278:12805–12812

    Article  CAS  PubMed  Google Scholar 

  • Ogawa S, Valencia MO, Ishitani M, Selvaraj MG (2014) Root system architecture variation in response to different NH4+ concentrations and its association with nitrogen-deficient tolerance traits in rice. Acta Physiol Plant 36:2361–2372

    Article  CAS  Google Scholar 

  • Ohno A, Ano T, Shoda M (1995) Production of a lipopeptide antibiotic, surfactin, by recombinant Bacillus subtilis in solid state fermentation. Biotechnol Bioeng 47:209–214

    Article  CAS  PubMed  Google Scholar 

  • Olanrewaju OS, Glick BR, Babalola OO (2017) Mechanisms of action of plant growth promoting bacteria. World J Microbiol Biotechnol 33:197

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Osbourn AE, Qi X, Townsend B, Qin B (2003) Dissecting plant secondary metabolism- constitutive chemical defences in cereals. New Phytol 159:101–108

    Article  CAS  PubMed  Google Scholar 

  • Panke-Buisse K, Poole AC, Goodrich JK, Ley RE, Kao-Kniffin J (2015) Selection on soil microbiomes reveals reproducible impacts on plant function. Microb Ecol J 9:980

    CAS  Google Scholar 

  • Parimala R, Sachdanandam P (1993) Effect of Plumbagin on some glucose metabolising enzymes studied in rats in experimental hepatoma. Mol Cell Biochem 125:59–63

    Article  CAS  PubMed  Google Scholar 

  • Parr AJ, Bolwell GP (2000) Phenols in the plant and in man. The potential for possible nutritional enhancement of the diet by modifying the phenols content or profile. J Sci Food Agric 80:985–1012

    Article  CAS  Google Scholar 

  • Paulsen IT, Press CM, Ravel J, Kobayashi DY, Myers GS, Mavrodi DV, Dodson RJ (2005) Complete genome sequence of the plant commensal Pseudomonas fluorescens Pf-5. Nat Biotechnol 23:873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pérez-Montaño F, Alías-Villegas C, Bellogín RA, Del Cerro P, Espuny MR, Jiménez-Guerrero I, Cubo T (2014) Plant growth promotion in cereal and leguminous agricultural important plants: from microorganism capacities to crop production. Microbiol Res 169:325–336

    Article  PubMed  Google Scholar 

  • Peters NK, Frost JW, Long SR (1986) A plant flavone, luteolin, induces expression of Rhizobium meliloti nodulation genes. Science 233:977–980

    Article  CAS  PubMed  Google Scholar 

  • Pierson LS, Pierson EA (2010) Metabolism and function of phenazines in bacteria: impacts on the behavior of bacteria in the environment and biotechnological processes. Appl Microbiol Biotechnol 86:1659–1670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pinton R, Varanini Z, Nannipieri P (2007) The rhizosphere: biochemistry and organic substances at the soil-plant interface. CRC press

    Google Scholar 

  • Přikryl Z, Vančura V, Wurst M (1985) Auxin formation by rhizosphere bacteria as a factor of root growth. Biol Plant 27:159–163

    Article  Google Scholar 

  • Raaijmakers JM, Paulitz TC, Steinberg C, Alabouvette C, Moënne-Locco Y (2009) The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil 321:341–361

    Article  CAS  Google Scholar 

  • Radman R, Saez T, Bucke C, Keshavarz T (2003) Elicitation of plants and microbial cell systems. Biotechnol Appl Biochem 37:91–102

    Article  CAS  PubMed  Google Scholar 

  • Rashmi R, Sarkar MV (1997) Cultivation of alfalfa (Medicago sativa L). Anc Sci Life 17:117

    CAS  PubMed  PubMed Central  Google Scholar 

  • Redmond JW, Batley M, Djordjevic MA, Innes RW, Kuempel PL, Rolfe BG (1986) Flavones induce expression of nodulation genes in Rhizobium. Nature 323:632

    Article  CAS  Google Scholar 

  • Rout ME, Southworth D (2013) The root microbiome influences scales from molecules to ecosystems: the unseen majority1. Am J Bot 100:1689–1691

    Article  PubMed  Google Scholar 

  • Saraf M, Pandya U, Thakkar A (2014) Role of allelochemicals in plant growth promoting rhizobacteria for biocontrol of phytopathogens. Microbiol Res 169:18–29

    Article  CAS  PubMed  Google Scholar 

  • Schafer H, Wink M (2009) Medicinally important secondary metabolites in recombinant microorganisms or plants: progress in alkaloid biosynthesis. Biotechnol J 4:1684–1703

    Article  PubMed  CAS  Google Scholar 

  • Schmidt JE, Bowles TM, Gaudin A (2016) Using ancient traits to convert soil health into crop yield: impact of selection on maize root and rhizosphere function. Front Plant Sci 7:373

    Article  PubMed  PubMed Central  Google Scholar 

  • Sekar S, Kandavel D (2010) Interaction of plant growth promoting rhizobacteria (PGPR) and endophytes with medicinal plants “New Avenues for Phytochemicals”. J Phytol 91:100

    Google Scholar 

  • Shakeran Z, Keyhanfar M, Asghari G, Ghanadian M (2015) Improvement of atropine production by different biotic and abiotic elicitors in hairy root cultures of Datura metel. Turk J Biol 39:111–118

    Article  CAS  Google Scholar 

  • Sharaf-Eldin M, Elkholy S, Fernández JA, Junge H, Cheetham R, Guardiola J, Weathers P (2008) Bacillus subtilis FZB24® affects flower quantity and quality of saffron (Crocus sativus). Planta Med 74:1316–1320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma R, Chauhan A (2017) Rhizosphere microbiome and its role in plant growth promotion. In: Mining of microbial wealth and metagenomics. Springer, pp 29–56

    Google Scholar 

  • Simonet P, Normand P, Moiroud A, Bardin R (1990) Identification of Frankia strains in nodules by hybridization of polymerase chain reaction products with strain-specific oligonucleotide probes. Arch Microbiol 153:235–240

    Article  CAS  PubMed  Google Scholar 

  • Singh BK, Millard P, Whiteley AS, Murrell JC (2004) Unravelling rhizosphere–microbial interactions: opportunities and limitations. Trends Microbiol 12:386–393

    Article  CAS  PubMed  Google Scholar 

  • Soyano T, Hirakawa H, Sato S, Hayashi M, Kawaguchi M (2014) Nodule inception creates a long-distance negative feedback loop involved in homeostatic regulation of nodule organ production. Proc Natl Acad Sci 111:14607–14612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sperandio V, Torres AG, Kaper JB (2002) Quorum sensing Escherichia coli regulators B and C (QseBC): a novel two-component regulatory system involved in the regulation of flagella and motility by quorum sensing in E. coli. Mol Microbiol 43:809–821

    Article  CAS  PubMed  Google Scholar 

  • Sturz AV, Christie BR, Nowak J (2000) Bacterial endophytes: potential role in developing sustainable systems of crop production. Crit Rev Plant Sci 19:1–30

    Article  Google Scholar 

  • Sylvia AH, Prévost D (2005) Ecology of plant growth promoting rhizobacteria. In: PGPR: Biocontrol and Biofertilization. Springer, Dordrecht, pp 1–38

    Google Scholar 

  • Thomashow LS, Weller DM (1988) Role of a phenazine antibiotic from Pseudomonas fluorescens in biological control of Gaeumannomyces graminis var. tritici. J Bacteriol 170:3499–3508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tringe SG, Von Mering C, Kobayashi A, Salamov AA, Chen K, Chang HW, Bork P (2005) Comparative metagenomics of microbial communities. Science 308:554–557

    Article  CAS  PubMed  Google Scholar 

  • Turner TR, James EK et al (2013) The plant microbiome. Genome Biol 14:209

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Uga Y, Sugimoto K, Ogawa S, Rane J, Ishitani M, Hara N, Inoue H (2013) Control of root system architecture by deeper rooting 1 increases rice yield under drought conditions. Nat Genet 45:1097

    Article  CAS  PubMed  Google Scholar 

  • Uren NC (2000) Types, amounts, and possible functions of compounds released into the rhizosphere by soil-grown plants. In: The Rhizosphere. CRC Press, pp 35–56

    Google Scholar 

  • Van Der Heijden MG, Bardgett RD et al (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310

    Article  PubMed  Google Scholar 

  • Van Loon LC, Bakker PAHM (2005) Induced systemic resistance as a mechanism of disease suppression by rhizobacteria. In: PGPR: Biocontrol and Biofertilization. Springer, Dordrecht, pp 39–66

    Chapter  Google Scholar 

  • Vasconsuelo A, Boland R (2007) Molecular aspects of the early stages of elicitation of secondary metabolites in plants. Plant Sci 172:861–875

    Article  CAS  Google Scholar 

  • Wagg C, Jansa J et al (2011) Belowground biodiversity effects of plant symbionts support aboveground productivity. Ecol Lett 14:1001–1009

    Article  PubMed  Google Scholar 

  • Weston LA, Ryan PR, Watt M (2012) Mechanisms for cellular transport and release of allelochemicals from plant roots into the rhizosphere. J Exp Bot 63:3445–3454

    Article  CAS  PubMed  Google Scholar 

  • Wieland G, Neumann R, Backhaus H (2001) Variation of microbial communities in soil, rhizosphere, and rhizoplane in response to crop species, soil type, and crop development. Appl Environ Microbiol 67:5849–5854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wiktorowska E, Długosz M, Janiszowska W (2010) Significant enhancement of oleanolic acid accumulation by biotic elicitors in cell suspension cultures of Calendula officinalis L. Enzym Microb Technol 46:14–20

    Article  CAS  Google Scholar 

  • Wilson D (1995) Endophyte: the evolution of a term, and clarification of its use and definition. Oikos:274–276

    Google Scholar 

  • Yajima A (2014) Recent progress in the chemistry and chemical biology of microbial signaling molecules: quorum-sensing pheromones and microbial hormones. Tetrahedron Lett 55:2773–2780

    Article  CAS  Google Scholar 

  • Yao LH, Jiang YM, Shi J, Tomás-Barberán FA, Datta N, Singanusong R et al (2004) Flavonoids in food and their health benefits. Plant Foods Hum Nutr 59:113–122

    Article  CAS  PubMed  Google Scholar 

  • Yu K, Pieterse CM et al. (2019) Beneficial microbes going underground of root immunity. Plant Cell Environ 42:2860–2870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaat SA, Schripsema J, Wijffelman CA, Van Brussel AA, Lugtenberg BJ (1989) Analysis of the major inducers of the Rhizobium nod A promoter from Vicia sativa root exudate and their activity with different nodD genes. Plant Mol Biol 13:175–188

    Article  CAS  PubMed  Google Scholar 

  • Zahir ZA, Abbas SA, Khalid M, Arshad M (2000) Substrate dependent microbially derived plant hormones for improving growth of maize seedlings. Pak J Biol Sci 3:289–291

    Article  Google Scholar 

  • Zahran HH (1999) Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol Mol Biol Rev 63:968–989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Subramanian S, Stacey G, Yu O (2009) Flavones and flavonols play distinct critical roles during nodulation of Medicago truncatula by Sinorhizobium meliloti. Plant J 57:171–183

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakesh Pandey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, A., Chaubey, R., Srivastava, S., Kushwaha, S., Pandey, R. (2021). Beneficial Root Microbiota: Transmogrifiers of Secondary Metabolism in Plants. In: Singh, K.P., Jahagirdar, S., Sarma, B.K. (eds) Emerging Trends in Plant Pathology . Springer, Singapore. https://doi.org/10.1007/978-981-15-6275-4_16

Download citation

Publish with us

Policies and ethics